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Abstract

Background: Accurate assessment of the percentage total body surface area (%TBSA) of burn wounds is crucial in the
management of burn patients. The resuscitation fluid and nutritional needs of burn patients, their need for intensive unit care, and
probability of mortality are all directly related to %TBSA. It is difficult to estimate a burn area of irregular shape by inspection.
Many articles have reported discrepancies in estimating %TBSA by different doctors.

Objective: We propose a method, based on deep learning, for burn wound detection, segmentation, and calculation of %TBSA
on a pixel-to-pixel basis.

Methods: A 2-step procedure was used to convert burn wound diagnosis into %TBSA. In the first step, images of burn wounds
were collected from medical records and labeled by burn surgeons, and the data set was then input into 2 deep learning architectures,
U-Net and Mask R-CNN, each configured with 2 different backbones, to segment the burn wounds. In the second step, we
collected and labeled images of hands to create another data set, which was also input into U-Net and Mask R-CNN to segment
the hands. The %TBSA of burn wounds was then calculated by comparing the pixels of mask areas on images of the burn wound
and hand of the same patient according to the rule of hand, which states that one’s hand accounts for 0.8% of TBSA.

Results: A total of 2591 images of burn wounds were collected and labeled to form the burn wound data set. The data set was
randomly split into training, validation, and testing sets in a ratio of 8:1:1. Four hundred images of volar hands were collected
and labeled to form the hand data set, which was also split into 3 sets using the same method. For the images of burn wounds,
Mask R-CNN with ResNet101 had the best segmentation result with a Dice coefficient (DC) of 0.9496, while U-Net with
ResNet101 had a DC of 0.8545. For the hand images, U-Net and Mask R-CNN had similar performance with DC values of 0.9920
and 0.9910, respectively. Lastly, we conducted a test diagnosis in a burn patient. Mask R-CNN with ResNet101 had on average
less deviation (0.115% TBSA) from the ground truth than burn surgeons.

Conclusions: This is one of the first studies to diagnose all depths of burn wounds and convert the segmentation results into
%TBSA using different deep learning models. We aimed to assist medical staff in estimating burn size more accurately, thereby
helping to provide precise care to burn victims.

(JMIR Med Inform 2021;9(12):e22798) doi: 10.2196/22798
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Introduction

Background
According to the World Health Organization, an estimated
265,000 deaths occur each year from burn injuries. In the United
States, burn injuries result in 10 million visits to the emergency
department and 40,000 patients requiring hospitalization
annually. The most critical aspect of managing burn injuries is
the accurate calculation of the burn area, expressed as percentage
total body surface area (%TBSA). However, many articles have
reported discrepancies in the %TBSA diagnosed by different
doctors. In adult burn injuries, Harish et al reported that
overestimation by the referring institution occurred in 53% of
cases and that the difference was statistically significant [1]. In
child burn injuries from a national survey, Baartmans et al
reported that burn size was often overestimated by referrers, by
up to 30% TBSA, while underestimation was up to 13% TBSA
[2].

There are 2 types of inaccurate estimations of burn injuries:
misdiagnosis of burn depth and miscalculation of burn area.
Misdiagnosis of burn depth comes from the dynamic nature of
wound change. The initial presentation of burn depth may be
quite different from the presentation several days after injury.
Hence, the reported accuracy of diagnosis of burn depth is only
64% to 76% among experienced burn surgeons [3]. When
evaluations are performed by less experienced practitioners, the
accuracy declines to 50%. Fortunately, many technologies have
been developed for accurate diagnosis of burn depth, such as
laser Doppler imaging (LDI), infrared thermography, and
photoacoustic imaging [4-7]. For example, LDI, which is based
on perfusion in the burn area, provides information that is highly

correlated with burn wound healing potential. Healing potential
is a practical indicator of burn depth.

Though the assessment of burn depth with such technologies
is often satisfactory, miscalculation of burn area may be hard
to avoid. Such miscalculation often occurs when an area of
irregular shape is estimated by comparing it with another area
of irregular shape, for example, estimating the %TBSA of an
irregularly shaped burn area on the upper extremity of an adult
using the estimation that the upper extremity has roughly 7%
to 9% TBSA as a guide [8,9]. In an interesting study, Parvizi
et al reported that even when participants reached consensus on
the margin of the burn wound, their estimations of %TBSA
were still different [10]. The difference in %TBSA resulted in
discrepancies in estimating the amount of resuscitation fluid
needed by as much as 5280 mL using the Parkland formula.
Clearly, there is an unmet need to improve the accuracy of burn
diagnosis.

