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Abstract

Background: Missing data in electronic health records is inevitable and considered to be nonrandom. Several studies have
found that features indicating missing patterns (missingness) encode useful information about a patient’s health and advocate for
their inclusion in clinical prediction models. But their effectiveness has not been comprehensively evaluated.

Objective: The goal of the research is to study the effect of including informative missingness features in machine learning
models for various clinically relevant outcomes and explore robustness of these features across patient subgroups and task settings.

Methods: A total of 48,336 electronic health records from the 2012 and 2019 PhysioNet Challenges were used, and mortality,
length of stay, and sepsis outcomes were chosen. The latter dataset was multicenter, allowing external validation. Gated recurrent
units were used to learn sequential patterns in the data and classify or predict labels of interest. Models were evaluated on various
criteria and across population subgroups evaluating discriminative ability and calibration.

Results: Generally improved model performance in retrospective tasks was observed on including missingness features. Extent
of improvement depended on the outcome of interest (area under the curve of the receiver operating characteristic [AUROC]
improved from 1.2% to 7.7%) and even patient subgroup. However, missingness features did not display utility in a simulated
prospective setting, being outperformed (0.9% difference in AUROC) by the model relying only on pathological features. This
was despite leading to earlier detection of disease (true positives), since including these features led to a concomitant rise in false
positive detections.

Conclusions: This study comprehensively evaluated effectiveness of missingness features on machine learning models. A
detailed understanding of how these features affect model performance may lead to their informed use in clinical settings especially
for administrative tasks like length of stay prediction where they present the greatest benefit. While missingness features,
representative of health care processes, vary greatly due to intra- and interhospital factors, they may still be used in prediction
models for clinically relevant outcomes. However, their use in prospective models producing frequent predictions needs to be
explored further.

(JMIR Med Inform 2021;9(12):e25022) doi: 10.2196/25022
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Introduction

Background
The increasing availability of electronic health record (EHR)
data collected from hospitals, especially from their intensive
care units (ICU), has encouraged the development of various

models for disease diagnosis [1-4]. Machine learning and
specifically deep learning models, given their ability to
adequately learn nonlinear representations and temporal patterns
from large amounts of data, have been widely applied to capture
complex physiological processes, and several works have
demonstrated their usefulness [5]. Most works use retrospective
observational data to train supervised models for a variety of
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clinically important outcomes like mortality or sepsis. Some
more recent works have also developed models more suited to
actual clinical needs by evaluating models prospectively and
using early warning scores as baselines [6]. Models used to
learn human physiological processes from EHRs tackle intrinsic
problems in health care data, particularly that of irregular
sampling and large amount of missing information [7].

Several methods have been developed to handle the inevitably
large amount of missing data in EHRs. Simpler methods like
incomplete record deletion (also called complete case analysis)
propose to simply delete those records where any value is
missing. Various imputation techniques ranging from simple
mean imputation to sophisticated methods like multiple
imputation with chained equations are also commonly used [8].
More recently, deep learning models have been proposed to
learn the underlying process generating the data as a method
for better inferring missing values [9]. A consensus regarding
a best universal model to handle missing data does not exist in
literature, and it is generally understood to depend heavily on
the task and the nature of the data itself. However, a returning
consideration in all studies on missing data is the nature of
missingness. In Rubin [10], missing data were classified into 3
categories: missing completely at random, missing at random,
and missing not at random. The nature of missingness in EHRs
has been generally understood to belong to the last category,
missing not at random [11]. This means that missing values
cannot be inferred using observed values, subjecting all methods
to problems of bias.

Considering the inevitability of bias, methods seek to minimize
it by considering imputed value uncertainty or developing more
sophisticated processes to learn underlying distributions [8,12].
A returning simple yet effective motif in deep learning models
for EHRs is to use informative missingness (IM) features. First
introduced in Lin and Haug [11], the method has repeatedly
been shown to improve performance of health care models for
a variety of outcomes [13-16]. A particularly efficient use was
demonstrated in Lipton et al [13], where simply augmenting
zero-imputed data with corresponding binary missingness
indicators greatly improved over the baseline model. The basic
assumption underlying the use of IM features is that the
inclusion of health care process variables like laboratory tests
conducted or drugs prescribed provides important information
about the state and evolution of a patient’s health. These
variables are usually inputted to the model as binary indicators
of observation/missingness, but some studies have also
propounded modifying or augmenting this representation to
include additional information such as time since last
observation [17,18]. We use the term health care process
variables interchangeably with IM features.

