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Abstract

Background: Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an
early stage, corneal collagen cross-linking can prevent disease progression and further visual loss. Although advanced forms are
easily detected, reliable identification of subclinical disease can be problematic. Several different machine learning algorithms
have been used to improve the detection of subclinical keratoconus based on the analysis of multiple types of clinical measures,
such as corneal imaging, aberrometry, or biomechanical measurements.

Objective: The aim of this study is to survey and critically evaluate the literature on the algorithmic detection of subclinical
keratoconus and equivalent definitions.

Methods: For this systematic review, we performed a structured search of the following databases: MEDLINE, Embase, and
Web of Science and Cochrane Library from January 1, 2010, to October 31, 2020. We included all full-text studies that have
used algorithms for the detection of subclinical keratoconus and excluded studies that did not perform validation. This systematic
review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations.

Results: We compared the measured parameters and the design of the machine learning algorithms reported in 26 papers that
met the inclusion criteria. All salient information required for detailed comparison, including diagnostic criteria, demographic
data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm, and key results are reported
in this study.

Conclusions: Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in
routine ophthalmic practice. Currently, there is no consensus regarding the corneal parameters that should be included for

JMIR Med Inform 2021 | vol. 9 | iss. 12 |e27363 | p.3https://medinform.jmir.org/2021/12/e27363
(page number not for citation purposes)

Maile et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:n.pontikos@ucl.ac.uk
http://www.w3.org/Style/XSL
http://www.renderx.com/


assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve
early detection and stratification of patients for early treatment to prevent disease progression.

(JMIR Med Inform 2021;9(12):e27363)   doi:10.2196/27363

KEYWORDS

artificial intelligence; machine learning; cornea; keratoconus; corneal tomography; subclinical; corneal imaging; decision support
systems; corneal disease; keratometry

Introduction

Background
Keratoconus is a bilateral ectatic disease of the cornea that can
cause visual loss through corneal distortion and scarring [1,2].
The prevalence of keratoconus varies from 1 in 375 people in
Northern Europe [3] to as high as 1 in 48 in some ethnic groups
[4,5], with studies suggesting a higher incidence in
Middle-Eastern, West Indian, and Asian populations with faster
progression [6-8]. The onset of the disease typically occurs after
puberty, with subsequent progression at a variable rate over 2
to 3 decades [6]. A recent meta-analysis found that patients <17
years are likely to progress more than 1.5 D in Kmax over 12
months, and those with steeper Kmax of more than 55 D are
likely to have at least 1.5 D Kmax progression [6].

As the disease advances, corneal distortion can reach a stage
where spectacle-corrected vision is inadequate, and patients
must rely on soft or rigid contact lenses to achieve good
functional vision [9]. However, contact lenses are not always
tolerated, and visual impairment can severely affect quality of
life [10,11]. In the natural course of the disease, approximately
20% of the patients are offered a corneal transplant to improve
their vision but at the risk of postoperative complications (eg,
microbial keratitis and inflammation), potential allograft
rejection, and transplant failure [7,12,13]. Most individuals with
keratoconus are identified because of the symptoms of visual
disturbance or an increase in astigmatism at refraction.
Therefore, it is inevitable that most individuals with keratoconus
are detected at a stage when visual deterioration has already
occurred [14].

The detection of keratoconus at an earlier stage has become
increasingly relevant since the introduction of corneal collagen
cross-linking (CXL). This is a photochemical treatment of the
cornea with UV-A light following the application of riboflavin
(vitamin B2), which can arrest the progression of keratoconus
in 98.3% of the eyes even in relatively advanced cases [15-20].
The benefit of early treatment to minimize visual loss is clear,
and there is evidence that it is cost-effective [21-23], but the
mechanism to improve early diagnosis by community-based
optometrists is challenging because asymptomatic patients with
subclinical disease are unlikely to seek review [14]. Improved
detection will probably require improved access or efficient
community screening with expensive imaging equipment [24].

Machine learning is a branch of artificial intelligence centered
on writing a software capable of learning from data in an
autonomous fashion by minimizing a loss function or
maximizing the likelihood [25]. It can be broadly classified as
either supervised or unsupervised learning [26]. In supervised

learning, the algorithm is trained with input data labeled with
a desired output so that it can predict an output from unlabeled
input data [27]. In comparison, in unsupervised learning, the
algorithm is not trained using labeled data. Instead, the algorithm
is used to identify patterns or clusters in the data [28]. When
applied to the field of keratoconus detection, machine learning
may be used to analyze a large number of corneal parameters
that can be derived from corneal imaging as well as other clinical
and biometric measures such as visual acuity and refraction to
predict the disease [29]. It can also be applied directly to
imaging data to work at the pixel level [30]. Deep learning, a
specific branch of machine learning, uses artificial neural
networks (NNs) with multiple layers to process input data [31].
It is particularly well suited to the segmentation or classification
of corneal images [32]. Both machine learning and deep learning
may facilitate superior diagnostic ability that, when implemented
as automated screening tools, could result in significant advances
in case detection, mitigating both the cost of new imaging
hardware and the burden on ophthalmic health care professionals
[33]. In addition, through unsupervised learning, it may be
possible to discover previously unknown disease subtypes or
features [34,35].

Unlike diabetic retinopathy, which uses a widely adopted
diagnostic grading system (Early Treatment Diabetic
Retinopathy Study) [36] and in which the diagnosis of early
disease is based on the presence of discrete entities on the retina
(eg, microaneurysms), the diagnostic grading of subclinical
keratoconus has not yet reached the same level of consensus
[37]. Frequently used grading systems such as Amsler-Krumeich
[38] and ABCD [39] do not specifically include a grade for
subclinical keratoconus. More detailed information about
keratoconus grading systems is available in Multimedia
Appendix 1 [37-43].

Case Definition for Keratoconus
Several terms describe the early stage of keratoconus before
vision is affected, including forme fruste keratoconus (FFKC),
keratoconus suspect, subclinical keratoconus, and preclinical
keratoconus. The most commonly used terms are FFKC and
subclinical keratoconus, but there is no consensus on their
definition [44].

We have included all papers that contain an identifiable
subgroup of eyes with any of the aforementioned definitions
because of the overlap in the nomenclature and lack of evidence
as to which, if any, pose a particular risk for progression to
clinical keratoconus. We excluded papers that only consider
eyes with established keratoconus.
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Objectives
The aim of this study is to critically evaluate the literature on
the algorithmic detection of subclinical keratoconus and its
equivalent definitions. Advanced keratoconus is relatively easy
to diagnose clinically, such that developing machine learning
algorithms to identify advanced disease has limited utility.
Therefore, we directed this review to publications that have
included detection of subclinical keratoconus because
identifying these individuals would allow for early treatment
with CXL to reduce the likelihood of disease progression and
visual loss. We have structured our review both around the
different types of available input data (parameters, indices, and
corneal imaging systems) and the machine learning algorithms
for keratoconus detection. In addition, we investigated the
validation methodology within each study and assessed the
potential for bias.

Research Questions
Our specific research questions are as follows:

1. Research question 1: What input data types have been used
within subclinical keratoconus detection algorithms and
how have they performed?

2. Research question 2: What machine learning algorithms
have been used for subclinical keratoconus detection and
how have they performed?

3. Research question 3: How was algorithm validation handled
among the selected manuscripts?

Methods

Search Strategy
We conducted a literature review of the evidence for the utility
of machine learning applied to the detection of keratoconus
published between January 1, 2010, and October 31, 2020. The
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) Statement 2009 criteria [45] was followed
to search 4 bibliographic databases: MEDLINE, Embase, Web
of Science, and Cochrane Library using keyword search on their
title, abstract, and keywords. The review was not registered,
and no protocol was prepared.

We used the following keyword search for literature review in
bibliographic databases: ((keratoconus) OR (cornea* protru*)
OR (cornea* ectasia)) AND ((algorithm) OR (machine learn*)
OR (deep learn*) OR (artificial intelligence) OR (detect*) OR
(diagnos*) OR (screen*) OR (examin*) OR (analys*) OR
(investigat*) OR (identif*) OR (discover*) OR (interpret*) OR
(test*))

Inclusion and Exclusion Criteria
We included studies that investigated the detection of early
keratoconus or included a subgroup of patients with early
disease, as defined by one of the following terms: subclinical
keratoconus, FFKC, preclinical keratoconus, suspected
keratoconus, unilateral keratoconus (normal fellow eye), and
asymmetric ectasia (normal fellow eye) and any definition
considered equivalent to the aforementioned terms. The studies
should have reported the performance of their model on a data
set that was separate from the training data set (often called a
validation or a test set). This includes splitting of the data set
into training and test sets (eg, 70% training and 30% testing),
K-fold cross-validation (an extension of simple splitting, but
the process is repeated K times, eg, when K=10, partition the
data set into 90% for training the model and 10% for testing,
and the process is repeated 10 times by choosing a different
10% partition each time for testing), or evidence of a validation
study where the aim is to assess a previously derived model on
a new data set (also known as an external validation). Finally,
the full-text article should be available, and only papers
published in English were considered.

We excluded papers based on the detection of early keratoconus
defined as Amsler-Krumeich stages 1 or 2, as this represents
established keratoconus with both clinical and topographical
features [46].

Data Synthesis
On the basis of the inclusion criteria, 2 reviewers (HM and
JPOL) screened the initial results. These results were then
screened for the exclusion criteria by HM and NP. The PRISMA
diagram is presented in Figure 1. Any disagreements in meeting
the inclusion or exclusion criteria were resolved by discussion.
Once the set of articles was finalized, 2 reviewers (HM and
JPOL) analyzed each article and extracted the following
information in a master table presented in Multimedia Appendix
2 [14,47-71]: author and year, title, system, sample source,
country, age, gender, number of eyes for each group, diagnosis
details, validation details, input details, input types, method,
classification groups, sensitivity, specificity, accuracy, precision,
area under the receiver operating characteristic curve (AUC),
and source code availability. We summarized the most important
information for all the results in Table 1. The main effect
measures sought were sensitivity and specificity. If these
statistics were not directly available from the article, they were
calculated manually using their standard definitions [72]. To
visually compare the results, we plotted the sensitivity and
specificity across all studies for diagnostic criteria and detection
systems in Multimedia Appendix 3.

JMIR Med Inform 2021 | vol. 9 | iss. 12 |e27363 | p.5https://medinform.jmir.org/2021/12/e27363
(page number not for citation purposes)

Maile et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Filtering steps taken to accept or exclude studies in the systematic review.
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Table 1. Summary of the 26 published studies that included the use of machine learning for the detection of subclinical keratoconus.

Results (%)MethodInput typesFellow

eyea
Number of eyesSystemStudy

SpecificitySensitivitySubclinical
keratoconus

Normal

97.792SVMbElevation, ker-
atometry,

No4261259SiriusArbelaez et al
[47]

pachymetry, and
aberrometry

9692DAcPachymetry, ker-
atometry, eleva-

No3469OrbscanSaad et al [48]

tion, and Dis-
placement

97.293.6DTdKeratometry,
pachymetry, ele-

Yes47177GALILEISmadja et al
[49]

vation, aberrome-
try, demographic,
and indices

7833Linear regressionElevation and
displacement

No2450CSO topography sys-
tem

Ramos-Lopez
et al [50]

9094RFe, SVM, K-near-

est neighbors, LoRf,

Keratometry,
pachymetry, and
demographic

No4939PentacamCao et al [14]

DA, Lasso regres-

sion, DT, and NNg

83.378.1DAKeratometry,
pachymetry,

No32245Orbscan IIzBuhren et al
[51]

aberrometry, and
elevation

98.170.8DAPachymetry, ker-
atometry, eleva-

Yes24104Orbscan IIzChan et al
[52]

tion, and displace-
ment

9090NNKeratometry,
pachymetry, ele-

Yes1560PentacamKovacs et al
[53]

vation, indices,
and displacement

8263DAKeratometry,
aberrometry, and
indices

Yes62114OPD-scanSaad et al [54]

97.979.1SVMKeratometry,
pachymetry, and
aberrometry

No67194Pentacam HRRuiz Hidalgo
et al [55]

7561SVMKeratometry,
pachymetry, and
indices

No2344Pentacam HRRuiz Hidalgo
et al [56]

84.583.7DAPachymetry, ele-
vation, and ker-
atometry

Yes77147Pentacam HRXu et al [57]

9690.4RF, SVM, and LoRPachymetry, ele-
vation, keratome-

Yes94480Pentacam+Corvis STAmbrosio et al
[58]

try, and Biome-
chanical

10091.7LoRKeratometryNo5550PentacamSideroudi et al
[59]

9190LoRBiomechanicalYes62253Corvis STFrancis et al
[60]
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Results (%)MethodInput typesFellow

eyea
Number of eyesSystemStudy

SpecificitySensitivitySubclinical
keratoconus

Normal

1488UnsupervisedElevation,
pachymetry, and
aberrometry

No7961970SS-1000 CASIAYousefi et al
[61]

96.685.2DA, SVM, naive
Bayes, NN, and RF

Pachymetry, ele-
vation, indices,
and displacement

Yes1882980Pentacam HRLopes et al
[62]

8363RFPachymetry, ele-
vation, keratome-
try, and biome-
chanical

Yes50105Pentacam+Corvis STSteinberg et al
[63]

95.697.8NNElevation and
pachymetry

Yes90312PentacamIssarti et al
[64]

95.677.2RFKeratometry, ele-
vation,
pachymetry,
aberrometry, and
indices

Yes72221RCTVue+PentacamChandapura et
al [65]

98.276.5CNNhHeat mapsNo2021368Pentacam HRXie at al [66]

97.228.5CNNHeat mapsNo28170TMS-4+Penta-
cam+Corvis ST

Kuo et al [67]

94.798.5NNKeratometry, ele-
vation,
pachymetry, in-
dices, and demo-
graphic

Yes3355Pentacam+ultrahigh
resolution optical coher-
ence tomography

Shi et al [68]

98.594LoRKeratometry,
pachymetry, and
displacement

Yes5066MS-39Toprak et al
[69]

7085.2NNElevation and
Pachymetry

Yes117304Pentacam HRIssarti et al
[70]

9689.525 machine learning
methods compares

Keratometry,
pachymetry, and
aberrometry

No7911970SS-1000 CASIALavric et al
[71]

aFellow eye indicates whether the study defined subclinical keratoconus as the fellow eye of an individual with apparently unilateral keratoconus, with
no clinical or topographical features of keratoconus.
bSVM: support vector machine.
cDA: discriminant analysis.
dDT: decision tree.
eRF: random forest.
fLoR: logistic regression.
gNN: neural network.
hCNN: convolutional neural network.

Bias Assessment
When assessing bias within the included studies, we used a
tailored version of the QUADAS (Quality Assessment of
Diagnostic Accuracy Studies)-2 tool [73], which consists of 4
domains: patient selection, index test, reference standard, flow,
and timing. The 26 studies were assessed by 3 reviewers (HM,
JPOL, and NP) such that each study was assessed by at least 2
reviewers.

Results

Overview
We identified 1998 potentially relevant papers published
between 2010 and 2020. After filtering, we included 26 articles
in our qualitative analysis. Table 1 summarizes these results,
and a more extensive version can be found in Multimedia
Appendix 2. To address research question 1, the results are
discussed in terms of their input data. Charts displaying
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aggregate sensitivity and specificity can be found in Multimedia
Appendix 3. To address research question 2, the results are
considered in terms of the machine learning algorithms. Figures
2 and 3 present organizational diagrams of data categorization
and machine learning algorithms, respectively. To maintain

consistency, we opted to use the term subclinical keratoconus
throughout regardless of the nomenclature used by the original
authors. The original term is included in parenthesis, and details
of the exact definition can be found in Multimedia Appendix
2.

Figure 2. Organizational diagram of relevant data types reported to be used for the detection of subclinical keratoconus.

Figure 3. Organizational diagram of relevant machine learning algorithms used for the detection of subclinical keratoconus.

Research Question 1: What Input Data Types Have
Been Used Within Subclinical Keratoconus Detection
Algorithms and How Have They Performed?
This section is subdivided according to the input data types used
for the detection of subclinical keratoconus, as presented in the
organizational chart in Figure 2.

Aberrometry
Aberrometry was used to detect subclinical keratoconus in 31%
(8/26) of the papers [47-49,51,55,61,65,71]. Aberrations are
produced by imperfections in the optical quality of the refracting
surface of the eye, including the cornea and the lens.
Higher-order aberrations (HOAs) are measured from the
distortion of a plane wavefront of light passing through the
optics of the eye. However, HOAs can also be derived indirectly

from the measurement of any distortion (eg, elevation) of the
corneal surfaces. They can be described as a set of Zernike
polynomials or with Fourier analysis. Using the Zernike method,
aberrations can be subclassified as lower-order aberrations and
HOAs. Lower-order aberrations include simple defocus (myopia
or hyperopia) and regular astigmatism, which account for
approximately 90% of the refractive error of the normal eye
[74]. The most clinically relevant HOAs are spherical aberration,
coma, and trefoil that cannot be corrected by glasses or a soft
contact lens. In keratoconus, the irregular distortion of the front
and back surfaces of the cornea causes visually significant
HOAs. Arbelaez et al [47] analyzed these parameters in their
subclinical keratoconus detection model and included a weighted
sum of HOAs (known as the Baiocchi-Calossi-Versaci index)
and the root mean square of HOAs. Moreover, 5 other studies
also used derived Zernike aberrometry data [48,49,51,65,71].
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Corneal Imaging Data and Derived Parameters

Overview

Corneal images were used to detect subclinical keratoconus in
96% (25/26) of the papers. There are various acquisition
techniques, including Scheimpflug optics (Pentacam [Oculus
GmbH] or Sirius [CSO]), anterior segment optical coherence
tomography (AS-OCT; MS-39 [CSO], or CASIA [Tomey]),
and horizontal slit-scanning systems such as Orbscan II (Bausch
& Lomb). These systems incorporate a software that processes
the images to derive numerical indices or secondary images,

such as heat maps, to visualize various aspects of corneal shape.
These parameters can be classified as measurements of the
corneal surface radius of curvature (keratometry), elevation or
depression of a point on the corneal surface from the mean
(elevation map), corneal thickness (pachymetry), or
displacement from the apex of the cornea. Figure 4 illustrates
the main parameter types in a schematic diagram. Figure 5
shows an example of the Pentacam heat map for an eye with
subclinical keratoconus. See Multimedia Appendix 4 for an
example of advanced keratoconus (fellow eye for the same
patient).