Machine learning has many applications in the field of medicine,
such as in drug development and disease diagnosis [11-14].
Although machine learning has also been implemented in many
aspects of surgery, its application in burn care is relatively rare
[15,16]. Burn care is a field where human error can be reduced
by computer assistance.

Prior Work
Early work in the use of machine learning to assist burn
diagnosis focused on classification of burn depth (Table 1).
Since burn injuries result in a mixture of different burn depths,
most images of burn wounds cannot be simply classified as
superficial partial burn, deep partial burn, or full thickness burn.
Before images of burn wounds are input for feature extraction,
the images need to be processed.

Table 1. Segmentation of burn wounds.

ObjectivePerformance metricModelImage databaseStudy

Burn depthAccuracy 88.57%Fuzzy-ARTMAP38 imagesSerrano et al [17]

Burn depthAccuracy 82.26%Fuzzy-ARTMAP50 imagesAcha et al [18]

Burn depthError rate 0.7%SVMa, Fuzzy-ARTMAP50 imagesAcha et al [19]

Need for skin graftsAccuracy 83.8%KNNb, MDSc74 imagesAcha et al [20]

Need for skin graftsAccuracy 79.73%SVM, MDS94 imagesSerrano et al [21]

Burn depthAccuracy 90.54%VGG16, GoogleNet, ResNet50,
ResNet101

23 imagesCirillo et al [22]

Burn area segmentation,
burn depth

Accuracy 85%AlexNet, VGG16, GoogleNet749 imagesDespo et al [23]

Burn area segmentationDCd 84.51%Mask R-CNN1000 imagesJiao et al [24]

Estimation of burn %TBSAeDC 94%Mask R-CNN, U-Net2591 imagesOur study

aSVM: support vector machine.
bKNN: K-nearest neighbor.
cMDS: multidimensional scaling.
dDC: Dice coefficient.
e%TBSA: percentage total body surface area.
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Small Regions of Images
The most common method of addressing different burn depths
in a given image is to select small regions of the image, called
boxes, for processing. These small boxes are then transformed
into a red/green/blue (RGB) matrix in a color coordinate system.
The relative distance of each of the pixels from the others is
then calculated and a threshold is set to check whether the box
is homogeneous in texture and color. Homogeneous boxes are
classified into different burn depths and input for machine
learning.

Acha and Serrano collected 62 images of burn wounds with a
resolution of 1536×1024 pixels. They selected regions of only
49×49 pixels from the images and classified these small boxes
into 5 appearances to yield 250 images. They input the data set
into Fuzzy-ARTMAP for training. A neural network was then
used to classify burns into the 3 aforementioned types of burn
depths with a success rate of 82% to 88% [17,18]. Later, they
reduced the error rate from 1.6% to 0.7% by applying 5-fold
cross-validation to the data sets and used support vector machine
(SVM) to perform the classification [19]. In 2 subsequent
studies, they further applied multidimensional scaling combining
SVM and k-nearest neighbor classification to predict the need
for a skin graft, with success rates of 79.73% and 83.8%,
respectively [20,21].

Continuous Monitoring
Another method used to get the burn depths of a region
corresponding to any specified pixels of the images of a burn
wound is to record the wound from the time of injury to
complete healing with the same protocol. Cirillo et al
continuously collected images from the same burn wound until
it healed [22]. They were then able to draw lines on the image
corresponding to healing time and divide the area into 4 types
of burn depths. To be more precise, they used the method
mentioned above to extract small regions of the images (676
regions of 224×224 pixels from 23 images of 3456×2304 pixels).
They then input these square regions of interest (RoIs) into
several pretrained convolutional neural network (CNN) models,
such as VGG19, ResNet18, ResNet50, and ResNet101.
ResNet101 showed the best classification results with an average
accuracy of 0.8166.