This use of health care process variables as feasible features to
model patient health is supported by studies spanning several
decades and countries, indicating that test ordering behavior
and drug prescriptions are associated with the underlying
pathology. For example, Kristiansen et al [19] established that
the medical condition at hand was the strongest determinant of
test ordering behavior, and Weiskopf et al [20] and Rusanov et
al [21] found a statistically significant relationship between data
completeness and patient health status, finding that those

susceptible to adverse outcomes have more information
collected. A recent study also highlighted that EHR data are
observational and display a patient’s interactions with the health
care system and thus any information from there can only serve
as a proxy measure of the patient’s true state [22]. They further
found that the presence of laboratory test orders, regardless of
other information like numerical test values, had a significant
association with odds of 3-year survival. This suggests that
laboratory test orders encode information separately from
laboratory test results, as corroborated by Pivovarov et al [23].

Despite improvements in model performance on including IM
features, their use is considered to have limited applicability.
Missing information may occur due to several factors, not all
which pertain to patient pathology or a physician’s mental model
of the diagnosis process. Within a hospital, some tests may be
conducted following general guidelines or as standard practice
for all patients regardless of underlying condition [23].
Physicians also vary by years of experience and attitudes in
coping with uncertainty, which has been shown to affect test
ordering behavior [24]. In addition, variations between hospitals
as test ordering may depend on resource constraints and
variations due to geographic separation as ICU case-mix changes
are further exacerbated when making international comparisons
[25,26]. And while machine learning models rely on improved
performance on chosen metrics as a justification for continued
use of IM features, evaluation has mostly been on single-center
data under retrospective task settings. Even where multicenter
data are used, hospitals are often not geographically distinct,
preventing the assessment of model generalization to different
demographic mixes and practices. Also, only recently have
some works evaluated their models prospectively, better
reflecting real-world clinical utility, but evaluation metrics differ
across studies, some choosing to use the concordance index
(also called the area under receiver operating curve [AUROC])
while others prefer the area under precision recall curve [27,28].

The ways in which use of IM features is supported and
challenged creates an apparent disjunction and casts doubts on
their true usefulness. This was perhaps exemplified in the
PhysioNet 2019 Challenge [29] for early prediction of sepsis,
which saw many submissions using some modification of IM
features [16-18,30,31]. The challenge was designed to evaluate
models on prospective prediction performance and used datasets
from 3 geographically distinct hospital systems, one of which
was never provided to the participants. While several models
had reasonable performance on hospitals they had at least partial
access to, scores dropped substantially on the third, unseen
hospital. Models using more sophisticated modifications of IM
features saw a larger drop than those using simple binary
variables or no representation of health care processes.

Objectives
In this study we seek to empirically verify and understand the
effect that including IM features has on health care machine
learning models. We selected 3 common outcomes of interest,
mortality, length-of-stay, and sepsis, and trained models for 2
task settings. The first, shared by all outcomes, is entire record
classification where the model provides a prediction at the end
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of a patient’s ICU stay. The second is hourly prediction of label,
and only the sepsis label is used for this task.

We verify the effect of IM feature inclusion on performance,
generalizability, and clinical utility of models in 3 steps. First,
to get a comprehensive understanding of model performance,
binary classification models for each of the outcomes were
trained and evaluated using multiple metrics. Since class
imbalance varies between outcomes, we could also evaluate
model robustness. Second, for the sepsis outcome, since data
from 2 distinct hospital systems were available, we could
evaluate model generalizability and test whether that is affected
by IM features. Third, again for the sepsis outcome, since labels
for every hour of patient data were available, we trained a model
for temporal prediction of sepsis. We evaluated this model on
the hidden hospital system’s data in a simulated prospective
manner, in the process understanding how the models would
behave in an actual clinical setting and what differences in
performance can be expected by including IM features.

Finally, we hypothesized that health care processes vary across
patient demographics and ICU types, which may result in
varying missingness rates and patterns across subgroups.
Previous works have shown how laboratory variation (and thus
test ordering behavior) may vary based on these criteria; this
was also seen in our data analysis [32,33]. Thus, we were
motivated to see model performances for different subgroups,
as well as to study the different extent to which IM features
improve model performance within a subgroup. Based on our
data analysis, age and ICU type subgroups were chosen. Since
testing was also done on the hidden hospital, we could see how
generalization on subgroups is affected by including IM. We
could also verify whether models can use IM features to capture
the relationship between test ordering and patient
pathophysiology despite intra- and interhospital variations.

Methods

In this section we describe the datasets used for this study and
the preprocessing pipeline. We also describe how outcomes of
interest were defined. This is followed by an overview of the
task settings and experiments with model implementation
details.

Datasets
Data from the PhysioNet 2012 and 2019 Challenges were used
for this study. From the PhysioNet 2012 [34] dataset (P12), we
used patient records from training set A and open test set B,
each consisting of data from 4000 patients collected from 4
types of ICUs. Several patient outcomes are provided of which
we selected in-hospital death (mortality) and length of stay
(number of days between patient’s admission to the ICU and
end of hospitalization, LOS). We binarized the LOS outcome
setting as 3 days as a heuristic decision threshold, similar to
previous studies [14]. The data consist of static patient
descriptors as well as temporal variables representing patient
vitals (low missingness) and values from laboratory tests
conducted (high missingness). Imbalance ratios of mortality
and LOS were different, at 13.9% and 6.5%, respectively, for
set A and 14.2% and 7.0%, respectively, for set B. Since P12

was extracted from the MIMIC II (Multiparameter Intelligent
Monitoring in Intensive Care) Clinical Database [35], the data
were from one hospital system only.