Figure 4. Schematic diagram illustrating the 4 basic corneal parameters that can be measured using corneal imaging. (A) pachymetry. (B) displacement:
distance between the apex of the cornea and the point of minimum thickness. (C) and (D) represent 2 methods of calculating the best-fit sphere (BFS).
In (C) the BFS is fitted to both the normal peripheral posterior surface (blue) and the abnormal anterior protrusion of the central posterior surface (green).
In (D) the BFS is fitted to only the normal peripheral posterior surface (blue) excluding the abnormal central posterior surface (green), leading to a
larger relative elevation than in (C). (E) the smallest radius of curve of the astigmatic corneal surface corresponds to the largest refractive power (Kmax)
and the largest radius of curve corresponds to the smallest refractive power (Kmin). CCT: central corneal thickness.
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Figure 5. Heat maps of a subclinical keratoconus eye derived from Scheimpflug corneal imaging using the Pentacam HR device. The axial/sagittal
map (A) depicts the curvature of the anterior corneal surface in dioptres and shows mild inferior steepening, while the pachymetry map (C) shows
thinning in the same region. The front and back elevation maps (B and D, respectively) show a moderate increase in inferior elevation. BFS: best-fit
sphere; OS: left eye.

In the following subsections, we briefly discuss the use of
quantitative measures derived from corneal imaging when used
in isolation or in combination with machine learning models.

Keratometry Parameters

Keratometric data are one of the most commonly used
parameters in the literature, with 69% (18/26) of the papers
incorporating keratometry as one of the parameters in their
model [14,47-49,51-54,56,57,59,61,65,68,71,75]. Keratometric
parameters measure the radius of curvature of the anterior or
posterior corneal surfaces. Examples include the meridian with
the minimum corneal radius of curvature (corresponding to
Kmax) and maximum curvature (corresponding to Kmin). When
looking at individual keratometric parameters derived using
Fourier analysis for subclinical keratoconus detection, Sideroudi
et al [59] achieved a predictive accuracy of over 90% using
higher-order irregularities, asymmetry, and regular astigmatism,
primarily in the corneal periphery.

Elevation Parameters

Overall, 62% (16/26) of the papers incorporated elevation
parameters in their analysis [47-53,57,58,61-65,68,70]. Elevation
represents points above or below the BFS of the corneal surface
measured in microns (Figure 4). For the posterior cornea, this
is measured either as the divergence from the best fit of the
whole posterior corneal diameter or as the divergence from the
best fit of the annulus of the peripheral posterior corneal surface

outside the central 4 mm [76]. The latter method, the
Belin-Ambrosio map, better describes the central corneal
elevation, which is a feature of keratoconus. Values can be
presented as either color-coded maps or individual parameters
such as maximum anterior elevation, maximum posterior
elevation, or derived data such as aberrometry.

Posterior corneal curvature consistently outperforms other
parameters in the discrimination of subclinical keratoconus
[47,49,56,57]. Its inclusion increases the sensitivity of a support
vector machine (SVM) from 75.2% to 92% and precision from
57.4% to 78.8% but has a limited impact on specificity [47].
Posterior corneal curvature, measured using a Pentacam
(Scheimpflug) device and analyzed using an SVM, was also
found to be an important parameter for sensitivity and much
less so for specificity and AUC [14]. Similarly, using the Galilei
(Scheimpflug) device, the posterior asphericity asymmetry index
was found to be the variable with the most discriminatory power
when differentiating normal from subclinical keratoconus,
followed by corneal volume [49]. Conversely, analysis of
anterior surface topographical parameters and aberrometry using
the random forest algorithm did not discriminate subclinical
keratoconus (very asymmetric ectasia-normal topography) from
normal eyes [65].

Saad et al [54] showed that combining parameters obtained
from the anterior corneal curvature corneal wavefront and
Placido-derived indices lead to a better discriminative ability
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between normal and subclinical keratoconus eyes (FFKC) over
a Placido-only–based algorithm.

Displacement Parameters

A total of 23% (6/26) of the papers used displacement
parameters in their analysis [48,50,52,53,62,75]. These represent
measures such as the displacement of the point of minimum
corneal thickness from the corneal apex. Of these, 3 papers used
the displacement of the thinnest point from the geometric center
of the cornea in their model [48,52,77]. Kovacs et al [53] used
the vertical and horizontal decentration of the thinnest point
and found them to be the best parameters to discriminate normal
fellow eyes of keratoconus from control eyes using an NN.

Pachymetry Parameters

Overall, 77% (20/26) of the papers used pachymetry data in
their model, making it one of the most commonly used
parameters in the literature [14,47-49,51-53,55-58,61-65,69-71].
Pachymetry is the thickness of the cornea, measured using either
ultrasound or imaging techniques. Simple examples include
central corneal thickness and the thinnest point of the cornea.
A reduction in the thickness of the central cornea is a
fundamental biomarker of keratoconus [2].

Summary Indices

In total, 23% (6/26) of the papers used summary indices in their
model [14,49,53,65,68,78]. In addition to single-parameter
measurements (eg, central corneal thickness), tomographic
systems such as the Pentacam can combine measurements to
compute derived indices that estimate the regularity of corneal
shape. Basic indices such as the index of surface variance, index
of vertical asymmetry, or index of height asymmetry are formed
from multiple data points. Composite indices are formed from
other indices and data points. Examples include the Keratoconus
index, keratoconus percentage index, and Belin/Ambrosio
enhanced ectasia display (BAD-D). In a recent study, Shi et al
[68] used 6 indices from the Pentacam along with keratometric,
elevation, and pachymetric parameters derived from the
Pentacam and ultrahigh resolution optical coherence tomography
to create an NN classifier to discriminate between normal and
subclinical keratoconus eyes. Using 50 normal eyes, 38 eyes
with keratoconus, and 33 eyes with subclinical keratoconus,
they achieved 98.5% sensitivity and 94.7% specificity. However,
the results require further validation because of the small number
of eyes in this group. Furthermore, the authors did not include
a comparison between existing detection metrics, such as
BAD-D.

Heat Maps

A total of 8% (2/26) of the papers used heat maps in their
detection model [66,67]. Modalities such as Scheimpflug and
AS-OCT capture images at various corneal meridians and
subsequently use these data to derive the heat maps that facilitate
visual interpretation of the data, although there is extrapolation
of the data in areas between the imaged meridians. For example,
the Pentacam can translate the raw images into several types of
color heat maps (eg, axial curvature, posterior or anterior
elevation, and regional pachymetry) based on the same original
tomography data set. Prediction models applied to images often
use convolutional NNs (CNNs), and studies applying these

methods are discussed in detail in the next section addressing
research question 2. To the best of our knowledge, no system
has used raw pixel values from Scheimpflug or AS-OCT images
directly when detecting subclinical keratoconus.

Biomechanical Data
Overall, 12% (3/26) of the papers incorporated biomechanical
data in their analysis [58,60,63]. Corneal biomechanics refers
to the distortion response of the cornea to an applied force. The
Ocular Response Analyzer (Reichert Ophthalmic Instruments)
uses a puff of air directed to the cornea, and the deformation
response is measured. Two common indices have been reported:
corneal hysteresis and corneal resistance factor. However, there
is disagreement regarding their utility in the diagnosis of
keratoconus [79,80]. Another device using the same principle
is the Corvis ST (Oculus Optikgeräte GmbH), which uses a
high-speed Scheimpflug camera to measure distortion in
cross-sectional images. Numerous studies have described the
application of machine learning to analyze biomechanical data,
but very few validated their results; therefore, they have been
excluded from this review. Ambrosio et al [58] combined
Pentacam and Corvis ST data to create the Tomographic and
Biomechanical Index, and this was followed up with a validation
study [63]. Francis et al [60] used biomechanical data from the
Corvis ST device when diagnosing keratoconus and achieved
very high sensitivity (99.5%) and specificity (100%). However,
when validating their model, they have only discriminated
between 2 groups—a group combining subclinical keratoconus
and keratoconus eyes, and a group of normal eyes. This
represents an easier problem than including a distinction
between normal and subclinical keratoconus eyes.

Demographic Risk Factors
A total of 15% (4/26) of the papers chose to include
demographic data, such as age or sex, in their model
[14,49,62,68]. Cao et al [14] demonstrated that sex was an
important parameter in a minimum set that achieved the highest
AUC using the random forest method, although their data set
was small (49 subclinical keratoconus and 39 control eyes).
Ethnicity, a major association with disease prevalence, risk of
progression, disease severity, and acute corneal hydrops in Asian
and Black populations [81], was not included in any model,
although some studies have examined single ethnicities [66].
Ethnicity as a parameter should be considered by future
investigators. No studies included other risk factors such as
atopy and eye rubbing as model parameters, and these should
be considered in future studies.

Research Question 2: What Machine Learning
Algorithms Have Been Used for Subclinical
Keratoconus Detection and How Have They
Performed?
In most cases, researchers have used combinations of parameters
and indices within machine learning algorithms to diagnose
subclinical keratoconus. This section is subdivided according
to the machine learning techniques that were applied. Figure 3
presents an organizational diagram of the relevant machine
learning algorithms. There are several other algorithms, but
discussion of these is beyond the scope of the review, and we
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have chosen to include only the methods found in our Results
section.

Neural Networks

Overview

NNs consist of a series of interconnected layers of neurons and
are thus loosely modeled on the structure within the human
brain. Each neuron computes a nonlinear function of its inputs,
and the network is trained until the output aligns optimally with
the ground truth labels. Kovacs et al [53] used a combination
of 15 keratometric, pachymetric, and elevation parameters in
an NN classifier to discriminate healthy corneas from fellow
eyes of patients with unilateral keratoconus. The patient data
included 60 normal eyes from 30 patients, 60 bilateral
keratoconus eyes from 30 patients, and 15 normal eyes from
patients presenting with unilateral keratoconus. When classifying
the normal eyes of the patients with unilateral keratoconus with
clinical grading as a reference, they achieved 90% sensitivity
and 90% specificity. They took a novel approach of training on
both the eyes of the patients, which allowed them to incorporate
the effect of any intereye asymmetry when detecting unilateral
keratoconus. Shi et al [68] combined keratometric, elevation,
and pachymetric parameters derived from Pentacam images and
ultrahigh resolution optical coherence tomography to create an
NN classifier for discriminating normal from subclinical
keratoconus eyes. Using Pentacam elevation and pachymetry
maps within a hybrid NN model, Issarti et al [64] demonstrated
superiority over other common diagnostic indices such as
BAD-D and topographical keratoconus classification.

Convolutional Neural Networks

When images are used for analysis, NNs with a large number
of processing layers such as CNNs are often employed because
of their ability to make inferences from 2D or 3D data structures
through deep learning [82]. For example, Xie et al [66] used
data from 1368 normal eyes, 202 eyes with early keratoconus,
389 eyes with more advanced keratoconus, and 369 eyes with
subclinical (suspected) keratoconus to develop an automatic
classifier. They achieved 76.5% sensitivity and 98.2% specificity
when classifying subclinical keratoconus. However, the heat
maps used were produced by Pentacam; therefore, it should be
noted that the technique may not be transferable to other systems
or even future Pentacam software iterations. Kuo et al [67]
included 150 normal, 170 keratoconus, and 28 subclinical eyes
in their study and used the Tomey TMS-4 topography system
to produce corneal heat maps and trained 3 different CNN
architectures (VGG16, InceptionV3, and ResNet152). When
attempting to identify the 28 subclinical keratoconus eyes, they
applied the VGG16 model and achieved barely satisfactory
results with an accuracy of 28.5% when a threshold of 50% was
applied. These results suggest that subclinical keratoconus
cannot yet be detected with high sensitivity using CNNs on heat
map images.

Decision Trees
The classification of data in a decision tree uses a binary
decision at each node in the tree to determine the branch to take
next. Starting from the root, the classification is determined by
following each branch to its terminal node. Smadja et al [49]

used a decision tree to classify normal, keratoconus, and
subclinical (FFKC) keratoconus eyes. They enrolled 177 normal
eyes, 148 keratoconus eyes, and 47 subclinical eyes. They used
55 parameters (including curvature, elevation, corneal
wavefront, corneal power, pachymetry, and age) collected from
the Galilei dual Scheimpflug camera, achieving 93.6%
sensitivity and 97.2% specificity when classifying subclinical
from normal. Cao et al [14] also evaluated a decision tree
algorithm for classifying subclinical keratoconus but achieved
lower sensitivity (82%) and specificity (78%). They attributed
the comparatively inferior performance to the fact that Smadja
et al [49] used additional machine-specific indices that they did
not have access to.

Random Forests

Random forests combine a large number of decision trees into
a single model [83]. Lopes et al [62] compared this method with
other methods (naive Bayes, NNs, SVMs, and discriminant
analysis) by training models on 71 post–laser-assisted in situ
keratomileusis (LASIK) ectasia eyes, 298 post-LASIK eyes
without ectasia, and 183 eyes with keratoconus. They included
keratometry, pachymetry, elevation, and various Pentacam
indices. The models were validated on an external data set
containing 298 normal eyes (stable LASIK), 188 keratoconus
eyes (very asymmetric ectasia-ectatic), and 188 subclinical eyes
(very asymmetrical ectasia-normal topography). The latter 2
groups were collected from the same set of patients. They found
that the random forest model performed best when detecting
subclinical eyes with an 85.2% sensitivity. This accuracy is
lower than that of other comparable studies, which is probably
caused by their inclusion of external validation rather than an
inferior model. The authors also note that their model classifies
among 3 groups, whereas other related studies (such as that by
Arbelaez et al [49]) only classify between 2 groups (eg,
subclinical vs normal). This important distinction is expanded
upon in the Discussion section.

Discriminant Analysis
Discriminant analysis uses a linear combination of variables
that optimally separate 2 or more classes of data. Xu et al [57]
used this method to classify eyes as either normal, subclinical
keratoconus, or keratoconus. In total, 147 normal eyes, 139 eyes
with keratoconus, and 77 eyes with subclinical keratoconus
were included in the training set and verified on a separate set
of 97 normal and 49 subclinical keratoconus eyes. They applied
the Zernike fitting method to corneal pachymetry and elevation
data derived from the Pentacam and achieved an AUC of 92.8%
when discriminating subclinical keratoconus. Saad et al [54]
also used discriminant analysis to classify eyes as either
subclinical (FFKC) keratoconus or normal. They used a
combination of wavefront aberrometry and Placido disc indices
in their model with a total of 8 parameters using the OPD-Scan
(Nidek Co Ltd). The model was trained on 114 normal and 62
subclinical eyes and validated on 93 normal and 82 subclinical
eyes. Using training data only, the model achieved 89%
sensitivity and 92% specificity, but when applied to the
validation set, the accuracy dropped significantly to 63%
sensitivity and 82% specificity. This highlights the need for
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external validation when reporting the performance of the
detection algorithms.

Support Vector Machines
SVMs translate data into a higher-dimensional space where a
dividing line (known as a hyperplane) separates the data such
that the distance between the hyperplane and any given data
point is maximized [26]. When 8 different machine learning
algorithms were compared for classifying subclinical
keratoconus on the same data set, SVMs achieved the highest
sensitivity (94%) [14]. Arbelaez et al [47] achieved even higher
sensitivities using SVMs with a large data set of 1259 normal
eyes and 426 with subclinical keratoconus. They used 200 eyes
from each group for training and the remainder for testing,
achieving 92% sensitivity and 97.7% specificity. Ruiz Hidalgo
et al [56] used 25 topographic or tomographic Pentacam-derived
parameters to verify their SVM model. They included 131
patients in their study and provided results for 2 classifications
from separate hospitals: Antwerp University Hospital and
Rothschild Foundation, Paris. When classifying the 4 groups
(keratoconus, subclinical, normal, and postrefractive surgery),
the sensitivity for subclinical keratoconus detection was 61%
compared with that of the Antwerp University Hospital
classification and 100% compared with that of the Rothschild
classification. This was a comprehensive validation study that
compared multiple methods with 2 subjective reference
standards. Only a small number of subclinical keratoconus cases
(approximately 20) were included in this study, and a larger
study is required to verify these results.

Logistic Regression
Logistic regression is commonly used to perform classification
from a set of independent variables [26]. It transforms its output
using the sigmoid function to return a probability that can then
be thresholded for classification. When classifying subclinical
keratoconus, 3 studies used this technique exclusively
[59,60,75]. Sideroudi et al [59] used logistic regression to
explore the diagnostic capacity of Fourier-derived posterior
keratometry parameters (spherical component, regular
astigmatism, asymmetry, and irregular astigmatism) extracted
from Pentacam Scheimpflug images. They included 50 normal
eyes, 80 eyes with keratoconus, and 55 with subclinical
keratoconus (defined as a clinically normal eye with abnormal
topography, where the fellow eye has advanced keratoconus)
and validated their model on 30% of the data set. Their model
attained 91.7% sensitivity and 100% specificity when classifying
between subclinical keratoconus and normal eyes. Although
these results are among the best reported, the study has yet to
be validated using an external data set. Other studies
implemented logistic regression as part of a wider comparison
of machine learning algorithms [14,58].