Goal of This Study
The use of machine learning in burn diagnosis to classify burn
depth is currently quite limited. Technologies, such as LDI and
thermography, are readily available and far more commonly
employed. The treatment of burn injury may last for days or
months. Without the use of special technologies, burn depth
can still be determined by clinical assessment during the course
of treatment. Recently, CNNs have been used in burn diagnosis
to segment burn wounds. Despo et al reported a mean
intersection over union (IoU) of around 0.7 with a fully
convolutional network (FCN) [23]. Jiao et al reported a mean
Dice coefficient (DC) of 0.85 with Mask R-CNN [24]. Such
segmentation results could further be used to calculate %TBSA.
This is important because all formulae for emergent fluid
resuscitation (eg, the Parkland formula = %TBSA × body weight

× 4) and calorie needs (eg, the Curreri formula = 25 × body
weight + 40 × %TBSA) are based on %TBSA.

In this study, we implemented deep learning models to segment
burn wounds and perform conversion to %TBSA based on the
number of pixels. We tried to decrease the human error of
estimating an area of irregular shape by inspection. We aimed
to help medical staff obtain accurate formulae to aid in making
decisions about triage, acute management, and transfer of burn
patients.

Methods

Image Acquisition
This study was approved by the research ethics review
committee of Far Eastern Hospital (number 109037-F). We
reviewed the medical records of patients in Far Eastern Hospital
from January 2016 to December 2019 with ICD9 codes 940-948,
983, and 994. We collected the images of burn wounds from
their medical records and saved them as JPG files. These images
were assigned random numbers for deidentification and were
randomly presented to 2 out of 5 burn surgeons for labeling.

Labeling and Processing
Since many burn wounds have a mixture of different burn
depths, the images were roughly classified into the following
3 categories: superficial/superficial partial burn, deep partial
burn, and full thickness burn. Clinically, the color of
superficial/superficial partial burns is red or pink, and the color
of deep partial burns is dark pink to blotchy red. Blistering is
common in superficial partial burns and is also present in deep
partial burns of a relatively large size. Full thickness burns are
white, waxy, or charred without blisters. All images were
co-labeled by 2 burn surgeons to yield a single consensus result.
The margins of the burn wounds were labeled without regard
to burn depth with the labeling tool LabelMe and saved as JSON
files. A burn wound image was excluded if the wound was on
the face; it involved tattooed skin; it was coated with burn
ointment; it appeared to have undergone an intervention, such
as debridement or skin graft; or no agreement was reached on
the margin of the burn wound by the 2 burn surgeons.

Since the images of burn wounds were collected from various
medical records, their sizes were not uniform and ranged from
4000×3000 to 2736×1824 to 2592×1944 pixels. All labeled
images were resized to 512×512 pixels. The data set of burn
wounds was randomly split in a ratio of 8:1:1 into 3 sets for
training, validation, and testing. We applied 2 deep learning
architectures, U-Net and Mask R-CNN, in combination with 2
different backbones, ResNet50 and ResNet101, to segment these
images.

Evaluation Metrics
The DC and IoU are 2 common metrics used to assess
segmentation performance, whereas precision, recall, and
accuracy are common metrics for assessing classification
performance. The DC is twice the area of the intersection of the
ground truth and prediction divided by the sum of their areas.
It is given as follows:
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where TP (true positive) denotes the number of correctly
classified burn pixels, FP (false positive) denotes the number
of mistakenly classified burn pixels, and FN (false negative)
denotes the number of mistakenly classified nonburn pixels.

The IoU denotes the area of the intersection of the ground truth
and prediction divided by the area of their union. It is given as
follows:

Precision is defined as the ratio of burn pixels that models
correctly classified in all predicted pixels. It is also called
positive predictive value and is given as follows:

Precision = TP / (TP + FP) (3)

Recall is defined as the ratio of burn pixels that are correctly
classified in all actual burn pixels. It is also called sensitivity
and is given as follows:

Recall = TP / (TP + FN) (4)

Accuracy denotes the percentage of correctly classified pixels.
It is given as follows:

Accuracy = (TP + TN) / (TP + FP + TN + FN) (5)

where TN (true negative) denotes the number of correctly
classified nonburn pixels.