The PhysioNet 2019 [29] dataset (P19) comprised patient
records from 3 geographically distinct US hospital systems. A
total of 40,336 patient records, 20,336 from hospital A (set A)
and 20,000 from hospital B (set B), from 2 ICU types were
used. Data from hospital C were not available for download.
Since the challenge was aimed at model development for early
prediction of sepsis, a corresponding binary label is provided
for every hour of the patient’s record. Labeling was done in
accordance with the Third International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3) criteria [36]. It is
important to note that to facilitate training models for early
prediction, patients who eventually developed sepsis were
labeled as such starting 6 hours before a confirmed diagnosis.
More details about the definition of the sepsis label may be
found in Multimedia Appendix 1. Available variables in the
dataset are similar to that in P12, describing static as well as
temporal patient features with varying missingness. The cohort
from hospital A consisted of 8.8% of patients who developed
sepsis while it was 5.7% for hospital B. Due to the cohort
selection procedure followed by Reyna et al [29], few patients
have sepsis from the start of ICU admission. Only 2.2% of
hourly records for hospital A and 1.4% for hospital B are labeled
as corresponding to sepsis. For analysis of the extent of
missingness in the various datasets, please see Figures S1-S5
in Multimedia Appendix 2.

Preprocessing
Data preprocessing was done using a similar pipeline as
described in multiple previous studies [13,14,37]. Data from
P12 were resampled on an hourly basis, while P19 data were
already resampled. While resampling, some patient records
were found to have static descriptors only and others had
missing outcome labels in both sets of P12. These were
removed, leaving 3997 patient records in set A and 3993 in set
B. Invasive and noninvasive measurements of the same variable
present in P12 were averaged to form aggregate measurements.
In P19, end tidal carbon dioxide was a variable observed in only
hospital B, so it was removed from consideration. Static patient
features describing age, gender, or ICU type identifiers were
not used as inputs. This left us with 33 features in P12 and 34
in P19, which were used for model training. To deal with
missing data, zero imputation was performed in both datasets,
since Lipton et al [13] showed that this simple strategy proved
quite effective when used to train deep learning models.

For model training and evaluation, training and testing sets were
identified. Set A from both datasets was used for training while
set B was shown to the model only for final evaluation. It is
worth noting again that set B in P19 belonged to a distinct
hospital system. Data were standardized before inputting to the
model. Mean and variance from training data were used to
standardize corresponding test data.

Finally, we describe the derivation of features to represent
missingness. We selected the simplest representation using
binary indicator variables, with a 1 used to denote variable
observation and a 0 otherwise. Every feature described earlier
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had a corresponding missingness indicator that was appended
to the feature vector as in Lipton et al [13]. This resulted in 66
features for P12 and 68 for P19.

Modeling Methodology
Since patient pathophysiology evolves nonlinearly over time,
sequential models like recurrent neural networks (RNN) are
considered suitable and have often been used in previous works
[38]. We used a gated RNN variant, specifically a gated
recurrent unit (GRU) to model long EHR sequences [39]. A
multilayer perceptron followed by a sigmoid layer were used
after the GRU to output binary label probabilities.

The model was implemented in Pytorch [40] and trained using
minibatch gradient descent to minimize binary cross entropy
loss with Adam [41] as the optimizer. Models trained with IM
augmented features are denoted by masking while those trained
with patient physiological features only are denoted by no
masking.

We performed 5-fold stratified cross validation for
hyperparameter tuning and to prevent model overfitting. To
tune hyperparameters, we performed an iterative ranging
investigation to determine a suitable grid followed by a grid
search [42]. Maximum averaged AUROC and utility score
across all folds were chosen as the criteria for hyperparameter
set selection for the retrospective and simulated prospective
tasks, respectively [29]. No attempt was made to tune model
architecture as our focus was not to propose a new model but
to evaluate IM feature effectiveness.

Task Settings
We analyzed the effectiveness of including IM features by
defining 2 tasks, (1) retrospective classification where we verify
IM usefulness on model performance, calibration, and
generalizability and (2) simulated prospective classification to
study IM effect on model prediction trends in a temporal
manner.

Retrospective Classification
In this setting, the model is trained to predict the appropriate
label at the end of a patient’s hospital stay. For this purpose,
mortality and LOS labels were used directly from the outcomes
provided in P12. For P19, a sepsis-overall label was derived
from the hourly labels provided. If a patient developed sepsis
at any time, their entire record was marked as positive for sepsis.
The task for all 3 labels was binary classification after using
the entire patient record as input. We studied the effect of IM
in 2 steps, overall classification and subgroup analysis:

• To verify changes in performance on IM inclusion, the
models were evaluated on all of the testing data for all
datasets and labels. Multiple evaluation metrics were used
to understand how IM features change performance and
calibration while data from a distinct hospital were used to
evaluate changes in model generalizability.