Comparative Studies
Few studies have applied multiple machine learning algorithms
to the same data set. Cao et al [14] tested 8 machine learning
algorithms on the same data set of 39 normal control eyes and
49 eyes with subclinical keratoconus. Age, sex, and 9 corneal
parameters from the Pentacam tomography were used, and the
authors found that random forest, SVM, and K-nearest neighbors

had the best performance. Random forests had the highest AUC
of 0.97, SVM had the highest sensitivity (94%), and K-nearest
neighbors had the best specificity (90%). Although they verified
their results with 10-fold cross-validation, it would be instructive
to repeat the analysis on a larger external data set. Ambrosio et
al [58] also performed an analysis across algorithms including
logistic regression, SVMs, and random forests to classify
between 4 groups: normal, keratoconus, very asymmetrical
ectasia-ectatic, and subclinical keratoconus (very asymmetric
ectasia-normal). They used both Scheimpflug tomography and
biomechanical data and included 480 normal eyes, 204 eyes
with keratoconus, 72 eyes classified as very asymmetrical
ectasia-ectatic, and 94 subclinical keratoconus eyes. When
considering subclinical keratoconus, the random forest model
performed the best, with 90.4% sensitivity and 96% specificity.
The final model was named the Tomography and Biomechanical
Index and was validated by leave-one-out cross-validation,
resulting in as many models as there were subjects (N=850).
Lopes et al [62] also performed a comparative analysis and
found that random forests performed best when trying to classify
3 groups of eyes (including subclinical eyes). Lavric et al [71]
provided the largest comparative study for detecting subclinical
keratoconus. The authors included 1970 normal eyes, 390 eyes
with keratoconus, and 791 subclinical (FFKC) keratoconus eyes
in their study and used keratometric, pachymetric, and
aberrometric data from the CASIA AS-OCT system in their
analysis across 25 different machine learning algorithms. When
they classified the 3 groups simultaneously, they found that the
most accurate method was SVM, which attained 89.5%
sensitivity for the detection of subclinical keratoconus, and the
results were validated using 10-fold cross-validation. The
limitations of this study include the use of the CASIA ectasia
screening index (ESI) for the classification of the severity of
keratoconus, which may not agree with clinical diagnosis, and
that the analyzed parameters are closely tied to the CASIA
device, which limits generalizability to other systems.

Unsupervised Learning
Unsupervised learning represents a distinct approach to the
detection of subclinical keratoconus by attempting to identify
groups of similar eyes without prelabeled data. Yousefi et al
[61] used a 2-step approach that combined dimensionality
reduction and density-based clustering to cluster a cohort of
3156 eyes categorized according to the ESI index as either
normal, keratoconus, and subclinical (FFKC) keratoconus. They
included 420 topography, elevation, and pachymetry parameters,
and the algorithm produced 4 clusters of eyes with similar
characteristics. When comparing their results with a reference
standard (ESI), the model did not create a distinct grouping that
separated the subclinical eyes from other eyes (sensitivity 88%
and specificity 14%), suggesting poor correlation when
compared with ESI alone. Furthermore, they did not compare
their results with clinically labeled data.

Research Question 3: How Was Algorithm Validation
Handled Among the Selected Manuscripts?
Although most studies performed internal validation by splitting
the original data set into training and test sets, we identified 5
replication papers that validated a published model on a new
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data set [48,51,52,56,63]. Ruiz Hidalgo et al [56] verified their
SVM technique presented in 2016 [55]. The authors found that
when using the Antwerp University Hospital classification,
there was approximately 18% decrease in sensitivity, whereas
when using the Rothschild classification, there was
approximately 21% increase in sensitivity. These discrepancies
highlight the problems associated with subjective classification
and the absence of ground truth. Furthermore, when multiple
groups were included in the analysis; that is, normal,
keratoconus, subclinical keratoconus, and postrefractive surgery
eyes, it was noted that the accuracy decreased from 93.1% in
discriminating normal from FFKC to 88.8%. However, this
paper presented the most comprehensive methodology because
the authors not only verified their results on a new sample
population with multiple target classes but also compared their
results with other methods and included 2 subjective reference
standards.

Buhren et al [51] validated their model defined in 2010 [84].
When comparing their discriminant function derived from
anterior and posterior corneal surface wavefront data, they
reported approximately 22% decrease in sensitivity and
approximately 9% decrease in specificity. This decrease was
likely caused by overfitting in the original study. Saad et al [48]
and Chan et al [52] validated the same discriminant analysis
model presented by Saad et al [77]. Saad et al [48] reported
sensitivity (92%) and specificity (96%), roughly in line with
their previous study, which indicates that their method is reliable
and does not suffer from overfitting. Chan et al [52] validated
the original model in patients from different ethnic backgrounds
(Asian). They reported approximately 21% decrease in
sensitivity, which they attributed to overfitting in the original
study; however, their specificity was almost equivalent.
Steinberg et al [63] validated the work presented by Ambrosio
et al [58]. They reported approximately 27% decrease in
sensitivity and approximately 13% decrease in specificity when
applying the same thresholds.

Bias Assessment
In general, patient selection was found to have a high risk of
bias (19/26, 73% of studies) because most studies were
case-control (thus susceptible to selection bias) and did not use
consecutive or random samples. Multimedia Appendix 5
[14,47-71] contains the results of applying the QUADAS-2 tool
when considering the risk of bias. The index test was also
generally found to have a high risk of bias (21/26, 81% of
studies) because of the lack of external validation. As there is
no gold standard for subclinical keratoconus diagnosis, we could
not assess the bias for the reference standard; therefore, all
papers were marked as unclear. Finally, patient flow was found
to have a low risk of bias (21/26, 81% of studies) because
although chronological information was sparse, the same
analysis was usually applied to all patients.

Discussion

Research Question 1: What Input Data Types Have
Been Used Within Subclinical Keratoconus Detection
Algorithms and How Have They Performed?
The data most commonly used for building subclinical
keratoconus detection algorithms are numeric keratometry or
pachymetry parameters; hence, according to our review,
algorithms based on these tend to have the highest performance.
These parameters are derived from a variety of imaging systems
and devices and are then incorporated into different
combinations to build a classification system or an index.
Inevitably, individual systems produce parameters that may not
be comparable across devices, and for proprietary reasons, the
raw data are generally not available to derive these parameters.
Therefore, comparison or replication across systems is difficult.
Heat maps provide a visual representation of either corneal
elevation, pachymetry, or curvature, which are helpful for the
visual interpretation of results. However, heat maps require
interpolation or extrapolation of data, which may introduce
inaccuracies when included in the model. To the best of our
knowledge, there are no studies that have analyzed actual
pixel-level corneal imaging data (Scheimpflug or AS-OCT),
probably because access to these data is restricted to commercial
machines such as the Pentacam, which impedes bulk export to
train machine learning algorithms.

We also noted that many studies do not incorporate details of
patient demographics and associated diseases, such as age, sex,
ethnicity, and atopy, which can influence the risk of developing
keratoconus. Incorporating these data into these models may
help define the population to which an algorithm applies,
particularly as there are phenotypic indices that an algorithm
can identify from images that humans cannot identify by manual
inspection [85].

Research Question 2: What Machine Learning
Algorithms Have Been Used for Subclinical
Keratoconus Detection and How Have They
Performed?
Subclinical keratoconus studies typically involve univariate or
multivariate analyses. For univariate studies, receiver operating
characteristic analysis is performed, as each parameter is
included to quantify their diagnostic ability. However, because
none of the univariate studies we identified performed an
out-of-sample validation, they were all excluded. For
multivariate studies, machine learning is used to create a
detection model using multiple parameters. These algorithms
have already demonstrated comparable performance to
experienced ophthalmologists in the identification of retinopathy
of prematurity [86] and retinal disease progression [87]. Machine
learning–based research into the detection of subclinical
keratoconus has largely focused on supervised learning
techniques, such as decision trees, SVM, logistic regression,
discriminant analysis, NNs, and CNNs. Logistic regression may
be superior to NNs when parameters from a single imaging
modality are considered [14,68], with a potentially greater role
for NNs when a large number of potentially interacting
parameters are combined, such as for multiple imaging
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modalities [68]. Unsupervised learning has also been evaluated
for the detection of subclinical keratoconus, although it relies
on identifying patterns in large amounts of data; hence, it may
not translate to a different data set of a different size and with
different properties. In addition, with the exception of the study
by Yousefi [61], none of the papers provided access to the
source code for their algorithms or a description of the
hyperparameters, which makes it difficult to reproduce and
validate the results with external data sets.

Research Question 3: How Was Algorithm Validation
Handled Among the Selected?
We excluded papers that did not include a validation arm for
the study, and the vast majority of initially identified studies
did not appropriately validate their results. For any type of
automatic classifier, validating the results on a data set distinct
from the trained set is critical in determining the generalizability
of the model to other data sets. With the exception of the studies
by Saad et al [48] and Hidalgo et al [56], it is clear that studies
attempting to validate a prior method reported significant
decreases in sensitivity and specificity in comparison with their
original results. This shows that even when techniques such as
cross-validation are performed, the best method for validation
is an independent out-of-sample data set, and its absence may
introduce bias. Ideally, this external data set would be larger
and more representative of the general population.

Strengths and Limitations
The primary strength of this study is that we present a
comprehensive review of all studies published in English
between January 1, 2010, and October 31, 2020, on the use of
machine learning for the detection of subclinical keratoconus.
Our focus on the detection of subclinical keratoconus addresses
an important unmet clinical need for an effective machine-based
technique to identify keratoconus at its earliest stage. This would
move us closer to potential screening without significant
demands on clinicians and clinical services. Subclinical disease
diagnosis is more challenging than the detection of advanced
disease, where the opportunity to prevent progression has
already been lost. In this respect, our review builds on recent
clinical trials of CXL to prevent keratoconus progression in
children and young adults [15,88,89]. To present a balanced
and comprehensive overview, we have combined the expertise
of computer scientists (HM and NP) familiar with the
development of machine learning for clinical medicine with the
input from clinicians (JPOL, DG, and ST) who are experienced
in keratoconus management. We have considered and compared
the literature in terms of both clinical input data and machine
learning methodology, which allows the reader to gain a wider
perspective of the problem.

However, there are limitations to our search methods and
inclusion criteria. As with any systematic review, articles that
did not include the relevant key terms or were not appropriately
indexed by the literature databases may have been missed. When
considering our inclusion criteria based on subclinical disease,
some studies may have been missed because of a lack of
consensus on definition. In addition, where there was no form
of validation, we excluded the study; thus, our results represent
only the articles that have some degree of generalizability.

A further limitation is the difficulty in comparing the
performance of the approaches described in the manuscripts;
direct comparisons were not possible because of the variation
of multiple study design factors such as subclinical disease
definition, parameter choice, data set source, and machine
learning algorithm. Finally, a limitation regarding case definition
that applies to all studies is the uncertainty in the relationship
between subclinical keratoconus and other nonprogressive
abnormalities of corneal shape.

Challenges and Future Directions
Our systematic review identified several challenges from the
literature and avenues for future research.

Case Definition, Gold Standard, and Ground Truth
Precise comparisons between the results of publications are
problematic because of the ambiguous definition of early
keratoconus and the absence of a gold standard examination
technique. The most common definition of subclinical
keratoconus is an eye with topographic findings that is at least
suspicious of keratoconus and with confirmed keratoconus in
the fellow eye. FFKC is usually defined as an eye that has both
normal topography and slit-lamp examination but with
keratoconus in the fellow eye [44]. With this differentiation,
subclinical keratoconus will be easier to detect than FFKC, and
studies using the former definition are likely to produce more
accurate results because the problem becomes easier to solve.
The problems of making statistical comparisons in the absence
of a gold standard have been discussed extensively by
Umemneku et al [90]. The authors suggest that latent class
analysis, composite reference standards, or expert panel analysis
may be appropriate in these circumstances.

Even if a precise definition of early subclinical keratoconus was
established, the absence of ground truth data is relevant when
evaluating the precision of data acquisition. For example,
measurements of keratoconus taken by different operators or
repeated on different days may lead to variations in the results.
Flynn et al [91] found that keratometric measurements from
Scheimpflug images (Pentacam) were more reproducible in
early keratoconus (mean central K ≤53 D) compared with those
in more advanced keratoconus (mean central K>53 D), although
a cohort with subclinical keratoconus was not included. In
contrast, Yang et al [92] found that biomechanical parameters
(Corvis ST) had acceptable repeatability in both normal and
keratoconus eyes.

Another issue we identified when comparing studies was the
variation in the number of groups that were classified. The
studies often started with multiple groups (usually 3, eg, FFKC,
keratoconus, and normal); however, 21 papers chose to report
their accuracy results from a model trained to classify between
just 2 groups (eg, FFKC and normal), whereas 5 papers reported
results for classifying between all groups. Classifying all groups
is a more realistic clinical scenario, but it presents a more
challenging problem because the features of the different groups
can overlap. Complete details of the number of groups
associated with the accuracy results are presented in Multimedia
Appendix 2.
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Study Size and Statistical Power
The size of the study is critical when developing a reliable
detection system. In particular, the accuracy of machine learning
models is directly related to the amount of training data. When
considering eyes with subclinical keratoconus, only 2 studies
included more than 500 eyes [61,71]. None of the papers
included a priori power calculations to estimate the size of the
cohort to be studied.

Study Design
None of the reported studies evaluated the performance of their
method against masked observers; thus, they may introduce
detection bias. The initial classification is often made by
considering the fellow eye with keratoconus as a factor in the
decision-making process, whereas the algorithm does not have
this information. Hence, it would be interesting to design a study
where, having already decided on the ground truth diagnosis,
a new clinician is asked to evaluate the eye using the same
information as the algorithm (ie, only the images or parameters).
This situation is closest to real-life screening where a prospective
patient (without a history of keratoconus in either eye) is
examined for risk of keratoconus.

Subclinical keratoconus is, by definition, the least affected eye
of highly asymmetrical keratoconus. An assumption is that any
parameters of subclinical disease that differ from the values for
normal corneas are the result of keratoconus. However, it has
not been demonstrated prospectively that all eyes in such a
cohort will progress to the clinical disease state. Although true
unilateral keratoconus is thought not to exist [37], this has not
been proven, and it is possible that some eyes with subclinical
keratoconus are not at risk of progression and that some of the
abnormal parameters in this group are not the result of
keratoconus. It would be valuable to conduct a prospective study
in which eyes that do not develop clinical keratoconus over time
are used as lower-risk examples.

External Validation and Generalizability to Real-world
Data
To be useful, it is essential that a detection algorithm can
generalize beyond the limited data set from which the model
was developed and benchmarked, which requires external
validation in out-of-sample data sets. The creation of a large
open-source data set of keratoconus images could serve as a
reference standard to develop a benchmark for external
validation. We also recommend that journals adhere to the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis guidelines so that all
published methods are externally validated. When generalizing
to external data sets the source and quality of the data should
be considered. Data from a referral hospital may not represent
the general population, who might be the target for screening
programs, with an underrepresentation of eyes with mild disease.

Other Challenges
There are several other considerations, such as keratoconus
progression and the translation of a detection algorithm into a

medical device that can be implemented in the real world, but
these issues are beyond the scope of this review. Nevertheless,
these points are discussed in Multimedia Appendix 6
[37,39,93-102].

New Avenues of Research
On the basis of the results of this review, there is a need for
further fundamental research, particularly for analysis based on
the raw pixel values of corneal imaging rather than only derived
parameters. Furthermore, a multimodal solution could be
developed by combining these raw images with other
parameters, such as biomechanical, demographic, and genetic
data. Demographic data such as age, sex, ethnicity, and allergic
eye disease are known risk factors for progressive keratoconus,
and a family history of keratoconus is also a risk factor that
should also be included in diagnostic algorithms. Environmental
risk factors, including eye rubbing, have been associated with
keratoconus progression, although eye rubbing is difficult to
quantify. A genetic predisposition to keratoconus is supported
by heritability studies in twins, linkage analysis in families, and
population-level genome-wide association studies [103]. From
these studies, genetic risk scores have been derived, which could
be included in machine learning models for the detection of
subclinical keratoconus. Ideally, a prospective study should be
performed in a large cohort of young (<30 years of age) patients
with subclinical keratoconus to monitor disease progression.
Training should be conducted on large data sets with the explicit
aim of detecting subclinical keratoconus, and the resulting model
should be externally validated on a new data set. Finally, a range
of machine learning techniques should be applied to the same
data set along with detailed comparison statistics.

Conclusions
We have conducted the most comprehensive review to date on
machine learning algorithms for the detection of subclinical
keratoconus. Early detection of keratoconus to enable treatment
and prevent sight loss is a public health priority, and the use of
machine learning algorithms has the potential to make the
diagnostic process more efficient and widely available. We have
summarized the relevant publications in terms of their input
data and the choice of algorithm and identified whether studies
performed appropriate validation. We have identified the
challenges of obtaining accurate data sets for training machine
learning algorithms and the need for a consistent, objective, and
agreed definition of subclinical keratoconus. New avenues of
research have been identified that combine multimodal source
data with biomechanical, demographic, and genomic data.
Defining disease progression and modeling progression to the
point where there is sight loss are areas that may benefit from
further research. We believe this up-to-date review is important
to enable researchers, clinicians, and public health policymakers
to understand the current state of the research and provide
guidance for future health service planning.
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Grading systems and indices.
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Supplementary details for the 26 published studies that included the use of machine learning for the detection of subclinical
keratoconus.
[XLS File (Microsoft Excel File), 54 KB - medinform_v9i12e27363_app2.xls ]

Multimedia Appendix 3
Sensitivity and specificity were plotted for the 26 published studies that included the use of machine learning for the detection
of subclinical keratoconus. In the left-hand chart, the results were grouped by diagnosis criteria. A: clinically normal, topographically
abnormal. B: Fellow eye of diagnosed keratoconus, clinically normal, topographically normal. C: Fellow eye of diagnosed
keratoconus, clinically normal, topographically abnormal. Although there is no obvious pattern relating to diagnostic criteria, the
largest outliers belong to group A, suggesting that using a fellow eye with keratoconus may lead to a better detection system. In
the right-hand chart, the results are grouped according to the imaging system. No obvious pattern can be seen in the results,
suggesting that the choice of imaging system is unrelated to the detection system accuracy.
[PNG File , 56 KB - medinform_v9i12e27363_app3.png ]

Multimedia Appendix 4
Heat maps of an advanced keratoconus eye derived from Scheimpflug corneal imaging using the Pentacam device.
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Multimedia Appendix 5
Results of applying the QUADAS (Quality Assessment of Diagnostic Accuracy Studies)-2 bias assessment tool including responses
to tailored signaling questions.
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Multimedia Appendix 6
Other challenges, such as keratoconus progression and translational considerations, have been identified for the detection of
subclinical keratoconus using machine learning.
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Abstract

Background: Cardiac arrest is a life-threatening cessation of activity in the heart. Early prediction of cardiac arrest is important,
as it allows for the necessary measures to be taken to prevent or intervene during the onset. Artificial intelligence (AI) technologies
and big data have been increasingly used to enhance the ability to predict and prepare for the patients at risk.