Semantic Segmentation: U-Net
The convolutions in the U-Net path can be replaced with a deep
network framework, such as the ResNet framework, which can
explore and learn more features from the data (Multimedia
Appendix 1). Then, the networks can be initialized using
pretrained model weights derived from large-scale object
detection, segmentation, and captioning data sets such as
ImageNet and COCO. In our case, we trained our model using
2 different backbones, ResNet101 and ResNet50, with weights
from the pretrained ImageNet model (Table 2). The standard
augmentations of images we used were rotations, shifts, scale,
gaussian blur, and contrast normalization. The standard Dice
loss was chosen as the loss function. The formula is as follows:

The   term is used to avoid the issue of dividing by 0 when
precision and recall are empty.

Table 2. Configuration of the models.

U-NetMask R-CNNVariable

11Number of classes

ResNet101 & ResNet50ResNet101 & ResNet50Backbone

N/Aa8, 16, 32, 64, 128Regional proposal network anchor scales

N/A128Train RoIsb per image, n

N/A256Anchors per image, n

0.0010.0001 (initial rate, change in different epochs)Learning rate

0.90.9Learning momentum

N/A0.0001Weight decay

88Batch size

512×512512×512Image dimensions

aN/A: not applicable.
bRoI: region of interest.

Instance Segmentation: Mask R-CNN
In our implementation of Mask R-CNN, we trained our model
using ResNet101 and ResNet50 with weights from the pretrained
COCO model (Table 1). Mask R-CNN uses a multitask loss
function given by L = Lclass + Lbox + Lmask (Figure 1). The Lclass

component contains the regional proposal network (RPN) class
loss (failure of the RPN to separate object prediction from

background) added to the Mask R-CNN class loss (failure of
Mask R-CNN object classification). The Lbox component
contains the RPN bounding box loss (failure of object
localization or bounding by the RPN) added to the Mask R-CNN
bounding box loss (failure of object localization or bounding
by Mask R-CNN). The last component Lmask loss constitutes
the failure of Mask R-CNN object mask segmentation.
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Figure 1. Mask R-CNN architecture with ResNet101. FPN: feature pyramid network; RoI: region of interest; RPN: regional proposal network.

Burn Segmentation to %TBSA
When the burn wounds are correctly segmented, the final step
is to convert the pixels to %TBSA. To solve this problem, we
applied the rule of hand/palm. The original rule is that a person’s
hand with digits accounts for 1% TBSA. It is the most common
method of estimating burn %TBSA [25,26]. Recent studies have
shown that a hand without digits represents precisely 0.5%
TBSA (the rule of palm) and a hand with digits should be
adjusted to around 0.8% TBSA (the rule of hand) [8]. If we use
deep learning models to segment a patient’s burn wounds as
well as hands, we can then convert the segmentation result of
burn wounds into %TBSA.

To produce the data set of hands and the data set of palms, we
collected images of both volar hands from our colleagues. For
each image, we labeled the hand with digits and without digits
corresponding to the rule of hand and the rule of palm,
respectively. These 2 data sets were split in a ratio of 8:1:1 into
training, validation, and testing sets as well. The hand data set
and the palm data set were processed according to the previous
methods for burn wounds. The %TBSA of a burn wound can
be calculated by comparing the mask area of the burn wound
with the mask area of the hand or palm of the same patient. The
formula is given by:

where Mburn is the number of pixels of the masked burn area,
Mhand is the number of pixels of the masked hand area (0.8%
TBSA), Mpalm is the number of pixels of the masked palm area

(0.5% TBSA), Dburn is the filming distance of the image of the
patient’s burn wound, and Dhand is the filming distance of the
image of the patient’s hand.

Results

Segmentation of Burn Wounds
There were 3 data sets used in our study, 1 each for burn
wounds, hands, and palms. For the burn wound data, we
collected 3571 images from the medical records of Far Eastern
Hospital, 980 of which were excluded (mostly because the burn
wounds had undergone interventions, and some because they
were coated with burn ointment). The 2591 selected images
were labeled and included in the burn wound data set. Among
these images, 2073 were used as the training set and 259 were
used as the validation set. The remaining 259 images were
preserved as the testing set.

In our study, there was only 1 class in the ground truth. From
the definitions of the DC and IoU, they have the relation of 1/2
× DC ≤ IoU ≤ DC and perfect positive correlation. We used DC
as our main metric to evaluate segmentation performance
because it penalizes false negatives more than IoU does, and it
is better to overestimate burn size than underestimate it.