• To study extent of improvement on different patient
subgroups, models were trained on all of the training data
(representative of a general ICU population) and evaluated
on identified subgroups made from the test set. Both
datasets provided 3 general patient descriptors: age, gender,

and ICU type. Visual comparison of variable observation
differences between these strata was performed. Gender
showed no substantial difference in variable observation.
Different ICU types displayed clear differences as did age
after binning into suitable intervals (Figures S6-S11 in
Multimedia Appendix 2). These strata were chosen for
subgroup analysis.

Simulated Prospective Classification
Only P19 was used for this task since P12 did not have hourly
labels. The model was trained to predict patient probability of
sepsis at every hour using the shifted labels provided in the
dataset. At time t, information from the beginning of the patient
record to t was used to make a prediction. This ensured
prospective usefulness of the model. Since the model was trained
on labels shifted by 6 hours (for septic patients), we expected
the model to learn early signs of sepsis onset. The sepsis-overall
label described earlier was used for cross-validation and
hyperparameter tuning.

Performance Evaluation
Model discriminative ability was judged by the concordance
index or AUROC. Since this is known to be an over optimistic
measure for imbalanced datasets [43], we also use the
precision-recall curve and average precision to evaluate
predictive value [44,45]. Finally, 2 measures were used to assess
model calibration: reliability plots and Brier score. The former
was useful to visualize calibration changes against different
levels of model uncertainty. The latter was used to quantify an
averaged deviation from true probabilities and as a convenient
summary of uncertainty, resolution, and reliability [46]. We
also visualized the number of samples in each bin of the
reliability plots by varying marker area proportional to the
squared root of the bin size scaled by a constant factor. Finally,
AUROC and Brier score were reported with 95% confidence
intervals computed with 10,000 bootstrap replications to obtain
a good estimation of model performance up to the second
significant digit [47].

Results

Retrospective Classification

Overall Classification
The first 3 rows of Table 1 summarize results for the overall
classification tasks. Including IM resulted in considerable
improvements over using patient physiological features only
for both tasks on P12 and the sepsis-overall task on P19. The
extent of improvement in average precision mimicked trends
of improvements in AUROC. The no masking model had an
average precision of 0.493 on the P12 mortality task, and
including IM features improved this to 0.511. The performance
gain was more marked for the P12 LOS task, as average
precision was 0.173 without and 0.368 with masking. It is worth
noting that the derived LOS label in P12 had higher class
imbalance than the mortality label for the same dataset. The
P19 sepsis-overall task also saw an improvement in average
precision where the no masking model achieved 0.537 and this
was 0.547 for the masking model. Panels A and B of Figures
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1-3 graphically show the receiver operating characteristic and
PR curves for these tasks.

Including IM features also improved model calibration scores
in all 3 cases, as seen by the Brier score (lower is better). The
improved Brier scores (0.039 with IM features vs 0.045 without)
for the P19 sepsis-overall task where evaluation was on a distinct
hospital suggests that the model does not overfit to

hospital-specific health care process variables. Examining panel
C of Figures 1-3 shows the calibration plots for each task setting.
The 2 models had very similar plots for the P12 mortality task.
The difference was again most pronounced for the P12 LOS
task, where the masking model had better calibration at higher
model certainties (predicted probabilities). The masking model
also showed improved calibration for the P19 sepsis-overall
task seen in Figure 3C.

Table 1. Results of model discrimination and calibration for all task settings on the test data. These correspond to internal validation for PhysioNet
2012 Challenge and external for PhysioNet 2019 Challenge.

No masking (Brier), mean
(SD)

No masking (AUROC), mean
(SD)

Masking (Brier), mean (SD)Masking (AUROCa), mean
(SD)

0.095 (0.088-0.101)0.830 (0.81-0.85)0.093 (0.087-0.100)0.842 (0.82-0.86)P12b mortality

0.064 (0.058-0.070)0.737 (0.71-0.77)0.054 (0.049-0.060)0.814 (0.79-0.84)P12 LOSc

0.045 (0.043-0.048)0.889 (0.88-0.90)0.039 (0.036-0.041)0.907 (0.90-0.92)P19d sepsis-overall

0.014 (0.013-0.015)0.766 (0.75-0.78)0.014 (0.013-0.014)0.757 (0.74-0.77)P19 sepsis-frequent

aAUROC: area under the curve of the receiver operating characteristic.
bP12: PhysioNet 2012 Challenge.
cLOS: length of stay.
dP19: PhysioNet 2019 Challenge.