Objective: This study aims to explore the use of AI technology in predicting cardiac arrest as reported in the literature.

Methods: A scoping review was conducted in line with the guidelines of the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) extension for scoping reviews. Scopus, ScienceDirect, Embase, the Institute of Electrical and
Electronics Engineers, and Google Scholar were searched to identify relevant studies. Backward reference list checks of the
included studies were also conducted. Study selection and data extraction were independently conducted by 2 reviewers. Data
extracted from the included studies were synthesized narratively.

Results: Out of 697 citations retrieved, 41 studies were included in the review, and 6 were added after backward citation
checking. The included studies reported the use of AI in the prediction of cardiac arrest. Of the 47 studies, we were able to classify
the approaches taken by the studies into 3 different categories: 26 (55%) studies predicted cardiac arrest by analyzing specific
parameters or variables of the patients, whereas 16 (34%) studies developed an AI-based warning system. The remaining 11%
(5/47) of studies focused on distinguishing patients at high risk of cardiac arrest from patients who were not at risk. Two studies
focused on the pediatric population, and the rest focused on adults (45/47, 96%). Most of the studies used data sets with a size
of <10,000 samples (32/47, 68%). Machine learning models were the most prominent branch of AI used in the prediction of
cardiac arrest in the studies (38/47, 81%), and the most used algorithm was the neural network (23/47, 49%). K-fold cross-validation
was the most used algorithm evaluation tool reported in the studies (24/47, 51%).

Conclusions: AI is extensively used to predict cardiac arrest in different patient settings. Technology is expected to play an
integral role in improving cardiac medicine. There is a need for more reviews to learn the obstacles to the implementation of AI
technologies in clinical settings. Moreover, research focusing on how to best provide clinicians with support to understand, adapt,
and implement this technology in their practice is also necessary.

(JMIR Med Inform 2021;9(12):e30798)   doi:10.2196/30798
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Introduction

Background
Cardiac arrest, also known as sudden cardiac death, is the
cessation of the ability of the heart to pump blood. This acute
cessation requires immediate intervention, as vital organs, such
as the brain and the heart itself, are deprived of blood flow. A
delay in intervention can lead to lifelong complications and
even death. The global rate of mortality after cardiac arrest is
significantly high—78% of out-of-hospital cardiac arrest
(OHCA) cases die before they reach the hospital [1]. For those
who do receive advanced care, the survival rate remains low.
The survival rate for OHCA from the time of cardiac arrest to
the time of discharge ranges from 2% to 11% worldwide [2].
The number of cardiac arrest deaths that occur within an
in-hospital setting is also significant. In the United States alone,
over 290,000 in-hospital cardiac arrests occur annually, with
survival rates varying from as low as 0% to 36.2%, out of which
a small percentage have favorable neurological prognoses [3].

Artificial intelligence (AI) is reforming health care every day.
AI technologies have the perfect platform to thrive and mature
with the growing adoption of electronic health records,
development in computational power, continuous monitoring
systems, and availability of big data [4]. It has become an
important clinical decision-making tool that allows for
personalized diagnoses, solutions, prognoses, and predictions
of future health outcomes, guiding clinicians and other
stakeholders in doing what is best for their patients [4]. AI
technology is also rapidly progressing in cardiology, like in any
other field of medicine [5]. AI-guided diagnosis and therapy
selection have allowed for advancement in research, clinical
practice, and population health in cardiovascular medicine [6].
Machine learning (ML) models have also been shown to
outperform traditional statistical models in detecting sex
differences in cardiovascular disease, further enhancing
individualized medicine [7]. AI also plays a major role in
improving care for cardiac arrest. AI technologies are being
used to prevent cardiac arrest through early identification of
risk factors [8], early detection [9], improved management (eg,
effective cardiopulmonary resuscitation) [10], and prognosis
determination for patients post cardiac arrest [11]. A large part
of cardiac arrest research is the prediction of cardiac arrest
before its occurrence, as it gives clinicians time to prepare and
achieve better patient outcomes.

Thus, what are AI technologies and their counterparts in this
context? AI refers to the field of science revolving around
building computational systems and algorithms that facilitate
the ability of a machine to mimic human behavior to learn and
find solutions to tasks autonomously [4,12]. ML is a subset of
AI. ML algorithms focus on building smart solutions after
learning from patterns and experiences provided by a structured
sample of training data [12]. Deep learning (DL) is a class of
ML. It consists of a complex, interconnected, multilayered
neural network, resembling a human brain. The aim of DL is
to learn and understand patterns from a large amount of
unstructured data [5]. In short, the more information it is fed,
the more accurate the outcome.

The ability of AI technologies to process and evaluate patient
data to generate predictions is important to support clinicians
in making critical decisions, provide effective management,
and, ultimately, improve patient outcomes in cardiac arrest cases
[13]. Therefore, we believe it is crucial to explore the use of AI
technology in predicting cardiac arrest and report our findings
to help clinicians and researchers.

Research Problem and Aim
Numerous studies have proposed the use of AI in cardiac care,
especially the use of AI in the prediction of cardiac arrest.
However, there is a lack of consolidating existing evidence that
describes the features of AI technologies, data sets, and data
sources currently being used. It is essential to summarize recent
findings that allow health care providers and researchers to
implement appropriate guidelines, as well as to identify research
gaps in the current literature. We encountered one review that
examined the use of AI in the prediction of cardiac arrest [14].
However, the review was conducted in 2018 and did not include
a large influx of studies in the past 2 years. Therefore, it is
necessary to conduct a scoping review that focuses on various
types of AI technologies currently being used in different
settings to predict cardiac arrest.

This scoping review aims to explore the use and features of AI
technologies applied to the prediction of cardiac arrest as
reported in the literature. The results of our review will be a
useful reference for health care professionals, researchers, and
others involved in patient care to understand the application of
AI and leverage it for the benefit of the community.

Methods

The scoping review was conducted by AA and OM to address
this objective. The guidelines of the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
extension for scoping reviews [15] were followed to help
conduct a transparent review.

Search Strategy
Five bibliographic databases were searched for this study:
Scopus, ScienceDirect, Embase, the Institute of Electrical and
Electronics Engineers, and Google Scholar. The databases were
searched using search terms related to the target technology,
population, and outcomes of interest. Search terms for our
population included Cardiac Arrest OR Heart Arrest OR Sudden
Cardiac Death OR asystole OR cardiopulmonary arrest and,
for our intervention, Artificial Intelligence OR Deep Learning
OR Machine Learning OR Natural Language Processing OR
Neural network OR Supervised learning OR Unsupervised
learning OR Data mining. Outcome- or purpose-related search
terms included Detect* OR Predict* OR Anticipat* OR
Diagnos*. The search query used for each database is presented
in Multimedia Appendix 1.

For ScienceDirect and Google Scholar, only the first 100 and
50 results, respectively, were considered. This is because the
reviewers found that the results became less relevant to the topic
of interest and applicability after the mentioned number of
citations. In addition to searching the databases, a backward
reference list screening of the included studies was also carried
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out to identify additional relevant studies. The search was
conducted between March 15 and 20, 2021.

Eligibility Criteria
AI technologies implemented to predict cardiac arrest were
included, with no restrictions on age, gender, geography, and
type of AI technology used. Studies that focused primarily on
predicting cardiac arrest were included. In contrast, studies
dedicated to other aspects or contributing factors of cardiac
arrest, such as arrhythmia and other cardiac diseases, were
excluded. The review included peer-reviewed articles, preprints,

articles in press, conference proceedings, theses, and
dissertations written in English. Reviews, conference abstracts,
study protocols, and proposals were excluded. No restrictions
were imposed on the study design, study setting, country of
publication, and publication year during the search query.
However, only studies published between 2013 and 2021 were
included in the review. The period between 2013 and 2016
constitutes a time when AI technologies saw a rapid increase
of 175% in application [16]; therefore, the reviewers considered
it to be a reasonable time period to include. The study eligibility
criteria are summarized in Textbox 1.

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Studies that focused on the use of artificial intelligence (AI) technologies in cardiac arrest prediction for the benefit of the human population

• Studies published from 2013 to 2021

• Peer-reviewed articles, articles in press, theses, dissertations, and conference proceedings

• Primary studies

Exclusion criteria

• Articles that did not address the use of AI in cardiac arrest prediction

• Reviews, conference abstracts or proposals, letters, news, books, and protocols

• Published in a language other than English

Study Selection
The studies retrieved from the databases were first imported to
Rayyan (Rayyan System Inc) [17], a collaborative research tool,
to undergo 3 phases of the filtering process. This ensured that
the articles we included in the review were relevant to our study
objective. The 3 phases of the filtering process were as follows:
(1) identification phase, where citations were identified after
applying the search terms to the databases and duplicates were
removed; (2) screening phase, where titles and abstracts were
screened to remove articles that did not match our inclusion
criteria; and (3) eligibility phase, where the full texts of the
articles were read to determine their applicability on the basis
of the inclusion criteria. The 2 reviewers conducted all 3 phases
independently, facilitated by the Rayyan application. In case of
conflict, a discussion was held to reach a consensus.

Data Extraction and Data Synthesis
To conduct a reliable and consistent extraction of data from the
included studies, a data extraction form was used (Multimedia
Appendix 2). The 2 reviewers independently extracted data
related to the characteristics of the included studies, AI
technology, and data sets. The extracted information was
recorded on a shared Microsoft Excel sheet for easy data
management. Similar to the study selection, any conflict between
the 2 reviewers was resolved through discussions to reach a
consensus.

A narrative synthesis of the extracted data was performed. The
findings from the included studies were classified and described
in terms of their purpose, AI branch, algorithm, and platform
used to implement the algorithm. The data sets used for the
development and validation of the technology were considered
and described. The data sources, size of the data set. validation
type, and proportion of training, validation, and test data sets
were included when available. An sheet Excel (Multimedia
Appendix 3) was used to record the extracted data to facilitate
data synthesis.

Results

Search Findings
As shown in Figure 1, 697 studies were retrieved from our
search, of which 173 (24.8%) duplicates were removed. A total
of 524 underwent title and abstract screening, of which 443
(84.5%) studies were excluded. The reasons for exclusion are
shown in Figure 1. In total, 81 unique studies underwent full-text
screening to evaluate eligibility, of which 41 (51%) studies met
the inclusion criteria and were included in the review. Six
additional studies were identified and added by checking the
reference lists of those 41 studies. Overall, 47 studies were
included in the review.
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Figure 1. Flowchart of the study selection process.

Characteristics of the Included Studies
Of the 47 studies included, 46 (98%) were published in
peer-reviewed journals, whereas 1 (2%) was still in press.
Approximately 81% (38/47) of the studies were research articles,
whereas the rest were conference proceedings (9/47, 19%). Only
2 studies from 2013 were included, whereas most of the studies
were from 2020 (12/47, 26%). The other included studies were

conducted in 2014 (4/47, 9%), 2015 (5/47, 11%), 2016 (3/47,
6%), 2017 (3/47, 6%), 2018 (5/47, 11%), 2019 (9/47, 19%),
and 2021 (4/47, 9%). The included studies were conducted in
15 countries, and most of the studies were published in India
and the United States (9/47, 19%). Table 1 shows the
characteristics of the studies included in our review. Multimedia
Appendix 3 demonstrates the attributes of each study.
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Table 1. Characteristics of the included studies (N=47).

Studies, n (%)Characteristic

Paper status

46 (98)Published

1 (2)In press

Publication type

9 (19)Conference proceeding

38 (81)Research article

Country

1 (2)Australia

3 (6)China

1 (2)Greece

9 (19)India

5 (11)Iran

1 (2)Japan

4 (9)Malaysia

1 (2)Poland

1 (2)Portugal

1 (2)Singapore

7 (15)South Korea

1 (2)Spain

2 (4)Taiwan

1 (2)United Kingdom

9 (19)United States

Year published

2 (4)2013

4 (9)2014

5 (11)2015

3 (6)2016

3 (6)2017

5 (11)2018

9 (19)2019

12 (26)2020

4 (9)2021

AI Characteristics in the Included Studies

Use of AI in Predicting Cardiac Arrest
The approaches taken by the included studies to predict cardiac
arrest using AI technologies were divided into 3 categories:
analysis of variables and parameters, development of an early
warning system or prediction model, and stratification of patients
at a high risk of cardiac arrest.

Analysis of Variables and Parameters
The studies in this category focused on analyzing one or more
patient parameters to determine their impact on the efficiency

of improving the prediction of cardiac arrest in combination
with AI algorithms. We observed 26 studies that fit into this
category [14,18-42]. Of these 26 studies, 11 (42%) used ML
models [14,18,19,23,25,27,30,32,34-36] and 3 (12%) used DL
algorithms [20,31,38]. We observed that 12 studies incorporated
both ML and DL models to analyze and validate different
parameters [21,22,24,26,28,29,33,37,39-42].

Random forest (RF) [14,21,23,28-30,32,35-37,39-41] and
support vector machine (SVM) [18,22,24,26,28,34,40-42] were
the most used ML models observed in these studies, followed
by decision tree (DT) [22,29,30,40-42], logistic regression (LR)
[28-30,40], Naive Bayes [19,28,29,41], gradient boosting
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[27,28], extreme gradient boosting [27,29], LogitBoost [21],
AdaBoost [29], TreeBagger [34], and sequential feature selection
[24]. The most used DL-based algorithm in the studies was
k-nearest neighbors (KNN) [20,22,26,29,33,41,42]. The
probabilistic neural network [24,31,42], artificial neural network
[29,40], multilayer perceptron [21,33], long short-term memory
[39], convolutional neural network [37], and enhanced
probabilistic neural network [31] were also algorithms used in
DL model studies. Furthermore, 2 studies did not specify the
algorithm used [25,38].

The parameters analyzed and validated in the included studies
were diverse. The majority of the studies focused on using
various characteristics from patient electrocardiogram readings
[14,18,20-22,24,26,27,30-34,36-38,40-42], especially heart rate
variability (HRV) [14,21,22,26,30,32,34,36-38,42]. HRV is the
variation in time between each heartbeat that can be tracked on
an electrocardiogram [43]. This noninvasive assessment tool
provides important information about the autonomic nervous
system, allowing clinicians to determine current and impending
cardiac disease [44]. Its usefulness in determining
cardiac-related prognosis is also well-documented in the
literature [45,46]. In the included studies, HRV appeared to
improve prediction outcomes in the studies that integrated it
into the data set. All studies using HRV reported higher
performance in terms of accuracy and other outcome indicators.
Other unique parameters, such as genetic data [20], smoking
habit [29], nursing documentation [25], and dialysis status
[23,28], were also used to evaluate their effect on the
performance of the AI technology to predict cardiac arrest.
Accuracy [18,19,21,22,29,31,33,34,36,37,40,41] and sensitivity
[14,22,26-28,30,32-34,41,42] were the most used measures of
outcome in this category.

Development of an Early Warning System Using AI
In 16 studies [47-62], the focus of AI technologies was to
develop an early warning system alerting health care
professionals when patients were at risk of going into cardiac
arrest in the future. To develop a warning model, most studies
used ML model algorithms [49-51,53,54,59,61], whereas 5 only
used DL-based algorithms [47,48,56,60,62]. Four studies used
both ML- and DL-based algorithms [52,55,57,58], comparing
them with each other to observe which yielded the best outcome.
The ML algorithms used in these studies included LR
[50,52,55,58], SVM [50-52,58], DT [52,53,57,59], RF
[55,57,58], Naive Bayes [57,58], gradient boosting [58],
Bayesian networks [49], AdaBoost [57], transfer learning [54],
and multichannel Hidden Markov Model [61]. The KNN
[52,58], artificial neural network [48,58,61], long short-term
memory [47,56,59], and recurrent neural network [47,55,56,62]
algorithms were used in the studies to constitute a DL-based
early warning system. A total of 10 of the studies compared
their outcomes to existing or traditional early warning systems
[47,48,50,52,53,56-58,60,62]. The studies compared their

models to scoring systems such as the Modified Early Warning
Score [48,50,52,53,56,58,60,62], Early Warning Score [57],
National Early Warning Score [60], and Pediatric Early Warning
Score [47]. Only 1 study showed similar outcomes when using
an AI model compared with a traditional warning system [53],
whereas, in other studies, the AI-based model outperformed the
system it was compared with. For example, deep early warning
systems detected 50%-78% more cardiac arrests compared with
the Modified Early Warning Score [56,62]. Moreover, the
prediction period of the algorithms was reported to range from
30 minutes to as early as 24 hours before the onset of cardiac
arrest [50,53,57,58,62].

Three of the most used outcome measures in this category
included the area under the receiver operating characteristic
curve [47,48,51,53,55-57,60,62], sensitivity [49,52,58,60,62],
and accuracy [51,54,58-60].

Stratification of High-risk Patients
In 5 studies [63-67], AI technologies were used to distinguish
patients who were at high risk of cardiac arrest from patients
who were not at risk. Three studies highlighted HRV [63-65]
as an important feature to distinguish high-risk patients.

ML was used in the majority of the studies [63,64,67], and only
1 study used a DL algorithm [66]. One study used both ML and
DL models to stratify patients [65]. The ML algorithms used
were SVM [63,64], linear discriminant analysis [64], DT [63],
LR [67], RF [67], extreme gradient boosting [67], and fuzzy
classifier [65]. The DL algorithms included KNN [65,66] and
multilayer perceptron [66]. The outcome measures in the studies
included accuracy [63-66], sensitivity, specificity [63-65], area
under the receiver operating characteristic curve, and the
precision-recall curve [66].