Both U-Net and Mask R-CNN had better segmentation
performance with the ResNet101 backbone than with ResNet50
(Table 3 and Table 4). The improvement was obvious in U-Net
(DC: 0.8545 vs 0.8077) but negligible in Mask R-CNN (DC:
0.9496 vs 0.9493). Under the same backbone, Mask R-CNN
had better performance in burn wound segmentation and
classification than U-Net. Mask R-CNN with ResNet101 had
the best segmentation result with a DC of 0.9496.
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Figures 2-4 illustrate the performance of the 2 models in
segmenting different burn depths. Both Mask R-CNN and U-Net

showed poor segmentation results when they encountered small
scattered burns (Figure 5).

Table 3. Segmentation results of burn wounds with ResNet101.

Mask R-CNNU-NetVariable

0.94960.8545Mean DCa

0.90890.7782Mean IoUb

0.96130.9041Mean precision

0.93900.8541Mean recall

0.91300.7893Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.

Table 4. Segmentation results of burn wounds with ResNet50.

Mask R-CNNU-NetVariable

0.94930.8077Mean DCa

0.90750.7190Mean IoUb

0.96100.8947Mean precision

0.93820.8002Mean recall

0.91170.7331Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.

Figure 2. Superficial partial burn. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.
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Figure 3. Deep partial burn. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.

Figure 4. Full thickness burn. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.
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Figure 5. Small scattered burns. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.

Segmentation of Hands and Palms
A total of 400 images of both volar hands were collected and
labeled. The male-to-female ratio was 193:207. Since U-Net
and Mask R-CNN both performed better with the ResNet101
backbone than with the ResNet50 backbone in the burn wound
segmentation, only ResNet101 was applied in the segmentation
of the hand and palm data sets.

Contrary to the burn wound results, U-Net had slightly better
overall performance in the segmentation of the hands and palms
than Mask R-CNN (Table 5 and Table 6). For hand
segmentation, U-Net had a DC of 0.9920 and Mask R-CNN
had a DC of 0.9692. For palm segmentation, the difference was
not as obvious with a DC of 0.9910 versus 0.9803. Figure 6
provides a representative example of the segmentation of a
particular hand by both U-Net and Mask R-CNN, while
Multimedia Appendix 2 provides an example for a palm.

Table 5. Segmentation results for hands with ResNet101.

Mask R-CNNU-NetVariable

0.96920.9920Mean DCa

0.94050.9842Mean IoUb

0.96570.9906Mean precision

0.97280.9935Mean recall

0.94070.9933Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.
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Table 6. Segmentation results for palms with ResNet101.

Mask R-CNNU-NetVariable

0.98030.9910Mean DCa

0.96140.9822Mean IoUb

0.98360.9904Mean precision

0.97700.9916Mean recall

0.96150.9878Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.

Figure 6. Segmentation of the hand. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.

Burn Segmentation to %TBSA
In the last part of our study, we designed a test to compare the
estimation of the percentage of TBSA burned according to
surgeons and Mask R-CNN. Photos of the abdomen, left thigh,
left leg, right leg, and left hand of a patient were taken from the
same distance (Figure 7). Images of the burn wounds and of the
hands were co-labeled by 2 surgeons as ground truth. The
previously trained Mask R-CNN with the ResNet101 backbone

was used to calculate the %TBSA of each wound. Then, pictures
of the burn wounds and the hands were given to 5 burn surgeons,
and they gave their respective estimations of %TBSA. The
results of each surgeon, ground truth, and Mask R-CNN are
shown in Multimedia Appendix 3. The ground truth was a
pixel-based calculation (abdomen: 2.07%, thigh: 2.06%, right
leg and knee: 2.64%, and left leg: 2.85%). Mask R-CNN had a
smaller average deviation (0.115% TBSA) from ground truth
than all of the burn surgeons (0.45%-1.14% TBSA; Figure 8).
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Figure 7. A1-A5: original image of the left hand, abdomen, left thigh, right leg, and left leg. B1-B5: labeled images as ground truth.

Figure 8. Differences between ground truth and estimated %TBSA of Mask R-CNN and burn surgeons at various burn sites. %TBSA: percentage total
body surface area.