Figure 1. Receiver operating characteristic (ROC) curve, precision-recall (PR) curve, and calibration plot for the PhysioNet 2012 Challenge mortality
classification task.
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Figure 2. Receiver operating characteristic (ROC) curve, precision-recall (PR) curve, and calibration plot for the PhysioNet 2012 Challenge length of
stay classification task.

Figure 3. Receiver operating characteristic (ROC) curve, precision-recall (PR) curve, and calibration plot for the PhysioNet 2019 Challenge sepsis-overall
classification task.

Subgroup Analysis
Tables 2-4 summarize model performances on the identified
subgroups for the 3 overall classification task settings. For
variance estimation in results, the subgroup data were
bootstrapped keeping the sample size equal to subgroup size.
These results have also been visualized as bar plots in Figures
S12-S14 in Multimedia Appendix 2.

For the P12 mortality task in Table 2, the no masking model
outperformed the masking model for the age bins 35 years and
younger and 45 to 55 years, while the masking model had better
performance for all other age groups. The best AUROC over
all ages was achieved by the masking model on the 35- to
45-year group, which also saw the largest improvement on
including IM features (2.6%). While younger and middle-aged
groups saw inconsistent performance changes on IM inclusion,
older patients (older than 55 years) showed consistent
improvements from 0.8% to 1.5% in all-cause mortality
classification. When considering performances in different
ICUs, the masking model generally had better performance
except for the coronary care unit (CCU), but the difference was
not substantial. The cardiac surgery recovery unit saw the
highest AUROC and also the greatest improvement of 1.7% on
IM inclusion.

Similar to the prominent improvements in the P12 LOS-overall
classification task, the masking model considerably
outperformed the no masking model for all age and ICU type
subgroups. The youngest age group, 35 years and younger, saw
an improvement of 15.5% in AUROC, becoming the subgroup
with the best performance out of all age groups. Comparatively,
the 55- to 65-year subgroup, which had the best model
performance without IM, saw an improvement only of 0.7%.
The cardiac surgery recovery unit again saw the largest
performance gain on IM inclusion, of 13.1%, followed by the
surgical ICU with 10.2% and the CCU, with a relatively small
gain of 2.8%.

Finally for the P19 sepsis-overall task, the masking model again
outperformed all subgroups except for the 35- to 45-year bin.
Older groups (older than 55 years) generally saw a larger
improvement, with the greatest increase in AUROC seen in the
65- to 75-year group, at 4%. While the surgical and medical
ICUs had the same AUROC without IM, the masking model
performed better on the surgical ICU.

Brier score trends generally showed similar or improved
calibration on including IM features for all outcomes and
subgroups. Particularly for P19 sepsis-overall, calibration
improved despite external validation.
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Table 2. Subgroup analysis results for the PhysioNet 2012 Challenge mortality classification task.

No masking (Brier),
mean (SD)

No masking (AUROC),
mean (SD)

Masking (Brier), mean
(SD)

Masking (AUROCa),
mean (SD)

#Samples

Age strata (years)

0.059 (0.040-0.079)0.852 (0.75-0.94)0.057 (0.037-0.079)0.847 (0.74-0.93)268≤35

0.054 (0.037-0.072)0.880 (0.80-0.95)0.048 (0.031-0.066)0.906 (0.84-0.96)30935-45

0.064 (0.052-0.077)0.885 (0.83-0.93)0.064 (0.050-0.078)0.878 (0.82-0.93)56945-55

0.076 (0.063-0.090)0.848 (0.80-0.89)0.074 (0.060-0.090)0.859 (0.82-0.90)70855-65

0.094 (0.080-0.108)0.822 (0.78-0.86)0.094 (0.079-0.109)0.830 (0.79-0.87)84565-75

0.135 (0.123-0.149)0.786 (0.75-0.82)0.135 (0.121-0.149)0.801 (0.77-0.83)1294>75

ICUb types

0.086 (0.070-0.104)0.807 (0.74-0.86)0.087 (0.069-0.106)0.806 (0.75-0.86)587Coronary care unit

0.037 (0.028-0.048)0.845 (0.76-0.92)0.035 (0.025-0.046)0.862 (0.79-0.92)780Cardiac surgery unit

0.095 (0.083-0.106)0.843 (0.81-0.87)0.094 (0.082-0.107)0.852 (0.82-0.88)1192Surgical ICU

0.129 (0.117-0.141)0.787 (0.76-0.82)0.128 (0.115-0.140)0.801 (0.77-0.83)1434Medical ICU

aAUROC: area under the curve of the receiver operating characteristic.
bICU: intensive care unit.

Table 3. Subgroup analysis results for the PhysioNet 2012 Challenge length of stay classification task.