Features of AI Techniques in the Studies
Most studies used traditional ML models and algorithms to
predict cardiac arrest (38/47, 81%) whereas 55% (26/47) used
DL techniques. We observed 15 types of AI classifiers used in
the studies to predict cardiac arrest (Table 2). A notable
observation is that 6 models were commonly used; neural
network–based models, which are a DL model, and RF, which
is a traditional ML model, were used 20 and 18 times,
respectively, making them the top 2 most used models found
in the studies, followed by SVM (15/47, 32%), DT (12/47,
26%), LR (11/47, 23%), and KNN (10/47, 21%). Less common
models, such as transfer learning, linear discriminant analysis,
fuzzy classifier, multichannel Hidden Markov Model,
LogitBoost, AdaBoost, Bayesian networks, Naive Bayes, and
extreme gradient boosting, were used between 1 and 6 times in
the studies. Two studies used wearable devices as the platform
for their AI techniques [24,59], whereas the remaining studies
used computers. Multimedia Appendix 3 presents the features
of the AI techniques.
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Table 2. Features of artificial intelligence (AI)–based techniques used for cardiac arrest prediction (N=47).

Studies, n (%)bStudy IDaFeature

AI modelc

20 (43)1, 3, 4, 6, 11, 13, 14, 15, 16, 19, 21, 25, 26, 28, 32, 34, 26, 38, 45, 46Neural network

18 (38)3, 6, 7, 8, 9, 10, 13, 14, 15, 17, 18, 19, 28, 20, 35, 37, 41, 45Random forest

15 (32)2, 5, 19, 20, 27, 30, 31, 32, 34, 38, 41, 42, 43, 45, 46Support vector machine

12 (26)3, 5, 15, 16, 17, 18, 19, 20, 32, 34, 40, 42Decision tree

11 (23)3, 6, 10, 15, 16, 18, 19, 30, 32, 45, 47Logistic regression

10 (21)3, 20, 24, 32, 33, 34, 36, 42, 43, 46K-nearest neighbors

6 (13)3, 10, 15, 16, 44, 45Extreme gradient boosting

4 (9)16, 20, 22, 45Naive Bayes

1 (2)15AdaBoost

1 (2)29Bayesian networks

1 (2)28LogitBoost

1 (2)23Multichannel Hidden Markov Model

1 (2)33Fuzzy classifier

1 (2)27Linear discriminant analysis

1 (2)47Transfer learning

Platform

45 (96)1-16, 18-37, 39-47Computer

2 (4)17, 38Wearable

aThe order of the reviewed studies in this table follows the order shown in Multimedia Appendix 3.
bTwo studies did not specify the artificial intelligence model used.
cThe numbers do not add up as some studies used more than one artificial intelligence model or algorithm.

Features of Data Sets Used for Development and
Validation of AI Models
Clinical setting sources (such as hospital databases and medical
centers) were the most commonly used data sources for the
development and validation of AI models
[14,25,27,28,31,32,34-36,38,39,47-53,55-57,60,62,67]. Public
resources (eg, the MIT-BIH Arrhythmia and Normal Sinus
Rhythm databases) [18-24,26,29,30,33,37,41,42,54,58,61,63-66]
were the other sources of data for AI models.

Several types of data were retrieved from these sources. We
grouped the types of data into 5 categories: clinical data,
demographic data (eg, age, gender, and ethnicity), laboratory
data (eg, blood samples), radiology data (eg, x-rays), and
biological data (eg, genetic information). As shown in Table 3,
58% (34/47) of the studies used clinical data as the data type.
Different variables fall under this category; Table 4 breaks down
the type of clinical data observed in the studies. Demographic
data were the second most used data type in predicting cardiac
arrest (15/47, 26%), followed by laboratory data (8/47, 14%)
and biological data (1/47, 2%).

Table 3. Data types.

Studies, n (%)Data type

34 (72)Clinical data

15 (32)Demographic data

8 (17)Laboratory data

1 (2)Biological data
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Table 4. Clinical data breakdowna.

Studies, n (%)Clinical data types

23 (49)Vital signs

18 (38)ECGb variables

10 (21)Medical history

3 (6)Chief complaint

3 (6)Medication

2 (4)Cardiopulmonary exercise testing

2 (4)Diagnosis

2 (4)Risk score

2 (4)Renal status

1 (2)Cardiopulmonary resuscitation information

1 (2)Lifestyle

1 (2)Nursing notes

aSeveral studies collected more than one clinical data type.
bECG: echocardiogram.

For data set sizes, 42 (89%) out of 47 studies mentioned the
size of the training data set used for the ML model. Of the 47
studies, 23 (49%) used data sets of less than 1000 samples,
whereas 14 (30%) used data sets of between 1000 and 9999
samples. Moreover, 11% (5/47) of studies used more than
10,000 data samples. Various validation types for the AI models

were reported in 41 studies. These validation methods were
divided into 3 main categories: k-fold cross-validation, which
was the most common validation technique used (24/47, 51%),
followed by train-test split (11/47, 23%) and external validation
(6/47, 13%). Table 5 provides a breakdown of the features of
data used in the included studies.

Table 5. Features of the data used (N=47).

Studies, n (%)Feature

Data sources

21 (45)Public database

24 (51)Clinical setting

2 (4)Other

Data set sizea

23 (49)<1000

14 (28)1000-9999

5 (11)≥10,000

Type of validationb

24 (51)K-fold cross-validation

11 (23)Train-test split

6 (13)External validation

aData set size mentioned in 42 studies.
bTypes of validation mentioned in only 41 studies.

Discussion

Principal Findings
In this review, we explored the use of AI in predicting cardiac
arrest. From a total of 617 retrieved studies, 47 (7.6%) were
included in this review. We found that the number of studies
increased in the past 2 years (9 in 2019 and 11 in 2020), which

is not surprising given that the use of AI technology in health
care has been increasing. India and the United States (9/47,
19%) represent the countries that published the most studies
related to AI in predicting cardiac arrest, with a total of 18. To
explore the use of AI technology in predicting cardiac arrest,
we divided our findings into 3 categories, each representing a
classification of the reviewed studies from a different
perspective. The first category focuses on the way AI
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technologies are used in predicting cardiac arrest and comprises
3 main subcategories: (1) stratification between patients with
cardiac arrest and non-at-risk patients, in which the AI
technology was trained using the history of patients who had
cardiac arrest and classified patients with a high risk of cardiac
arrest; (2) development of an early warning system using AI,
in which AI technology was used to alert physicians 1 to 16
hours before cardiac arrest and its accuracy was compared with
other existing traditional warning systems; and (3) analysis of
different variables and parameters to observe the efficiency of
prediction.

The second category identifies the features of the AI techniques
as observed in the literature. Two AI branches were used, ML
and DL, where ML was the most used branch in a total of 38
studies, and the most used model in this branch was RF (18/47,
38%). In contrast, DL was used 16 times, and the most used
model were neural network–based models (20/47, 43%). Finally,
the third category classifies the data and validation method used
for the AI, where we expanded on the data sources, data types,
and validation processes found in the literature for the AI
techniques. A total of 42 out of the 47 studies mentioned the
data set size used, the majority of the studies using data sets of
less than 1000 samples (23/47, 49%). Most studies used k-fold
cross-validation to test the AI models (24/47, 51%).

The Implications for Practice and Research
This review highlighted the most common AI models used in
predicting cardiac arrest and the different approaches used in
predicting it. On the basis of our findings AI models can predict
cardiac arrest using a variety of data types. In our review, ML
techniques were used much more than DL techniques. One
explanation for this is that the data used to train the AI model
were mostly structured (eg, vital signs are recorded, and the
threshold for the measurements of a normal human being is
known and then compared with the vital signs of a patient who
had cardiac arrest). Therefore, it is understandable that most
researchers used ML techniques, because they were dealing
with structured data. In contrast, DL works best with
unstructured data, which was less commonly used in the articles
reviewed. Another explanation is the size of the data sets used,
as most studies used relatively small data sets to train DL models
(eg, only 5 studies out of 47 used data sets of more than 10,000
samples). Finally, many studies explained the use of ML
techniques such as DTs, LR, and RF, which consist of many
DTs given that the main outcome is binary (at risk of cardiac
arrest or not at risk of cardiac arrest). This explains the rapid
use of these techniques in the reviewed studies.

Future research should explore ways to attain higher prediction
accuracy in terms of the time before cardiac arrest may occur
to the patient and the percentage of true positive and true
negative (accurately predicting that the patient will experience
cardiac arrest). Moreover, more research is required to address
and investigate hyperparameter optimization, as it could lead
to different performance results of ML models across the studies
selected and influence which parameters are important for the
prediction of cardiac arrest. Early prediction of cardiac arrest
could be achieved through the correlation between the clinical
data obtained and the demographic data of the patient. ML

seems to be the best technique to be used because the data used
is structured (eg, age, vital signs, and electrocardiogram
variables). The earlier the prediction time, the higher the
likelihood that the physicians can save the patients from sudden
cardiac death. Furthermore, the potential to evaluate the
effectiveness of less frequently used data types, such as
laboratory and biological data, in predicting cardiac arrest should
also be explored.

Only 5 studies reviewed used data sets of more than 10,000
samples, whereas most of the studies used data sets of less than
1000 samples. Future studies need to evaluate AI models using
larger data sets to improve their effectiveness. In addition,
comparing the prediction accuracy of AI techniques with each
other is a good method of evaluation. However, AI techniques
need to be compared with other techniques used to predict
cardiac arrest.

Studies that did research in clinical settings limited the
population to a specific hospital or country, which produced
biased results that do not apply everywhere. Future studies
should consider public databases that contain cases from
different hospitals and countries.

Many studies explored the potential of AI in the prediction of
arrhythmia and irregular heartbeat, and future studies should
investigate the potential of the proposed models in the prediction
of cardiac arrest. Finally, future research should explore the
potential of physiological and psychological data in the
prediction of cardiac arrest.

Strengths
The review addressed the use of all types of AI technologies to
predict cardiac arrest in all populations with no restrictions on
paper status, study settings, and geographic location in a
comprehensive manner. Moreover, an in-depth exploration was
conducted on the features of AI technology and the data sets
that were used to develop and validate these technologies.

Other reviews have explored the use of ML and DL in detecting
arrhythmia [53,68] or the use of AI in cardiology in general
[69-71] but have not gone into detail on how this technology
can be used to predict cardiac arrest. A previous systematic
review explored the use of ML in predicting cardiac arrest [72];
however, to the best of our knowledge, this is the first review
to explore the different approaches to predicting cardiac arrest
to fill the research gap with a better understanding of the
prediction techniques rather than focusing on whether the model
was able to predict only cardiac arrest. Moreover, this study did
not focus on a specific AI branch (ML, DL, or natural language);
rather, it focused on categorizing the AI techniques into branches
to provide insight into the most common AI technique in every
branch.

The studies included in the review comprised the latest
publications, reducing the selection bias date. In addition to
published research articles, conference proceedings were also
included to maximize the extent of inclusion. This was also
done by conducting a backward reference list check of the
included studies. Furthermore, study selection and data
extraction involved 2 reviewers independently overseeing the
process, which ensured minimal selection bias.
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Limitations
This review did not include databases such as ACM and JSTOR,
which limited our access to gray literature and other potentially
relevant studies. This was because of the lack of access to some
of the databases and others specialized in physiological or
engineering studies rather than medical studies. Moreover,
owing to practical constraints, only English-language studies
were included in the review, excluding studies in other
languages. Furthermore, our search query did not include MeSH
(Medical Subject Headings) terms or algorithm-specific search
terms, which might have hidden studies that would otherwise
have been appropriate for our review.

Conclusions
Our scoping review included 47 studies that focused on the use
of AI technologies to predict cardiac arrest in all settings. With
the big data available from patient monitoring systems and
electronic health records, it is possible to delve deeper into
making our approach to cardiac arrest reliable and more
effective, increasing the rate of survival over time. Moreover,
with the increasing adoption of wearable devices with sensors
tracking various aspects of health and activity, there are
opportunities for research to develop techniques to predict and
alert patients at risk of OHCAs. Furthermore, clinicians need
to be on board with the rapidly growing technology as, without
them, we cannot move forward. Therefore, more research on
AI paired with education initiatives within health care
professionals needs to be considered.
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Abstract

Background: Blocklisting malicious activities in health care is challenging in relation to access control in health care security
practices due to the fear of preventing legitimate access for therapeutic reasons. Inadvertent prevention of legitimate access can
contravene the availability trait of the confidentiality, integrity, and availability triad, and may result in worsening health conditions,
leading to serious consequences, including deaths. Therefore, health care staff are often provided with a wide range of access
such as a “breaking-the-glass” or “self-authorization” mechanism for emergency access. However, this broad access can undermine
the confidentiality and integrity of sensitive health care data because breaking-the-glass can lead to vast unauthorized access,
which could be problematic when determining illegitimate access in security practices.

Objective: A review was performed to pinpoint appropriate artificial intelligence (AI) methods and data sources that can be
used for effective modeling and analysis of health care staff security practices. Based on knowledge obtained from the review, a
framework was developed and implemented with simulated data to provide a comprehensive approach toward effective modeling
and analyzing security practices of health care staff in real access logs.

Methods: The flow of our approach was a mapping review to provide AI methods, data sources and their attributes, along with
other categories as input for framework development. To assess implementation of the framework, electronic health record (EHR)
log data were simulated and analyzed, and the performance of various approaches in the framework was compared.

Results: Among the total 130 articles initially identified, 18 met the inclusion and exclusion criteria. A thorough assessment
and analysis of the included articles revealed that K-nearest neighbor, Bayesian network, and decision tree (C4.5) algorithms
were predominantly applied to EHR and network logs with varying input features of health care staff security practices. Based
on the review results, a framework was developed and implemented with simulated logs. The decision tree obtained the best
precision of 0.655, whereas the best recall was achieved by the support vector machine (SVM) algorithm at 0.977. However, the
best F1-score was obtained by random forest at 0.775. In brief, three classifiers (random forest, decision tree, and SVM) in the
two-class approach achieved the best precision of 0.998.

Conclusions: The security practices of health care staff can be effectively analyzed using a two-class approach to detect malicious
and nonmalicious security practices. Based on our comparative study, the algorithms that can effectively be used in related studies
include random forest, decision tree, and SVM. Deviations of security practices from required health care staff’s security behavior
in the big data context can be analyzed with real access logs to define appropriate incentives for improving conscious care security
practice.

(JMIR Med Inform 2021;9(12):e19250)   doi:10.2196/19250
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Introduction

Background
Unlike other sectors, the health care sector cannot afford to
implement stricter control for accessing sensitive health care
information for therapeutic purposes. Despite the recognized
need to provide tighter security measures in controlling access,
there is also the need to strike a balance for allowing legitimate
access to health care data for therapeutic reasons [1,2]. In access
control management in health care, access to personal health
data and personal data filing systems for therapeutic purposes
must be granted following a specific decision based on “the
completed or planned implementation of measures for the
medical treatment of the patient” [3]. Therefore, access must
only be granted to those with official needs [3,4]. While
providing restrictions against unauthorized access, there are
some provisions for following the availability trait of the
confidentiality, integrity, and availability (CIA) triad during
emergency situations. These include the provision for
self-authorization. Self-authorization, or “break-the-glass,” is
a “technical measure which has been established for health
personnel to be able to gain access to personal health data and
personal data as and when necessary” [1]. However, access
through self-authorization must be verified for abuse, and clear
misuse must be followed up as a data breach [3,5].

The challenge remains in detecting misuse over a broad range
of access [1,2]. A broad range of access via self-authorization
results in tones of variant data known as “big data” [6], making
it complex to manually determine legitimate access. However,
in light of the recent increase in data breaches within health
care, it has become necessary to adopt state-of-the-art methods
to determine anomalous access. In the Healthcare Security
Practice Analysis, Modeling, and Incentivization (HSPAMI)
project [7], data-driven and artificial intelligence (AI)
approaches were identified and adopted to aid in modeling and
analyzing health care staff’s security practices in their access
control logs [7]. AI is based on algorithms in computer science
that can be used for analyzing complex data to draw meaningful
patterns and relationships toward decision making [8]. The aim
of this study was to understand anomaly practices in health care
in the context of big data and AI, and to determine the security
practice challenges often faced by health care workers while
performing their duties. The results will provide knowledge to
serve as a guide for finding better approaches to security practice
in health care. However, there are different types of data sources
and AI methods that can be used in this approach [7]. We
therefore adopted a review methodology to first detail various
types of dimensions, including the data sources and AI methods,
which can be adopted in related studies.

According to Verizon, the health care sector globally
experienced approximately 503 data breaches in 2018, which
resulted in the compromise of up to 15 million records [4,9].
This figure was triple the number of data breaches recorded in
2017. In addition, the number of records compromised within
the health care sector in 2019 far exceeded that recorded in 2018
[9]. Unfortunately, more than half of these data breaches were
perpetuated by insiders [9]. The report opined that approximately

83% of the adversaries were motivated by financial gains, 3%
were due to convenience, 3% were due to grudges, and 2% were
a result of industrial espionage. The current situation implies
that the number of data breaches within the health care sector
has surpassed that of the financial sector and almost equals those
of other public sectors.

This situation has raised concerns among relevant stakeholders,
and many are wondering the reasons behind the spike in the
number of data breaches within the health care sector. Some of
these reasons can be easily deduced because health care data
have economic value and as such represent a possible target for
malicious actors [10,11]. Moreover, health care data have
scientific and societal value that makes them very attractive for
cyber criminals. In fact, Garrity et al [12] indicated that patient
medical records are sold for approximately US $1000 on the
dark web. Another reason for data breaches within health care
is the lack of health care personnel. The few health care
personnel are more interested in their core health care duties
and have little time to handle health care information security
issues. This situation provides cyber criminals with the
opportunity to exploit health care systems.