Discussion

Data Sets
Studies of machine learning in burn diagnosis are relatively
rare, because there are challenges in establishing accurate data
sets. To begin with, unlike medical images from X-ray or
computed tomography (CT) scans, images of burn wounds are
not acquired under a standard protocol. Images of burn wounds
are acquired using different equipment under various
circumstances, such as illumination conditions, distance to the
patient, and the background scene. These factors make it difficult
to achieve a uniform standard of labeling and annotation.

Next, the numbers of burn images compared with other open
image data sets, such as MNIST (70,000 images) and CIFAR-10
(60,000 images), are limited. In recent studies of burn wound
segmentation, Despo et al used 656 images for training [23]
and Jiao used 1000 images for training [24]. We used 2332
labeled images from all burn depths for training and 259 images
for testing. Images of burn wounds are difficult to collect. Unlike
cancer imaging archives, there are no high-quality open data
sets of images of burn wounds. This may be because complete

deidentification of these images is not possible. Researchers
are asked not to publish these images as open data sets due to
patient privacy. Researchers from different medical facilities
are not permitted to share the images with each other as well.
Under these circumstances, federated learning to form a global
model may be a feasible method to improve the accuracy of
different individual models. The concept of federated learning
is to share only the weights and bias of different models without
sharing data sets [27,28].

In addition, burn wounds, unlike tumors that are detected on
magnetic resonance imaging (MRI) images, are not commonly
sampled for biopsy to confirm diagnosis. For any pixels on the
images, if no other diagnostic technology is used, the true burn
depths are hard to ascertain. The images, even when labeled by
burn specialists, are relative ground truth only. A given image
may receive many different labels when assessed by many
doctors.

Finally, many burn wounds have a mixture of several burn
depths. If the object of deep learning is to build a burn depth
classifier, most images cannot be included for training. Images
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of burn wounds require preprocessing as discussed previously
in the methods.

In the early work of our study, we tried to build a burn depth
classifier. We divided the images of burn wounds into the
following 4 categories based on burn depth: superficial (112
images), superficial partial (201 images), deep partial (165
images), and full thickness (170 images). We imported the data
set into IBM Visual Insights (previously PowerAI Vision), a
tool that can train models to do the classification task. We did
data augmentation to enlarge the data set and improve
generalization. Then, we chose pretrained GoogLeNet as our
network structure. This model showed decent results, with a
mean accuracy of 93% (Multimedia Appendix 4). However,
some images in the category “superficial partial” had regions
with other burn depths as well. The confusion matrix showed
more false negative results in this group than in the others
(Multimedia Appendix 5). Hence, the accuracy of the model as
a burn depth classifier largely depended on the burn wound
images collected.

The abovementioned confounding factors also had an impact
in previous studies of machine learning used to segment images
of burn wounds. In the study by Despo et al, the margins of
burn wounds on images were labeled by a surgeon. Then, every
image was annotated to 1 severity of burn depth. Since the burn
wound depths were not homogeneous, accuracy and IoU were
greater in partial thickness burns [23]. In our study, we also
faced the same challenges. Initially, every image was labeled
by 2 burn surgeons to obtain 2 labeled images. When the burn
wounds had multiple burn depths, the labeled areas of the 2
surgeons had more discrepancy. When we input the discrepantly
labeled images to train the models, they resulted in a good mask
of the overall burn area but an incorrect classification of burn
depth segmentation (Multimedia Appendix 6 and Multimedia
Appendix 7). Zhang et al reported an interesting finding [29].
When they input randomly labeled objects or random pixels,
after 10,000 steps, their neural network models still converged
to fit the training set perfectly. The neural networks were rich
enough to memorize bad training data. Yet, their results on
testing data sets were poor. To avoid the problem of ambiguous
ground truth, we modified the method so that only the burn
wound margin was co-labeled by the 2 burn surgeons. This was
because the ground truth of the margins had the highest
consensus and because all formulae used for burn resuscitation
only involved total burn area, which is equivalent to burn margin
and is not related to burn depth.

Segmentation Results
We chose U-Net and Mask R-CNN as our main models for
segmentation of burn wounds and hands because they are both
popular and well-developed CNN models. Although they have
different architectures and use different loss functions, their
segmentation output seems similar. U-Net outputs semantic
segmentation, and it is the most common segmentation model
in the medical field [30]. U-Net has been deployed in the
evaluation of various sources of medical images, such as
positron emission tomography (PET) scans of brain lesions [31],
microscopy images of cells [32], CT scans of thoracic organs
[33], and MRI scans of breast lesions [34]. Mask R-CNN was

developed by Facebook AI Research, and it outputs object
detection with instance segmentation [35,36]. Mask R-CNN
began getting attention in the medical field in 2018. It has been
deployed in the analysis of various sources of medical images
as well, such as PET scans of lung lesions [37], sonographic
images of breast lesions [38], and MRI scans of knee injuries
[39].