No masking (Brier),
mean (SD)

No masking (AUROC),
mean (SD)

Masking (Brier), mean
(SD)

Masking (AUROCa),
mean (SD)

#Samples

Age strata (years)

0.108 (0.079-0.138)0.707 (0.61-0.80)0.081 (0.055-0.109)0.862 (0.80-0.92)268≤35

0.079 (0.057-0.104)0.721 (0.62-0.82)0.060 (0.040-0.081)0.820 (0.71-0.91)30935-45

0.064 (0.048-0.081)0.712 (0.63-0.79)0.057 (0.042-0.073)0.800 (0.72-0.88)56945-55

0.054 (0.042-0.068)0.790 (0.72-0.86)0.045 (0.033-0.059)0.797 (0.71-0.87)70855-65

0.053 (0.042-0.065)0.712 (0.64-0.78)0.047 (0.035-0.060)0.803 (0.72-0.87)84565-75

0.062 (0.052-0.073)0.747 (0.69-0.80)0.056 (0.046-0.067)0.814 (0.77-0.86)1294>75

ICUb types

0.095 (0.078-0.112)0.763 (0.71-0.82)0.086 (0.068-0.105)0.791 (0.73-0.85)587Coronary care unit

0.018 (0.011-0.025)0.759 (0.60-0.90)0.013 (0.006-0.020)0.890 (0.77-0.98)780Cardiac surgery unit

0.056 (0.036-0.056)0.710 (0.64-0.77)0.046 (0.036-0.056)0.812 (0.75-0.87)1192Surgical ICU

0.082 (0.071-0.094)0.682 (0.63-0.73)0.071 (0.060-0.083)0.776 (0.73-0.82)1434Medical ICU

aAUROC: area under the curve of the receiver operating characteristic.
bICU: intensive care unit.
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Table 4. Subgroup analysis results for the PhysioNet 2019 Challenge sepsis-overall classification task. A total of 6095 patients did not have intensive
care unit type specified, and thus, they were not considered for the corresponding analysis.

No masking (Brier),
mean (SD)

No masking (AUROC),
mean (SD)

Masking (Brier), mean
(SD)

Masking (AUROCa),
mean (SD)

#Samples

Age strata (years)

0.044 (0.035-0.052)0.893 (0.85-0.93)0.037 (0.029-0.045)0.904 (0.86-0.94)1742≤35

0.046 (0.038-0.055)0.910 (0.88-0.94)0.041 (0.033-0.049)0.911 (0.88-0.94)194935-45

0.037 (0.032-0.043)0.900 (0.87-0.93)0.032 (0.026-0.037)0.920 (0.90-0.94)333445-55

0.048 (0.042-0.053)0.886 (0.86-0.91)0.042 (0.037-0.048)0.897 (0.87-0.92)458155-65

0.049 (0.043-0.054)0.877 (0.85-0.90)0.039 (0.034-0.043)0.917 (0.90-0.94)476865-75

0.045 (0.039-0.051)0.888 (0.86-0.91)0.040 (0.034-0.046)0.896 (0.87-0.92)3626>75

ICUb types

0.049 (0.045-0.053)0.882 (0.86-0.90)0.044 (0.040-0.048)0.895 (0.88-0.91)6923Medical ICU

0.050 (0.046-0.055)0.882 (0.86-0.90)0.041 (0.037-0.045)0.903 (0.89-0.92)6982Surgical ICU

aAUROC: area under the curve of the receiver operating characteristic.
bICU: intensive care unit.

Simulated Prospective Classification
The last row of Table 1 summarizes the nontemporal evaluation
for this task setting. Unlike overall classification, the no masking
model outperforms the masking model while keeping almost
the same calibration.

Before discussing temporal performances, it is necessary to
understand the LOS distribution for each patient category. LOS
averaged over the entire cohort was very similar for both P19
hospitals, at 39.77 (SD 22.55) hours and 38.23 (SD 23.27) hours
for A and B, respectively. Separating the cohort into patients
who eventually develop sepsis and those who don’t shows that
patients who develop sepsis spend a longer time in the ICU.
For hospital A, septic patients spent 59.54 (SD 57.81) hours on
average while nonseptic patients spent 37.87 (SD 13.92) hours.
Similarly, for hospital B this was 59.22 (SD 61.90) hours for

septic patients and 36.96 (SD 17.72) hours for nonseptic
patients. The cohort for both hospitals consisted almost entirely
of patients with sepsis after 3 days.

Temporal evaluation shown in Figure 4B displays almost equal
predictive value at each hour over the first 100 hours of ICU
admission, with peak predictive value achieved a little over 90
hours. This is likely due to the LOS characteristics of the
datasets. Figure 4A shows how model predictions change over
time for patients who eventually develop sepsis and those who
don’t. We observe a considerable divergence between the curves
of masking and no masking models (regardless of sepsis
category) a little after 2 days of ICU admission. The same plot
also shows trends in the proportion of septic patients at each
hour, giving an insight into the expected amount of false alarms
or missed diagnoses by each model.
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Figure 4. Temporal evaluation for the PhysioNet 2019 Challenge sepsis-frequent task; records corresponding to sepsis are labeled as S=1 while the
remainder are S=0: (A) drop in probability of false-positive prediction (S=0) is because after 90 hours, only patients with sepsis remain in the data; (B)
this cohort characteristic is learned by the model resulting in perfect predictive value after 90 hours. ICU: intensive care unit.