Although there have been improvements in technical measures,
such as firewalls, intrusion detection and prevention systems,
antivirus software, and security governance configurations, the
development of a “human firewall” has not been considered
[13,14]. The “human firewall” refers to the information security
conscious care behavior of insiders [15]. However, this concept
has not received equal attention as devoted to technical
measures, and thus cyber criminals seek to exploit it for easy
access [16]. Health care insiders have access privileges that
enable them to provide therapeutic care to patients; however,
through errors or deliberate actions, they can compromise the
CIA of health care data. It is also possible for an attacker to
masquerade as an insider to compromise health care data through
social engineering and other methods [17,18].

Access control mechanisms within the health care sector are
usually designed with a degree of flexibility to facilitate efficient
patient management [19]. Even though such design
considerations are vital and can meet the availability attribute
of the CIA, they make health care systems vulnerable. This is
because flexibility can be abused by insiders [20]. In addition,
an attacker who could obtain an insider’s access privilege can
exploit this flexibility to have broader access. A successful data
breach could have many consequences such as denial of timely
medical services, corrosion of trust between the patient and
health care providers, breaches to an individual’s privacy [21],
and huge fines to health care providers by national and
international regulatory bodies. The general objective of this
study was to determine an effective way of modeling and
analyzing health care logs. A review was first performed to
retrieve appropriate data sources and their features in addition
to identifying the AI methods that can best be used to determine
irregularities in security practices among health care workers.

Prior Studies
The security practices of health care staff include how health
care professionals respond to security controls and measures
for achieving the CIA goals of health care organizations [2,4,5].
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Health care professionals are required to conduct their work
activities in a security-conscious manner to maintain the CIA
of the health care environment [3]. For instance, borrowing
access credentials could jeopardize the purpose of access control
for authorized users and legitimate access. Additionally, the
inability to understand social engineering scammers’ behavior
can lead to health care data breaches [7].

Various approaches can be adopted to observe, model, and
analyze health care professionals’ security practices. A
perception and sociocultural context can be adopted by
analyzing the security perception, and social, cultural, and
sociodemographic characteristics of health care staff in the
context of their required security practices [7,22]. In addition,
an attack-defense simulation can be used to measure how health
care staff understand social engineering–related tricks.
Furthermore, a data-driven approach with AI methods could be
adopted to understand the security behavior of each health care
professional in the context of big data, since AI is most
appropriate for analyzing complex data sets with high volume,
variety, velocity, and veracity [8]. The findings can then help
decision makers to introduce appropriate incentive methods and
solve issues that hinder sound information security practice
toward enhancing conscious care behavior.

Advances in computational and data science, along with
engineering innovations in medical devices, have prompted the
need for the application of AI in the health care sector [23-25].
This has the potential to improve health care delivery and
revolutionize the health care industry. AI can be referred to as
the use of complex algorithms and software to imitate human
cognitive functions [24-26]. AI involves the application of
computer algorithms in the process of extracting meaning from
complicated data and making intelligent decisions without direct
human input [24,25]. AI is increasingly impacting every aspect
of our lives, and the health care sector is no exception. In recent
years, the health care sector experienced massive AI
deployments in the bid to improve overall health care delivery.
We here rely on the classification of the application of AI in
health care described by Wahl et al [27] to briefly discuss the
deployment of AI in health care.

According to Wahl et al [27], the deployment of AI in the health
care sector has been classified to include expert systems,
machine learning, natural language processing, automated
planning and scheduling, and image and signal processing [27].
Expert systems are AI programs that have been trained with
real cases to execute complicated tasks [28]. Machine learning
employs algorithms to identify patterns in data and learn from
them, and its applications can be grouped into three categories:
supervised learning, unsupervised learning, and reinforcement
learning [25,27]. Natural language processing facilitates the use
of AI to determine the meaning of a text by using algorithms
to identify keywords and phrases in natural language. Automated
planning and scheduling is an emerging field in the use of AI
in health care that is concerned with the organization and
prioritization of the necessary activities to obtain the desired
aim [27]. Image and signal processing involves the use of AI
to train information extracted from a physical occurrence
(images and signals) [27].

The common characteristic of all these applications is the
utilization of massive data that are being generated in the health
care sector to make better informed decisions. For instance, the
collection of data generated by health care staff has been used
for disease surveillance, decision support systems, detecting
fraud, and enhancing privacy and security [29]. In fact, the code
of conduct for the Norwegian health care sector requires the
appropriate storage and protection of access logs of health care
information systems for security reasons [3]. Health care staff’s
access to the network or electronic health records (EHR) leaves
traces of their activities, which can be logged and reconstructed
to form their unique profiles [3,4]. Therefore, appropriate AI
methods can be used to mine such logs to determine the unique
security practices of health care staff. Such findings can support
management in adapting suitable incentivization methods toward
improving security-conscious care behavior in health care.
Therefore, the aim of this study was to explore the appropriate
AI methods and data sources that can be used to observe, model,
and analyze the security practices of health care staff.

HSPAMI is an ongoing research project with one aspect
involving the modeling and analysis of data with AI methods
to determine the security practices of health care staff toward
improving their security-conscious care behavior. In analyzing
health care–related data, there is a need to consider details of
the methods and data sources in view of the unique and critical
nature of the sector. In a related study, Walker-Roberts et al
[30] performed a systematic review of “the availability and
efficacy of countermeasures to internal threats in health care
critical infrastructure.” Among various teams, few machine
learning methods were identified to be used for intrusion
detection and prevention. The methods that were identified are
Petri net, fuzzy logic, k-nearest neighbor (KNN), decision tree
(RADISH system) [30-32], and inductive machine learning
methods [30,31,33]. In a similar way, Islam et al [34] performed
a systematic review on data mining for health care analytics.
Categories such as health care subareas; data mining techniques;
and the types of analytics, data, and data sources were
considered in the study. Most of the data analysis was focused
on clinical and administrative decision-making. The data sources
were mostly human-generated from EHRs. Gheyas et al [35]
also explored related methods in their systematic review and
meta-analysis [35].

Even though the studies of Walker-Roberts et al [30] and Islam
et al [34] were in the health care context, details of the
algorithms and data sources were not considered. For instance,
the features of the data sources and algorithm performance
methods were not deeply assessed in their studies. Additionally,
these studies were general and not specific to health care [35,36],
and therefore the unique challenges within the health care
environment were not considered. To this end, this study
explored AI methods and data sources in health care that can
be efficiently used for modeling and analyzing health care
professionals’ behavior. The terms “health care professionals”
and “health care staff” are used interchangeably in this paper,
which include, but are not limited to, nurses, physicians,
laboratory staff, and pharmacies who access patient records for
therapeutic reasons.
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Scope, Problem Specification, and Contribution
Following the recent increase in data breaches in health care,
our research group is working on the HSPAMI project, which
was initiated to measure the information security practice level
of health care staff [7,22]. The results will help provide better
approaches for incorporating conscious care behavior among
health care staff. The HSPAMI project has already identified
various approaches to include psychosociocultural context attack
and defense simulations in a social engineering context along
with data-driven AI approaches [7].

The main goal is to demonstrate how health care security
practices can be analyzed to determine anomalous and malicious
activities in the context of data-driven and AI approaches.
Therefore, the specific objectives of this study were to identify,
assess, and analyze the state-of-the-art data-driven attributes
and AI methods along with their design strategies and
challenges. A framework for analyzing health care security
practice in the context of data-driven and AI methods was also
developed and evaluated. The broad goal was to enable analysis
of real logs of health care professionals’ security practices in
the context of big data and human-generated data logs.
Therefore, the psychosociocultural context and attack-defense
simulations are beyond the scope of this paper.

Some details of data sources and AI methods that can be used
in this study were not provided in previous related work [30-34],
which raised several questions for our research: Among the
various data sources that are generated by health care staff,
which is the most appropriate to be used in analyzing the
security practice? Which AI methods have been pinpointed to
be suitable for use in modeling and analyzing health care
security practice? What evaluation techniques are most
appropriate in this context, and how were these methods adjusted
to curtail biases amid various access points, such as
self-authorization during emergency care scenarios and the busy
schedules of health care staff? To answer these questions, we
first performed a mapping review [37] toward identifying,
modeling, and analyzing health care staff–generated access logs
and AI methods to enhance security practice. This work
represents an extended version of our previous work, with the
additions being a design and framework evaluation.

Methods

Literature Review
Various types of systematic studies exist [38-41], including a
systematic mapping study, scoping review, and systematic
literature review. Systematic mapping studies review topics
with a broader scope by categorizing the identified research

articles into specific areas of interest. Systematic mapping
studies have general research questions with the objective to
determine research trends or the state-of-the-art studies. By
contrast, the objective of a systematic literature review is to
accumulate data and therefore has a more specific research
focus. To this end, a systematic mapping study was adopted in
this work [38,39]. Based on the results, we developed a
framework that was evaluated with simulated log data.

Although we did not restrict the article search to a specific time
frame, we performed the literature search between June 2019
and December 2019 with the Google Scholar, Science Direct,
Elsevier, IEEE Explore, ACM Digital, Scopus, Web of Science,
and PubMed databases. Different keywords were used, including
“healthcare,” “staff,” “employee,” “information security,”
“behavior,” “practice,” “threat,” “anomaly detection,” “intrusion
detection,” “artificial intelligence,” and “machine learning.” To
ensure a high-quality searching approach, the keywords were
combined using the Boolean functions “AND,” “OR,” and
“NOT.” For instance, the following search string was generated
in PubMed:

((Intrusion[All Fields] AND Detection[All Fields]) OR
(Anomaly[All Fields] AND Detection[All Fields])) AND
(“health”[MeSH Terms] OR “health”[All Fields]) AND
((“artificial intelligence”[MeSH Terms] OR (“artificial”[All
Fields] AND “intelligence”[All Fields]) OR “artificial
intelligence”[All Fields]) OR (“machine learning“[MeSH
Terms] OR (“machine”[All Fields] AND “learning”[All Fields])
OR “machine learning”[All Fields])) AND (“information”[All
Fields] AND Security[All Fields]) AND ((“behavior”[All Fields]
OR “behavior”[MeSH Terms] OR “behavior”[All Fields]) OR
“practice”[All Fields]).

Peer-reviewed articles were considered. The inclusion and
exclusion criteria were developed based on the objective of the
study and through rigorous discussions among the authors.

Basic selection was performed by initially skimming through
the titles, abstracts, and keywords to retrieve records that were
in line with the inclusion and exclusion criteria. Duplicates were
filtered out, and articles that seemed relevant, based on the
inclusion and exclusion criteria, were fully read and evaluated.
Each of the authors independently read and assessed all of the
selected articles and judged either to be included or excluded.
Using the inclusion and exclusion criteria as a guideline,
discrepancies were discussed and resolved among the authors.
Other appropriate articles were also retrieved using the reference
list of accepted literature. Figure 1 shows the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analysis) [42] flowchart of article screening and selection.
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Figure 1. Flowchart of the systematic review process.

Inclusion and Exclusion Criteria
For an article to be included in the review, it had to be related
to anomaly detection or intrusion detection in health care using
AI methods with health care professional–generated access log
data or patterns. Any other article outside the above scope (such
as articles related to medical cyber-physical devices, body area
networks, and similar), along with articles published in
languages other than English, were excluded.

Data Collection and Categorization
The data collection and categorization methods were developed
based on the study objective, and thorough literature reviews
and discussions among the authors. The categories were defined
exclusively to assess, analyze, and evaluate the study objectives,
which are summarized in Table 1.
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Table 1. Data categories and their exclusive definitions.

ExamplesDefinitionCategory

Support vector machine, Bayesian
network

Explicit machine learning methodsType of AIa method

Access location, time, failed login
attempts

Features used by the algorithmType of input

Browser history, network logs, host-

based activity logs, EHRb logs

Type of access log data used in the studyInput sources

XML, comma separated value
(CSV)

File formatsData format, type, size, and data
source

Structured vs unstructuredDefines how the data were preprocessed and how missing and corrupted
input data were handled

Input preprocessing

Intrusion or anomaly detectionContext in which the algorithm was implementedSecurity failures

Login and logout time, average
number of patient records accessed

Type of training set used in training the modelGround truth

Message Digest 5 (MD5), Secure
Hash Algorithm (SHA)-3

Defines the privacy method used to safeguard the privacy rights of indi-
viduals who contributed to the data source

Privacy approach

Specificity, sensitivity, receiver op-
erating characteristic curve

Measures used to assess the accuracy of the studyPerformance metrics or evaluation
criteria

Real data, simulated dataSpecifies whether the data used were synthetic or real dataNature of data sources

aAI: artificial intelligence.
bEHR: electronic health record.

Literature Evaluation and Analysis
The selected articles were assessed, analyzed, and evaluated
based on the categories defined in Table 1. The analysis was
performed on each of the categories (eg, type of AI method,
type of input, input source, preprocessing, learning techniques,
performance methods) to evaluate the state-of-the-art
approaches. Percentages of the attributes of the categories were
calculated based on the total number of counts (n) of each type
of attribute. Some studies used multiple categories; therefore,
the number of counts of these categories exceeded the total
number of articles of these systems presented in the study.

Results

Review Findings

Articles Retrieved
After searching the various online databases, a total of 130
records were initially identified following the guidelines of the

inclusion and exclusion criteria in the reading of titles, abstracts,
and keywords. A further assessment of these articles through
skimming of the objective, method, and conclusion sections led
to an exclusion of 77 articles that did not meet the defined
inclusion criteria. After removing duplicates, 42 articles were
fully read and judged. After full-text reading, a total of 18
articles were included in the study and analysis (Figure 1).

Algorithms
The main findings of the reviewed articles and their related
categorizations such as algorithms, features, and data sources
are shown in Figure 2. The algorithms, features, data sources,
and application domains were the most frequent categorizations
in the review; the study column presents the sources of each of
these categories.

The algorithms that were most commonly used for analyzing
security practice in the review are shown in Table 2. The KNN
method was the most frequently used, followed by the Bayesian
network and C4.5 decision tree.
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Figure 2. Algorithms, features, related data sources, and application domain. KNN: k-nearest neighbor; SVM: support vector machine; EHR: electronic
health record.

Table 2. Algorithms and their respective proportions among the articles included in the review (N=30).

ReferencesStudies, n (%)Algorithm

[43-47]5 (17)K-nearest neighbor

[43,44,48,49]4 (13)Bayesian network

[24,49,50]3 (10)Decision tree (C4.5)

[49,50]2 (7)Random forest

[24,49]2 (7)J48

[49,51]1 (3)Support vector machine

[47]1 (3)Spectral projection model

[47]1 (3)Principal component analysis

[52]1 (3)K-means

[53]1 (3)Ensemble averaging and a human-in-the-loop model

[50]1 (3)Partitioning around Medoids with k estimation (PAMK)

[54]1 (3)Distance-based model

[55]1 (3)White-box anomaly detection system

[50]1 (3)C5.0

[54]1 (3)Hidden Markov model

[56]1 (3)Graph-based

[51]1 (3)Logistic regression

[51]1 (3)Linear regression

[57]1 (3)Fuzzy cognitive maps
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Features
Table 3 shows the unique features identified in the review and

their respective counts and proportions. The features that were
the most frequently used included user ID, date and time
attribute, patient ID, and device identification.

Table 3. Features used in the reviewed articles (N=65).

Count, n (%)Feature

13 (20.0)User identification

11 (16.9)Patient identification

9 (13.8)Device identification

5 (7.7)Access control

11 (16.69)Date and time

4 (6.2)Location

5 (7.7)Service/route

3 (4.6)Actions (delete, update, insert, copy, view)

3 (4.6)Roles

1 (1.5)Reasons

Data Sources
The majority of the data sources were EHR logs (11/18, 61%),
followed by host-based logs (2/18, 11%), network logs (4/18,
22%), and keystroke activities (1/18, 5%).

Performance Methods
Table 4 shows the various types of performance methods that
were identified with their respective counts and proportions;
recall and receiver operating characteristic curve were the most
common metrics applied, whereas F-score and root mean square
error were the least commonly applied.

Table 4. Performance methods used in the reviewed studies (N=25).

Studies, n (%)Performance methods

5 (20)Receiver operating characteristic (ROC) curve

3 (12)Area under ROC curve

5 (20)Recall (sensitivity)

4 (16)Precision

2 (8)Accuracy

3 (12)True negative rate (specificity)

2 (8)F-score

1 (4)Root mean square error

Security Failures
The studies in the review were mostly applied for anomaly
detection (12/18, 67%) and malicious intrusion detection (6/18,
33%).

File Format
Among the 4 articles that reported the file format, 2 (50%) used
comma separated values [43,52] and the other 2 (50%) used the
SQL file format [55,58].

Ground Truth
Eight of the 18 articles included in the review reported the
ground truth, which was established with similarity measures
(3/8, 38%), observed practices (3/8, 38%), and historical data
of staff practices (2/8, 25%).

Privacy-Preserving Data Mining Approach
Privacy-preserving methods adopted in the included studies
were tokenization [43], deidentification [45], and removal of
medical information [24].

Nature of Data Source
The majority of studies (15/18, 83%) used real data for analysis,
with the remaining (3/18, 17%) using synthetic data.

Framework for Analyzing Health Care Staff Security
Practices
Based on the review, a conceptual framework was depicted on
how data-driven and AI methods should be adopted to analyze
logs of EHRs in security practice (see Figure 3). Our review
indicated that a security practice analysis typically reveals the
anomaly or malicious intrusion pattern of health care staff. Our
model therefore has various dimensions such as data sources,
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preprocessing, feature extraction, the application of AI methods,
and possible classes, as shown in Figure 3.

The data sources include the network, EHR, or workstation
logs. These logs are generated based on health care staff
activities in accessing resources such as patients, printers,
medical devices, and physical security systems. The logs go
through the preprocessing phase [25], such as cleaning and
feature selection. The essential features are then selected with
appropriate methods, including filter methods, wrapper methods,
or the combined filter and wrapper approach. Having obtained
the appropriate features, a machine learning method can then
be created, trained, and used to detect patterns of unusual
security practices. The various classes that can be deduced in

this framework include normal, abnormal, significantly
nonmalicious anomaly, and malicious classes. The normal class
includes features that follow the flow of each established access
process without access aberration. The malicious class consists
of features that violate established access flow and may also
include excess access, which exceeds the usual trend of users.
An example includes a doctor who accesses patient records
more than the average daily access, and when the access was
not for therapeutic measures. The anomaly nonmalicious class
includes accesses that violate the established access flow or that
exceed the average daily access of the health care staff; however,
in this case, the accesses were for therapeutic purposes. From
the framework, three access detection methods were identified
for comparison.