Previous studies have also applied these 2 models. Vuola et al
reported a study of nuclei segmentation of microscopy images.
U-Net had a better DC and created more accurate segmentation
masks. Mask R-CNN had better recall and precision, and could
detect nuclei more accurately but struggled to predict a good
segmentation mask [40]. Zhao et al reported a study of tree
canopy segmentation of aerial images. Mask R-CNN performed
better in segmentation as well as in tree detection [41]. Bouget
et al reported a study of thoracic structure segmentation
combining 2 models. Mask R-CNN had the weakness of
underestimating structural boundaries, and it required a longer
training time. U-Net had the weakness of spatial inconsistency
when compiling 2D segmentation results into 3D [42]. In our
study, Mask R-CNN was better at burn wound segmentation,
while U-Net was better at hand segmentation. We believe that
when the segmented objects have similar shape and size, such
as with nuclei, hands, and palms, U-Net can achieve better
segmentation results than Mask R-CNN. Mask R-CNN had to
take into account the loss function components from estimating
the bounding box and class, not just the mask. The weights of
the bounding box and class components are calculated prior to
the weight of the mask component in order to get accurate
instance location. Huang et al proposed a modified Mask
R-CNN to improve mask prediction [43].

However, the performance of U-Net in burn wound
segmentation was not as good as that of Mask R-CNN. The
burn wounds comprised 3 types of burn depths with various
colors, hues, and textures, and were also of irregular shape and
different sizes. Because it lacks the RPN function of Mask
R-CNN, U-Net may not have the volume to “memorize” all the
features of burn wounds by convolution and de-convolution. In
the Kaggle science bowl, both U-Net and Mask R-CNN
achieved excellent results after fine tuning. Hence, the
performance of the 2 models may depend on the segmentation
task, the data sets, and fine tuning.

The segmentation result is not the only consideration. There are
other comparative pros and cons of these 2 models. If a model
is deployed in mobile devices, time consumption for prediction
is an important factor. In our study, it took less time for U-Net
(0.035 s/image) to do the prediction than for Mask R-CNN
(0.175 s/image). The total time needed to train Mask R-CNN
was about 1.5 times that needed to train U-Net. In addition,
semantic segmentation involves direct pixel classification. If
the objective is to calculate the total burn area, U-Net is capable
of producing good results. If we want to segment different types
of wounds on the same images, such as incisions and abrasions,
Mask R-CNN can provide classification confidence in each of
the RoIs, not just the masks.

Both U-Net and Mask R-CNN can segment burn wounds of
any burn depths (Figures 2-4). The segmentation result was
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more satisfactory when areas were large and confluent (Figure
4). If the burn wound (pixels) was small, the segmentation
results of both models were not satisfactory (Figure 5). This is
because a small area is susceptible to resizing, convolution, and
max pooling. Similar observations were reported by Bouget et
al, when they segmented structures inside the chest wall [42].
Large structures, such as the heart, lungs, and spine, had a DC
of more than 0.95. Small structures, such as lymph nodes, had
a DC of only around 0.41. In the study by Vuola et al, they
removed the very small masks (under 10 pixels) to improve the
prediction [40]. Fortunately, small and scattered burns are less
critical clinically.

Conversion of Segmentation Mask to %TBSA
There exist other methods for converting a segmentation mask
to %TBSA. One approach is to acquire the actual burn area (eg,

225 cm2) by calculating the relation of pixels of the mask area
on the image and the distance from the wound to the camera.
The next step is to calculate the body surface area (BSA; eg,

17,525 cm2) via the patient’s body weight, height, and gender.
The %TBSA of the burn wound can be calculated by dividing
these 2 numbers. Although this approach seems straightforward,
there are more than 25 formulae to estimate BSA based on
studies of different populations [44]. When it comes to child
BSA, we need completely different formulae for calculation,
again with various degrees of accuracy [45].