Discussion

Principal Findings
Results from the retrospective-overall classification shown in
Table 1 were consistent with previous studies [11,13,14],
confirming that including even simple representations of health
care processes like binary IM features improves performance.
This was further reinforced by evaluating the models on a
variety of metrics summarizing predictive value and calibration.
Model discrimination and predictive value were improved in
all cases while keeping the same or better calibration. Results
of the P19 sepsis-overall task also confirmed that model
generalization in such retrospective tasks is not affected by
including IM features, despite interhospital variations.
Calibration plots in panel C of Figures 1-3 showed that model
reliability was improved for nearly all levels of model certainty,
especially for higher predicted probabilities, making the masking
model more trustworthy.

Subgroup analysis helped us verify the IM inclusion effect on
population subgroups and whether health care process variables
encoded information about pathophysiology despite intra- and
interhospital variations, justifying their use as proxy biomarkers
of patient health. In the P12 mortality subgroup task (Table 2),
while the masking model performed better on average in the
entire test set, it failed to improve upon the no masking model
for certain age groups suggesting that for younger patients,
trends in physiological features alone are better predictors of
in-hospital death. The masking model was also slightly
outperformed by the no masking model in the CCU subgroup,
which may be because CCU patients have a very specific set
of complications, rendering several laboratory tests unnecessary
[48]. For subgroups in P12 LOS (Table 3), however,
considerable improvements in AUROC for younger age groups
were observed, suggesting laboratory tests conducted were
important indicators to estimate whether a patient will spend
more or less than 3 days in the ICU. The CCU again saw only
a slight improvement, probably due to a generally earlier

JMIR Med Inform 2021 | vol. 9 | iss. 12 | e25022 | p. 9https://medinform.jmir.org/2021/12/e25022
(page number not for citation purposes)

Singh et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


diagnosis relative to other ICUs. Overall, for both P12 outcomes,
younger age groups and the cardiac surgery recovery unit had
the highest AUROCs achieved by masking models.

For subgroups in the P19 sepsis-overall task (Table 4), older
age groups generally saw greater benefit on IM inclusion. Sepsis
is known to be associated with age, which may in turn prompt
physicians to order relevant tests earlier in the patient’s ICU
stay [49]. The surgical ICU again saw a greater improvement
in AUROC over the medical ICU, while the model had almost
equal performance for both ICUs using only physiological
features. This task also evaluated model performance and effect
of IM features on model generalization, since the subgroups
were made using data from a distinct hospital. These results
suggest that, at least in retrospective task settings, health care
process variables do not hinder model generalization and models
trained using these variables can adequately learn the relation
of IM features to the underlying condition without being affected
by interhospital variations.

Calibration indicated by the Brier score showed that the model
actually learns to output better probabilities on including health
care process variables.

Relationship With Prior Work
Perhaps the study most similar to this work was by Sharafoddini
et al [50], which examined whether missing indicator features
are informative. The study performed extensive data analysis
and evaluated logistic regression and tree-based models trained
with and without missing indicators to assess any difference in
discriminative ability. Their results demonstrated improved
model performance upon IM inclusion, and feature selection
methods reinforced the importance of IM variables. While this
work is similarly motivated in its goal to objectively assess IM
features, there are some essential differences. We focused on
several outcomes of interest as opposed to mortality only, as
discussed earlier. We also provided comprehensive evaluation
through multiple metrics, assessing not only overall
discrimination but also hourly discrimination and model
calibration. Subgroup analysis and evaluation of model
generalization on a distinct patient population further contribute
to the novelty of this work. Previous studies did not evaluate
their model’s performance on ICU population subgroups, instead
assuming similar performances across patients [9,13,14]. We
showed that discrimination varies between strata as does the
extent of improvement brought by including IM features.
Finally, we used a sequential deep learning model (GRU) as
opposed to the models used in Sharafoddini et al [50], since
RNN variants have been popular choices to model EHR data
and often use IM features to improve performances [13,14].

Temporal trends in probability of predicting sepsis shown in
Figure 4A confirm previous findings by Sharafoddini et al [50]
that indicators become increasingly important from the second
day onward in the ICU. But this is arguably too late, since
patients who eventually developed sepsis had a higher variance
in LOS, many becoming septic early on in their ICU stay. While
including IM features results in better model performance
overall, it also falsely identifies nonsepsis patients as susceptible
(false positives) in the near future, leading to several false
alarms. In the PhysioNet 2019 Challenge, the utility score metric

applied a minimal penalty for false positive predictions, while
also leading to earlier and greater true positives, perhaps
explaining the extensive use of IM features in proposed models.
But alarm fatigue is a known issue in ICU early warning scores,
and false positives cannot be ignored [51]. When performance
on predicting the absence of sepsis (true negatives) is not
considered, the net predictive value gets balanced out, as shown
in Figure 4B. Also, unlike previous studies, which relied on
end-of-day outcome prediction or thresholded decision outputs
for evaluation, we relied exclusively on hourly probabilities
and visualized its trends with time, which may be used to
understand a model’s clinical utility more comprehensively
[27,42].