Figure 3. Conceptual framework for analyzing the security practices of health care staff. AI: artificial intelligence; EHR: electronic health record.

Comparative Analysis of the Framework
The following three access detection methods were compared:
(1) two-stage classification, (2) three-class classification, and
(3) two-class classification. In the two-stage classification
approach, the log data are classified as normal and anomaly.
The data determined in the anomaly class from the first stage
are further classified into two classes: malicious and
nonmalicious (Figure 4). In the three-class approach, the log
data are classified into normal, nonmalicious anomaly, and

malicious, as shown in Figure 5. In the two-class approach, the
normal and nonmalicious anomaly data are considered as a
single “nonmalicious” category. The log data are then classified
into nonmalicious and malicious classes, as shown in Figure 6.

These three approaches were then compared with nine machine
learning methods: multinomial naive Bayes (NB), Bernoulli
NB, Gaussian NB, KNN, neural network (NN), logistic
regression (LR), random forest (RF), decision tree (DT), and
support vector machine (SVM).
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Figure 4. Flowchart of two-stage detection.

Figure 5. Two-class classification.

Figure 6. Three-class classification.

Simulation of EHR Logs of Health Care Staff Security
Practice
The conceptual framework (Figure 3) provided direction and
guidelines for effective modeling and analysis of health care
staff security practices. We hence simulated 1-year access log

data of a typical hospital information system from January 1,
2019, to December 31, 2019. Inpatient workflow, outpatient
workflow, and emergency care patient workflow were modeled
and used in the simulation of the logs as shown in Figure 7,
Figure 8, and Figure 9, respectively. Five main modules were
included in the simulation of the hospital information system:
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Report, Finance, Patient Management, Laboratory Management,
and Pharmacy Management. In the data simulation setting, we
used 19 departments and 12 roles with a total of 53 employees.
The departments were information technology (3 roles), finance
(1 finance officer, 3 finance support staff), administration (1
head of administration, 2 support staff), pharmacy (3 roles), and
medical laboratory (5 roles). Outpatient departments included
ear-nose-throat (1 doctor, 2 nurses), dentistry (1 dentist, 2
nurses), pediatric unit (1 doctor), orthopedics (1 doctor, 2
nurses), neurology (1 doctor, 2 nurses), gynecology (1 doctor,
2 nurses), endocrinology (1 doctor, 2 nurses), rheumatology (1

doctor, 2 nurses), and cancer (1 doctor, 2 nurses). The inpatient
departments included patient wards and the emergency
department (2 doctors, 7 nurses).

Two types of shifts were used: a regular shift and three 8-hour
shifts. The regular shift is Monday to Friday from 8 AM to 4
PM, whereas the three 8-hour shifts included the following three
shifts every day of the week: (1) shift 1, 6 AM to 2 PM; (2) shift
2, 2 PM to 10 PM; and (3) shift 3, 10 PM to 6 AM (next day).
The numbers of roles and employees in a regular shift and in
the three 8-hour shifts are shown in Table 5.

Figure 7. Inpatient workflow.
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Figure 8. Emergency workflow.
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Figure 9. Outpatient care workflow.
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Table 5. Simulated departments, roles, and staff in a typical hospital.

Roles (number of employees)Department

Head (1), technical support (2)Information technology

Head (1), finance officer (4)Finance

Head (1), administrative assistants (2)Administration

Head (1), laboratory assistants (5)Laboratory

Head (1), pharmacy assistant (2)Pharmacy

Outpatient

Doctor (1), nurse (2)Ear-nose-throat

Doctor (1), nurse (2)Optometry

Doctor (1), nurse (2)Dentistry

Doctor (1), nurse (2)Pediatrics

Doctor (1), nurse (2)Orthopedics

Doctor (1), nurse (2)Neurology

Doctor (1), nurse (2)Gynecology

Doctor (1), nurse (2)Endocrinology

Doctor (1), nurse (2)Rheumatology

Doctor (1), nurse (2)Cancer

Inpatient

Doctor (1), nurse (2)Ward 1

Doctor (1), nurse (2)Ward 2

Doctor (1), nurse (2)Ward 3

Three 8-hour shift

Doctor (2), nurse (2)Emergency

Nurse (2)Ward 1

Nurse (2)Ward 2

Nurse (2)Ward 3

Based on the flows (see Figure 6 for an example), we simulated
the data and recorded the logs. The logs are considered to be
normal data (nonanomaly). We also simulated some abnormal
data. The abnormal data were divided into two categories:
nonmalicious and malicious. Nonmalicious abnormal data were
generated by simulating the “break-the-glass” scenario (eg,
access by a doctor from another department due to an
emergency) [2], whereas malicious abnormal data were
generated by simulating attackers that are assumed to have

compromised some users’ credentials and used them to access
patient records (eg, identity theft). In the latter category, the
attacker will access more data than legitimate users and often
not follow the flows. From this data simulation, 281,886 logs
were created with 273,094 normal access, 7647 nonmalicious
abnormal access, and 1145 malicious access scenarios. There
are 21 fields recorded in this data simulation, as displayed in
Table 6.
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Table 6. Field attributes of simulated access logs of electronic health records.

DescriptionAttribute

The time the employee starts to access the patient record: format=day/month/year, hours:minutes:secondsstartAccessTime

The time the employee ends the patient record access: format=day/month/year, hours:minutes:secondsendAccessTime

The identification number of the employee who accesses the patient record (eg, record4roleID)employeeID

The role of the employee who accesses the patient recordroleID

The identification number of the patient whose record is being accessed by the employeepatientID

The identification number of the activity (1: Create, 2: Read, 3: Update, 4: Delete)activityID

The department of the employee who accesses the patient recordemployeeDepartmentID

The organization of the employee who accesses the patient recordemployeeorganizationID

The operating system of the computer used by the employee to access the patient recordosID

The identification number of the computer used by the employee to access the patient recorddeviceID

The browser used by the employee to access the patient recordbrowserID

The IP address of the computer used by the employee to access the patient recordipAddress

The reason for the employee accessing the patient record (optional)ReasonID

The identification of the shift the employee belongs to on the day of accessing the patient recordshiftID

The start time of the shift the employee belongs to on the day of accessing the patient recordshiftStartDate

The end time of the shift the employee belongs to on the day of accessing the patient recordshiftEndDateTime

The identification code of the activity (C: Create, R: Read, U: Update, D: Delete)CRUD

Access control statusAccess Control Status

The identification of the session accessSessionID

Warning for unusual accessAccessPatient_Warnings

The module accessed by the employeeModule Used

Feature Extraction
To develop the anomaly detection model, including the role
classification model, some features were extracted. Each log
entry represents a single transaction for a user. To analyze the
user activity, the logs from each user were consolidated into a
particular period. Every single activity of Doctor A would
represent meaningless data points that would be difficult to
analyze separately. However, by observing several activities of
Doctor A for a particular period, it is easier to perform the
anomaly detection task. We processed the log data into 24-hour
blocks so that an instance represents the cumulative activity of
a user in a single day. As a result, 25,151 instances were

extracted from the raw logs, with 24,223 of them being
considered normal, 585 considered nonmalicious anomaly, and
343 labeled malicious. Any access that was not for the intention
of providing therapeutic functions constitutes malicious access
[59]. Therefore, in the logs, malicious data represent all
instances that had at least one malicious log access in a single
day. The normal data represent all instances in which all of the
accesses to the logs are legitimate, and the nonmalicious
anomaly data represent the instances that had at least one
abnormal log access, but none of them was malicious. These
instances were then transformed into features for malicious
access detection. Table 7 shows the features extracted from the
data set.
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Table 7. Features and their related descriptions.

DescriptionName of feature

Number of created transactions in a single dayNumber of create

Number of read transactions in a single dayNumber of reads

Number of updated transactions in a single dayNumber of updates

Number of deleted transactions in a single dayNumber of deletes

Number of accesses to patient records in a single dayNumber of patient records

Number of unique patients’ records accessed in a single dayNumber of unique patients

Number of the types of modules in the information system accessed in a single dayNumber of modules

Number of transactions in the report modules in a single dayNumber of report modules

Number of finance modules accessed in a single dayNumber of finance modules

Number of transactions in the patient module in a single dayNumber of patient modules

Number of transactions in the laboratory module in a single dayNumber of lab modules

Number of transactions in the pharmacy module in a single dayNumber of pharmacy modules

Number of transactions from outside the hospital network in a single dayNumber of outside access

Number of browser types used in a single dayNumber of other browsers

Number of Chrome uses in a single dayNumber of Chrome

Number of Internet Explorer uses in a single dayNumber of Internet Explorer

Number of Safari uses in a single dayNumber of Safari

Number of Firefox uses in a single dayNumber of Firefox

Number of other browsers used in a single dayNumber of browsers

Performance Evaluation for Malicious Detection
For malicious access detection, several measurements, including
precision, recall, and F-measures, were identified and used to

evaluate the performance. All measurements were calculated
based on the confusion matrix displayed in Table 8.

Table 8. Confusion matrix.

PredictedActual

NonmaliciousMalicious

False negativeTrue positiveMalicious

True negativeFalse positiveNonmalicious

True positive (TP) and true negative (TN) are the respective
number of features that were correctly predicted. TP represents
the malicious data that were correctly predicted as malicious,
whereas TN represents the nonmalicious data that were correctly
predicted as nonmalicious. False positive (FP), also often called
the type I error, is the number of nonmalicious data incorrectly
predicted as malicious, and false negative (FN), or the type II
error, represents the malicious data incorrectly predicted as
nonmalicious. The following are the formulas for each
measurement:

Precision=TP/TP+FP (1)

Recall=TP/TP+FN (2)

F1=2×([precision×recall]/[precision+recall]) (3)

Fβ=(1+β2)(precision×recall)/([β2×precision]+recall)
(4)

Equation 3 is the standard F-score formula where precision and
recall have the same weight. If we want to give heavier weight
to either precision or recall, we can use equation 4. For any
positive real number β, equation 4 is the general F-measure
formula where recall is considered to be more important than
precision by a weight of β [60]. In this work, we also used the
F0.5-score and F2-score. F0.5-score means that precision is
considered to be two times more important than recall. In
contrast, F2-score means that recall is considered to be two times
more important than precision. To compute the F0.5-score, the
β value was substituted with 0.5, whereas the F2-score was
calculated by replacing the β value with 2.

Usually, automatic malicious behavior detection is used as a
filter to narrow down the data for further manual investigation.
In this case, high recall is preferred so that most of the actual
malicious access will not be missed. Therefore, F2 is the better
measure for this case. However, if we want to use the result
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from automatic malicious behavior detection as the final
decision without further manual investigation, high precision
is preferred over high recall. By using a high-precision method,
almost all of the banned accesses are actually malicious. In
contrast, if we use an algorithm that prefers high recall as the
final decision-maker, we may ban some legitimate accesses that
are mistakenly considered fraudulent. In this case, F1 is the
better measure. However, the latter case is rarely applied in the
real world since malicious behavior detection is mainly used
for a decision support system before further manual
investigation.

In this study, we used the logs from January to July as training
data, whereas data from August to December were used for
testing. The training data were used to train the role
classification model, and then this model was used to detect

anomalies based on the two proposed approaches. The training
data contained a total of 14,558 instances with 13,977 normal
instances, 339 nonmalicious anomaly instances, and 242
malicious instances. The testing data consisted of a total of
10,593 instances, with 10,246 normal instances, 246
nonmalicious anomaly instances, and 101 malicious instances.

Experimental Results
The simulation results are summarized in Table 9 and Table 10.
Table 9 shows the anomaly detection results from the first stage
of two-stage malicious detection. Based on the result, the DT
algorithm obtained the best precision (0.655), while the best
recall was achieved by SVM (0.977). However, the best
F1-score was obtained by RF (0.775). Therefore, the result that
was used in the second stage was that obtained from the RF
method.

Table 9. Anomaly detection results from the first step of two-stage malicious detection.

F1RecallPrecisionClassifier

0.1510.1070.256Multinomial NBa

0.3910.8240.256Bernouilli NB

0.3620.6180.256Gaussian NB

0.7400.8900.634KNNb

0.7700.9410.651NNc

0.3870.9760.242LRd

0.7750.9340.662RFe

0.7730.9240.665DTf

0.3990.9770.250SVMg

aNB: naive Bayes.
bKNN: k-nearest neighbor.
cNN: neural network.
dLR: logistic regression.
eRF: random forest.
fDT: decision tree.
gSVM: support vector machine.

Table 10 shows the malicious detection results using three
approaches. The two-class approach tended to have better
performance than the other two approaches. The best precision
in the two-stage approach was obtained by LR with a perfect
value (1.00), and KNN also had perfect precision in the
three-class approach. Three classifiers (RF, DT, and SVM) in
the two-class approach achieved the best precision of 0.998.

Furthermore, the best recall was obtained by NN, RF, and DT
in the three-classes approach, and by Bernoulli NB and Gaussian
NB in both the three-class and two-class approaches. The best

F1 score was obtained by LR in the two-stage approach, SVM
in the three-class approach, and Bernoulli NB in the two-class
approach. The highest F0.5 score was achieved by LR, SVM,
and Bernoulli NB in the two-stage, three-class, and two-class
approach, respectively. Furthermore, NN and DT achieved the
best F2 score in the two-stage approach, SVM had the best F2

score in the three-class approach, and Bernoulli NB had the best
F2 score in the two-class approach. Overall, Bernoulli NB with
the two-class approach achieved the best F1, F0.5, and F2 scores.
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Table 10. Malicious detection results using three approaches.

Two classesThree classesTwo stageClassifier

Multinomial NBa

0.9580.9310.974Precision

0.8310.8020.752Recall

0.8900.8620.849F1

0.9300.9020.920F0.5

0.8540.8250.788F2

Bernoulli NB

0.9970.8240.977Precision

0.8810.8810.832Recall

0.9350.8520.898F1

0.9710.8350.944F0.5

0.9020.8690.857F2

Gaussian NB

0.9940.6950.977Precision

0.8810.8810.832Recall

0.9340.7770.898F1

0.9690.7260.944F0.5

0.9010.8360.857F2

KNNb

0.9971.0000.757Precision

0.7020.7030.832Recall

0.8240.8260.792F1

0.9200.9220.771F0.5

0.7460.7470.816F2

NNc

0.9980.9770.977Precision

0.8510.8510.842Recall

0.9190.9100.904F1

0.9650.9490.947F0.5

0.8770.8740.866F2

LRd

0.9980.9661.000Precision

0.8410.8420.832Recall

0.9130.8990.908F1

0.9620.9380.961F0.5

0.8680.8640.861F2

RFe

0.9980.9660.966Precision

0.8310.8320.842Recall

JMIR Med Inform 2021 | vol. 9 | iss. 12 |e19250 | p.55https://medinform.jmir.org/2021/12/e19250
(page number not for citation purposes)

Yeng et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Two classesThree classesTwo stageClassifier

0.9070.8940.899F1

0.9590.9350.938F0.5

0.8600.8550.864F2

DTf

0.9980.9540.977Precision

0.8410.8220.842Recall

0.9130.8830.904F1

0.9620.9240.947F0.5

0.8680.8450.866F2

SVMg

0.9980.9780.988Precision

0.8610.8610.832Recall

0.9240.9160.903F1

0.9670.9520.952F0.5

0.8850.8820.859F2

aNB: naive Bayes.
bKNN: k-nearest neighbor.
cNN: neural network.
dLR: logistic regression.
eRF: random forest.
fDT: decision tree.
gSVM: support vector machine.

Discussion

Principal Findings
The main purpose of this study was to identify and assess the
effectiveness of AI methods and suitable health care
staff–generated security practice data for measuring the security
practice of health care staff in the context of big data. The main

review findings are shown in Table 11. Eighteen studies met
the inclusion and exclusion criteria. Recently, a related review
for countermeasures against internal threats in health care also
identified five machine learning methods that were fit for such
measures [30]. This suggests that the adoption of AI methods
for modeling and analyzing health care professional–generated
security practice data is still an emerging topic of academic
interest.
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Table 11. Principal findings of the review.

Most usedCategory

KNNa and Bayesian networksAlgorithms

User IDs, patient IDs, device ID, date and time, location, route, and actionsFeatures

EHRb and network logsData sources

Anomaly detectionSecurity failures

True positive, false positive, false negative, ROCc curve, AUCdPerformance methods

CSVeData format

Real data logsNature of data sources

Similarity measures and observed dataGround truth

Tokenization and deidentificationPrivacy preserving approaches

aKNN: k-nearest neighbor.
bEHR: electronic health record.
cROC: receiver operating characteristic.
dAUC: area under the receiver operating characteristic curve.
eCSV: comma separated value.

AI Methods
As shown in Tables 2 and 11, various algorithms were identified
in the study, but the most used methods were KNN and NB
algorithms. KNN is a supervised learning–based classification
algorithm [44], which learns from labeled data. The KNN then
tries to classify unlabeled data items based on the category of
the majority of the most similar training data items known as
K. The similarity between two data items in KNN can be
determined according to the Euclidean distance of the various
respective feature vectors of the data items [61]. NB is a
probabilistic classifier algorithm based on the assumption that
related pairs of features used for determining an outcome are
independent of each other and equal [44]. There are two
commonly used methods of NB for classifying text: multivariant
Bernoulli and multinomial models. KNN and NB algorithms
have been more commonly used based on their comparatively
higher detection accuracy. For instance, in an experimental
assessment of KNN and NB for security countermeasures of
internal threats in health care, both models showed over 90%
accuracy with NB having a slight advantage over KNN (94%
vs 93%). In a related study [30], the KNN method was found
to have a higher detection rate with high TP rates and low FP
rates.