We adopted the rule of hand/palm as a guide to estimate
%TBSA, because the rule of hand/palm shows very little
difference between racial groups, genders, BMI, and ages [8,46].
The rule of hand/palm can also be used in children and infants,
where it is closer to the original 1% TBSA rule. Moreover,
thumbprints, which are approximately 1/30 TBSA, can also be
used as a guide to estimate areas of small burns [47]. In our
study, only 17 images were burn injuries involving the volar
hand. We therefore collected images of healthy hands from our
colleagues rather than using burned hands to train the models.

In the last stage of our study, we conducted a test to compare
the %TBSA estimated by burn surgeons and by Mask R-CNN
with a ResNet101 backbone. Mask R-CNN had less variance
from ground truth on average. It is very important to have a
small deviation on every estimation. If a patient has multiple
burn sites, the errors from each wound may add up to become
a large deviation. In a study by Parvizi et al, the difference in
estimation by inspection across burn experts was found to be
as large as 16.5% TBSA in an adult patient and 31.5% TBSA
in a child patient, which resulted in great volume differences
in the estimation of fluid needed for resuscitation [10]. Our
method was aimed to derive similar estimates when the same
burn wound was estimated by different burn experts by
inspection, such as by teleconsultation. In reality, burn surgeons
would typically visit patients and calculate the area more
meticulously. Additionally, the burn area would be recalculated
in the days following the burn injury. Theoretically, the
variability among estimations would be less than when the burn
area is estimated just by inspecting an image of the burn wound.

Limitations
The data set of burn wounds was collected from a single medical
center in Taiwan. Although it is currently the largest data set,
the number of training images was small. The models require
more input images to improve accuracy.

Our deep learning models can segment a burn wound of any
burn depth. However, they are unable to classify burn depths
on segmentation. This is so because the ground truth of burn
depths is hard to define by burn surgeons consistently. Further
study may apply machine learning to assist in burn depth
labeling before input for training.

We used normal hands as a template to calculate the %TBSA
burned. When a patient had burns involving both hands, our
models could still segment the burned hands. Since children’s
hands are shaped similarly to those of adults, our models can
presumably also segment the hands of children (Multimedia
Appendix 8). However, we did not collect enough images to
directly assess accuracy in these circumstances.

Our data set did not include burn wounds from patients with
markedly different skin tones. We hypothesize that the deep
learning models will accurately detect burn wounds when the
burn injury is more severe than superficial second degree, where
the skin layers that are deeper than the pigment cells are
disrupted. For example, a superficial second-degree burn injury
with ruptured bullae shows a similar shade of pink even on
different skin tones. Yet, skin tone will definitely contribute to
the performance of the models. Convolution layers and the RoI
obtained by deep learning largely depend on the relationship
with their adjacent pixels. To test our hypothesis, we collected
100 web scraping images of burn wounds from different skin
tones and input them into our models for wound segmentation
(Multimedia Appendix 9). The results confirmed that our models
performed well when the burn injury was more severe than
superficial second degree. However, the segmentation results
varied when the burn wound had no bullae formation or rupture
(whether superficial second or first degree). To resolve this
problem, we need more quality images to correlate skin tone
with segmentation performance.

Finally, burn wound images are 2D projections of 3D burn
wounds, akin to the Mercator world map. Unlike the world map,
the cross sections of the trunk and extremities of the human
body are not just ellipses or circles. The distance of the camera
from the wound bed can be adjusted for by a simple formula,
but adjusting for the angle at which the photos are taken requires
complex differential and integral formulae with multiple
variables. To get the most accurate estimation of %TBSA, we
suggest taking all photos at a constant distance of around 30 to
50 cm and holding the camera (cellphone) parallel to the wound
bed to decrease the effect of the angle. Our study will further
deploy models on images taken with a 3D camera to acquire
more accurate results.

Conclusions
To the best of our knowledge, this is the first study to determine
the %TBSA of burn wounds with different deep learning
models. Based on the rule of hand, %TBSA can be calculated
by comparing segmentation masks of the burn wound and hand
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of a patient. In our study, Mask R-CNN with ResNet101
performed this task satisfactorily in comparison with burn
surgeons. With the assistance of deep learning, the fluid

resuscitation and nutritional needs of burn injury patients can
be more precisely and accurately assessed.
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