It is important to understand that IM feature effectiveness varies
based on the outcome of interest, whether they are applied for
retrospective or prospective tasks and even on population
subgroups. With IM features now being used for a variety of
tasks including classification, prediction, and even imputation,
models relying on these may further propagate preexisting biases
in health care processes.

Limitations
A limitation of this study was using data from the same country,
in this case the United States. Practices and case-mix vary by
country. Physician attitudes to uncertainty (which may influence
test ordering and drug prescription) may also be affected by
resource limitations and even by cultural factors [24]. This
requires verifying masking model generalizability on data from
different parts of the world. Efforts have been made to
standardize test ordering behavior but guidelines are followed
to varying extents depending on patient histories, comorbidities,
and the physician in charge [26,52].

The datasets we used were observational, with no information
regarding the context in which laboratory tests were ordered or
which patients were transfers from other ICUs. The latter leads
to the problem of lead-time bias, which may be reflected in the
data as unexpected adverse outcomes for certain patients [53].
We also evaluated IM feature effectiveness on only one model
type, GRU (an RNN variant). While we selected this because
of its common use in prior work, different models may learn
IM representations differently [38].

Critical care EHRs are also a specific subtype of general EHRs,
since they consists only of inpatients with serious conditions.
A more general EHR dataset that includes outpatients may result
in different health care process observation patterns and reveal
interesting effects on predictive models [23]. Finally, clinical
best practices change over time, in turn affecting which tests
are performed and how often. This is part of the larger problem
of dataset shift in machine learning, and it remains to be seen
how this would affect clinical models relying on health care
process features.

Conclusion and Future Work
With increasing use of observational EHR data for machine
learning model development, there has been an increase in the
number of studies claiming clinical utility of proposed models,
many relying on variables representative of health care
processes. In this study, we addressed questions regarding the

JMIR Med Inform 2021 | vol. 9 | iss. 12 | e25022 | p. 10https://medinform.jmir.org/2021/12/e25022
(page number not for citation purposes)

Singh et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


effect of using health care process features on machine learning
model performance and generalizability. By separating
commonly used task settings into 2 subtypes, retrospective and
(simulated) prospective, we made an important distinction
concerning possible clinical utility of models. We framed all
our results using multiple evaluation metrics while also
analyzing external validation performances for all tasks by using
data from a geographically distinct hospital.

This study demonstrated the usefulness of IM features in
retrospective task settings on various outcome labels. Notably,
we found that machine learning model generalization and
calibration are not adversely affected on using health care
process variables even when externally evaluated. However,
the extent of improvement may depend on different patient and
in-hospital factors such as age or ICU type. Our research
indicated that these features provide better information for
certain subgroups than others, and IM variables are better
predictors of administrative outcomes like length of stay than
mortality or sepsis. Results also showed that, at least for a
sequential deep learning model, using simple binary missingness
indicators for simulated prospective sepsis classification did
not add any benefit over a model relying on patient pathological
features only.

Our findings suggest that the suitability of using IM features in
machine learning models may vary based on the outcome of

interest, subgroup of application, task setting (retrospective or
prospective), and differences in clinical practice between
training data and test data. Class imbalances and nature of
outcome have an intense impact on expected performance
improvements on IM feature inclusion. In application, the
subgroup of a patient and deviation in model performance from
its expectation also need to be considered while estimating the
uncertainty of a prediction. Also, while ultimately machine
learning models aim to lend themselves to use as continuous
monitoring bedside tools, using IM features does not seem to
add any prominent improvement over not using them in that
setting. Finally, using IM means using clinical practice variables
in a model, so different missingness rates and missingness
patterns need to be properly contextualized to understand model
performance differences between train and test environments.
Biased observations in one dataset (due to practice or even
hospital resource variations) may have a substantial effect on
model discriminations and calibration in another dataset.

There are several ways to extend this study. Future work may
(1) focus on verifying model performance and generalization
changes by using data from multiple countries, (2) focus on
using different types of models and analyze how differently
learned representations of missingness affect performance, or
(3) study how health care process features may be used for
multilabel classification.
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LOS: length of stay
MIMIC II: Multiparameter Intelligent Monitoring in Intensive Care
P12: PhysioNet 2012 Challenge dataset
P19: PhysioNet 2019 Challenge dataset
RNN: recurrent neural network
Sepsis-3: Third International Consensus Definitions for Sepsis and Septic Shock
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