The major issue with KNN in the context of health care staff
security–generated data is the lack of appropriate labeled data
[24,53,62]. Within the health care setting, emergencies often
dictate needs. In such situations, broader access to resources is
normally allowed, making it challenging for reliable labeled
data [24,53,62]. Therefore, in adopting KNN for empirical
studies, the availability of appropriate labeled data should be
considered; however, in the absence of labeled data,
unsupervised clustering methods such as K-means clustering
could also be considered [26].

Input Data
The input data that were mostly used in the reviewed studies
include EHR logs and network data. Yeng et al [4] analyzed
observational measures toward profiling health care staff
security practices, and also identified various sources, including
EHR logs, browser history, network logs, and patterns of
keystroke dynamics [4]. Most EHR systems use an emergency
access control mechanism known as “break-the-glass” or
self-authorization” [1,2]. This enables health care staff to access
patients’ medical records during emergency situations without
passing through conventional procedures for access
authorization. A study [2] into access control methods in
Norway revealed that approximately 50% of 100,000 patient
records were accessed by 12,298 health care staff (representing
approximately 45% of the users) through self-authorization. In
such a scenario, EHR remains a vital source for analyzing
deviations of required health care security practices.

Ground truth refers to the baseline, which is often used for
training the algorithms [63]. The detection efficiency of the
algorithms can be negatively impacted if the accuracy of the
ground truth is low. As shown in Table 11, various
methods—such as similarity measures, observed data, and
historical methods—have been used. A similarity measure
compares security practices with those of other health care
professionals who have similar security practices. The observed
measure is a control approach of obtaining the ground truth,
whereby some users were observed to conduct their security
practices under supervised, required settings [49]. However,
the historical data have mainly relied on past records with a
trust that the data are sufficiently reliable for the training set.
These methods can be assessed for adoption in related studies.

Features and Data Format
EHRs contain most of the features that were identified in this
review, as shown in Table 3. Features such as patient ID, actions,
and user ID are primary features in EHR logs. The users’actions
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such as deletion, inserting, and updating, and various routes
such as diagnosis, prescriptions, and drug dispensing can be
tracked in EHR logs [2]. Guided with these findings, the
simulated logs contained such attributes and features.
Additionally, the simulation of the attributes of logs was also
based on the security requirements of the EHRs of Norway
[3,4,64,65]. Eventually, a total of 21 attributes and 19 features
were included in the simulated logs, as shown in Tables 6 and
7, respectively.

Security Failures and Privacy-Preserving Log Analysis
The application of AI methods to analyze big data generated
by health care professional security practice is a reactive
approach. With such approaches, the primary aim is to determine
deviations or outliers and maliciousness in health care security
practices. Anomaly in this work refers to security practices in
the access logs that deviate from established security and privacy
policies in accessing patient records. For instance, health care
workers could be required to access patient records if the health
care staff is responsible for the patient throughout their shift
and for therapeutic functions. However, it becomes abnormal
if the health care staff access patient records outside of their
shift. Additionally, if a patient’s records are accessed when the
patient has not registered for a visit to the hospital, this can also
be considered abnormal. Furthermore, if health care staff are
accessing patients’ records more than usual, this also raises
abnormal concerns, although some anomalous access could be
for therapeutic purposes and not with ill intentions. However,
access that is not for therapeutic functions is described in this
work as malicious. A greater proportion of the algorithms were
applied for anomaly detection (67%). The detection of anomaly
can clearly help in identifying the security practices that deviate
from established security policies. However, Rostad and Edsberg
[2] found that irregular access to patient records through
self-authorization tended to be the normal security practice. An
EHR system where a lot of access does not follow the
established flow can make it unfeasible to manually track access
with malicious intent [2]. Processing that incorporates the
detection of malicious access, including intrusion detection,
rather than merely detecting outliers could be an effective
method of analyzing the security practice in the logs. Therefore,
the identified 33% intrusion detections in the review were
combined with maliciousness for the simulation since the
outcome is to circumvent security requirement in both cases.

Privacy preservation in data mining provides a method to
efficiently analyze data while shielding the identifications of
the data subjects in a way that respects their right to privacy
[66]. In the review, tokenization [43], deidentification [45], and
removal of medical information [24] were some methods
adopted to preserve privacy. The application of
privacy-preserving methods in analyzing log data is crucial
since health care data are classified among the most sensitive
personal data [67]. Additionally, privacy-preserving methods
need to be adopted in compliance with various regulations such
as the General Data Protection Regulation [68]. Based on these
findings from the review, a roadmap was drawn as a framework
for empirical analysis of security practice in the big data context.

Research Implication and Practice
In this work, a comprehensive review was performed in security
practice analysis, focusing on the use of AI methods to analyze
logs of health care staff. Various AI algorithms, data sources,
ground truth, features, application domain data file format, and
nature of data sources were identified, analyzed, and modeled.
To the best of our knowledge, this is the first time such a study
has been systematically performed, along with development of
a model and practical assessment of the model with simulated
logs for future analysis with actual health care logs. In real log
analysis, essential privacy measures such as tokenization and
deidentification can be adopted.

Based on the review, a concept was established (Figure 3) on
how data-driven and AI methods should be adopted to analyze
the logs of EHRs in security practice. The concepts (two-stage,
two-class, and three-class) were implemented and their
performance was assessed with simulated logs. The attributes
of the logs were comprehensive based on the review, which is
another major contribution of this study. In the space of
supervised learning, our findings pinpoint the suitable algorithms
and classification approaches that should be adopted for
effective analysis of health care security practices.

Overall, the results of the simulation (Tables 9 and 10) showed
that it is easier to differentiate between malicious and
nonmalicious access than to distinguish between normal and
nonmalicious abnormal access, which is mainly evident from
the results of the two-stage approach. The performances of all
classifiers in the second stage were far better than those in the
first stage. This could also explain why the two-class approach
was generally better than the two-stage and three-class
approaches. Although the simulated data exhibited good
performance with these methods, it is important to recognize
that simulated data vary from real data; in particular, real data
can be noisier and tend to have an adverse impact on a method’s
performance [25]. In the application of real data in this
framework, effective preprocessing must be carried out toward
reducing the noise and its related consequences.

Conclusion
Based on the galloping rate of data breaches in health care,
HSPAMI was initiated to observe, model, and analyze health
care staff security practices. One of the approaches in HSPAMI
is the adoption of AI methods for modeling and analyzing health
care staff–generated security practice data [4,16]. This study
was then performed to identify, assess, and analyze the
appropriate AI methods and data sources. Out of 130 articles
that were initially identified in the context of human-generated
health care data for security measures in health care, 18 articles
were found to meet the inclusion and exclusion criteria. After
assessment and analysis, various methods such as KNN, NB,
and DT were found to have been mainly applied on EHR logs
with varying input features of health care staff security practices.
A framework was therefore developed and practically assessed
with simulated logs based on the review, toward analyzing real
EHR logs.

Based on the results, for anomaly detection, DT algorithms
obtained the best precision of 0.655, whereas the best recall was
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achieved by SVM at 0.977. However, the best F1-score was
obtained by RF at 0.775. In brief, three classifiers (RF, DT, and
SVM) in the two-class approach achieved the best precision of
0.998. Moreover, for malicious access detection, LR with the
two-stage approach and KNN with the three-class approach
obtained perfect precision (1.00), and the best recall was
obtained by Bernoulli NB and Gaussian NB in both the
three-class and two-class approaches with a value of 0.881.
Furthermore, the best F1 score, F0.5 score, and F2 score for

malicious access detection were achieved by Bernoulli NB using
the two-class approach with values of 0.935, 0.971, and 0.902,
respectively. These methods can therefore be used in analyzing
health care security practice toward finding incentive measures
for information security compliance in the health care sector.
This study covered only supervised learning where labeled data
were used. Future work is therefore required using unsupervised
learning methods in analyzing logs that do not have labeled
data.
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Abstract

The adenoma detection rate is the constant subject of research and the main marker of quality in bowel cancer screening. However,
by improving the quality of endoscopy via artificial intelligence methods, all polyps, including those with the potential for
malignancy, can be removed, thereby reducing interval colorectal cancer rates. As such, the removal of all polyps may become
the best marker of endoscopy quality. Thus, we present a viewpoint on integrating the computer-aided detection (CADe) of polyps
with high-accuracy, real-time colonoscopy to challenge quality improvements in the performance of colonoscopy. Colonoscopy
for bowel cancer screening involving the integration of a deep learning methodology (ie, integrating artificial intelligence with
CADe systems) has been assessed in an effort to increase the adenoma detection rate. In this viewpoint, a few studies are described,
and their results show that CADe systems are able to increase screening sensitivity. The detection of adenomatous polyps, which
are associated with a potential risk of progression to colorectal cancer, and their removal are expected to reduce cancer incidence
and mortality rates. However, so far, artificial intelligence methods do not increase the detection of cancer or large adenomatous
polyps but contribute to the detection of small precancerous polyps.

(JMIR Med Inform 2021;9(12):e25328)   doi:10.2196/25328

KEYWORDS

artificial intelligence; colonoscopy; adenoma; real-time computer-aided detection; colonic polyp

Introduction

Adenomatous polyps are associated with a potential risk of
progression to colorectal cancer (CRC). The adenoma detection
rate (ADR) is regarded as an important marker of the quality
of inspection in colonoscopy. The identification and removal
of adenomatous polyps are considered to be important in CRC
prevention [1,2]. More recently, computer-aided detection
(CADe) tools that incorporate a 3D fully convolutional network
have been developed to aid with colonoscopy screening for
CRC. Deep learning methodologies, whereby a programmer
teaches a computer which features to focus on, have been
developed, thus allowing artificial intelligence (AI) to be
integrated during colonoscopy [3,4].

CADe Tools for Colonic Cancer: The
Studies

Repici et al [3] have presented results on their evaluation of the
efficacy of integrating the CADe of colonic polyps with
high-accuracy, real-time colonoscopy. This provides a unique
opportunity to obtain real-time feedback for informing an
endoscopist about the quality of a live endoscopy.

In Repici et al’s [3] study, 685 individuals were randomized,
and the authors reported a significantly higher ADR in the CADe
group. This appears to confirm the findings of Wang et al [4],
who enrolled 1058 patients into their first prospective
randomized controlled trial. Both studies reported a significantly
higher mean number of adenomas and nonpolypoid lesion
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detection rate in the CADe group than those in the control group
[3,4].

A real-time automatic detection system that uses deep neural
networks was trialed in Italy, and it achieved a high ADR
(CADe group: 54.8%; control group: 40.4%) [3]. However, a
much lower ADR was reported for both groups (CADe group:
29.1%; control group: 20.3%) in Wang et al’s [4] study, but
the mean age of the participants in this Chinese study was 49.94
years (SD 13.79 years) in the control group and 51.07 years
(SD 13.15 years) in the CADe group [4]. This may also be
explained by the observation that the overall prevalence of
adenomas and CRC is lower in mainland China than in Europe
and the United States [5]. Comparing these studies is difficult
however, as in the Repici et al [3] study, the patients’ mean age
was considerably higher (mean 61.32 years, SD 10.2 years). In
their study, a significantly higher number of diminutive
adenomas and adenomas that were 6 to 9 mm in diameter were
detected in the CADe group, regardless of the adenomas’
location or morphology [3]. In the Wang et al [4] study, CADe
helped to significantly increase the detection of adenomas in
colonic segments (ie, from the hepatic flexure to the
rectosigmoid junction), but the CADe technology appeared to
be the most effective at detecting adenomas in the transverse
colon. A further analysis revealed that the higher ADR in the
CADe group was mainly due to an increase in the detection of
diminutive adenomas; there were no significant differences
among large ADRs [4].

Recently, a Chinese cross-sectional study [5] reported a higher
ADR for the proximal colon compared to that for the distal
colon, but this difference was not observed in the Wang et al
study [4]. However, this difference was observed by Repici et
al’s [3] team. The ratio of precancerous polyps located in the
proximal colon to precancerous polyps in the distal colon is
another suggested measure of performance that may be used to
confirm the high quality of a clearing colonoscopy [6].

Repici et al’s [3] Study Limitations

The six experienced endoscopists in the Repici et al [3] study
had over 2000 screening colonoscopies under their belts. We
do not know if more experienced endoscopists—those who have
performed more than 10,000 colonoscopies—would confirm
Repici et al’s [3] results. Moreover, the endoscopists were
required to adhere to a minimum of 6 minutes for inspection;
their mean withdrawal time was around 7 minutes [3] (the
withdrawal time was a little shorter in Wang et al’s [4] study).

The endoscopists’ withdrawal techniques did not meet the
criteria for aspirational withdrawal time (≥10 minutes) that are
present in the European Society for Gastroenterology guidelines
[1] and the British Society of Gastroenterology guidelines [2].
There is evidence that a shorter withdrawal time is associated
with a lower ADR and a higher incidence of postcolonoscopy
CRC and that a longer withdrawal time increases the ADR [1,2].
The exact mechanism by which withdrawal time impacts the
risk of postcolonoscopy CRC and its impacts on the ADR are
not well known, but we can hypothesize that withdrawal time
affects careful colonic mucosal inspection.

The Future of Bowel Cancer Screening

Endoscopists’ withdrawal techniques and specified right colon
withdrawal times correlate with higher levels of polyp detection
[7]. Therefore, a considerable challenge lies ahead of those who
wish to use the detection all polyps (via AI methods) as a new
independent marker. Further research is needed to determine
whether this marker is more optimal than the advised
aspirational withdrawal time (≥10 minutes) in current
colonoscopy guidelines or the ADR. Additionally, other
interesting questions that have arisen are whether the withdrawal
time is a better marker than the ADR and whether these markers
are surrogate markers for the detection of all polyps that are
monitored via AI. Originally, the ADR was defined as the
percentage of patients aged ≥50 years who underwent primary
screening colonoscopy for the first time and had 1 or more
conventional adenomas [1,2].

The adenoma miss rate varies among endoscopists who achieve
the same ADRs, and a significant difference in adenoma miss
rates has been reported even among endoscopists who achieve
high ADRs [8]. A reduction in the number of all colonic
adenomas may be recognized as a complementary benchmark
of cancer protection after clearing colonoscopies. Therefore,
we assume that the removal of all polyps with the potential for
carcinogenesis comprises an independent marker of quality that
is relevant to clearing colonoscopies, and AI may be helpful for
assessing this goal. Thus, as a support for endoscopists who
have not developed the highest quality skills, AI creates a new
opportunity, especially after the end of colonoscopy training.

Further studies are required to determine whether AI is of benefit
to endoscopists who are more experienced than those in Repici
et al’s [3] study. Our personal experience reveals that using AI
results in the increased incidence of the overdiagnosis of polyps
with little or no malignant potential. It is important to not accept
as a given that the utility offered by AI-assisted colonoscopy
in detecting diminutive polyps is of definite value overall. It is
possible that as AI-assisted colonoscopy increases the number
of diminutive polyps that are detected, the time taken to
complete a colonoscopy also increases, as these polyps must
be inspected and removed. This may in turn increase the costs
associated with colonoscopy. Within health economies that are
constrained by limited resources, AI-assisted colonoscopy may
have the unintended consequence of reducing the amount of
benefits that are provided to the population as a whole by
reducing access to colonoscopy. Long-term outcome studies
must be conducted to determine how beneficial this new
technology may be, regardless of how exciting it appears to be
at first glance.

Conclusion

So far, we know that AI methods do not increase the detection
of large adenomas or cancer. The contribution of small
adenomas, which have been increasingly detected via
AI-assisted colonoscopy, to future CRC risk is debatable.
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Abstract

Background: Pharmacovigilance and safety reporting, which involve processes for monitoring the use of medicines in clinical
trials, play a critical role in the identification of previously unrecognized adverse events or changes in the patterns of adverse
events.

Objective: This study aims to demonstrate the feasibility of automating the coding of adverse events described in the narrative
section of the serious adverse event report forms to enable statistical analysis of the aforementioned patterns.

Methods: We used the Unified Medical Language System (UMLS) as the coding scheme, which integrates 217 source
vocabularies, thus enabling coding against other relevant terminologies such as the International Classification of Diseases–10th
Revision, Medical Dictionary for Regulatory Activities, and Systematized Nomenclature of Medicine). We used MetaMap, a
highly configurable dictionary lookup software, to identify the mentions of the UMLS concepts. We trained a binary classifier
using Bidirectional Encoder Representations from Transformers (BERT), a transformer-based language model that captures
contextual relationships, to differentiate between mentions of the UMLS concepts that represented adverse events and those that
did not.

Results: The model achieved a high F1 score of 0.8080, despite the class imbalance. This is 10.15 percent points lower than
human-like performance but also 17.45 percent points higher than that of the baseline approach.

Conclusions: These results confirmed that automated coding of adverse events described in the narrative section of serious
adverse event reports is feasible. Once coded, adverse events can be statistically analyzed so that any correlations with the trialed
medicines can be estimated in a timely fashion.

(JMIR Med Inform 2021;9(12):e28632)   doi:10.2196/28632

KEYWORDS

natural language processing; deep learning; machine learning; classification

Introduction

Background
Modern health care is associated with increased costs and
broad-reaching variations in care and outcomes across the global
population. The provision of evidence-based health care is a

critical priority for users, providers, and policy makers alike.
The systematic and high-quality conduct of clinical trials is
critical for the development of clinical guidance to inform
evidence-based practice. Pharmacovigilance and safety reporting
are among the most important aspects of the conduct of clinical
trials. This is relevant to all clinical trials in which the benefit
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or harm must be fully established before any intervention or
medicinal product is adopted.

Pharmacovigilance and safety reporting provide the basis for
ensuring clinical trial participant safety and good research
practice. It involves processes for monitoring the use of
medicines or interventions in clinical trials. It has a critical role
in the identification of previously unrecognized adverse events
or changes in the patterns of adverse events. It is also relevant
to the assessment of the risks and benefits of medicines or
interventions to determine what action, if any, is needed to
improve their safe use.

An adverse event is any untoward medical occurrence in a
participant to whom a medicinal product has been administered,
including occurrences that are not necessarily caused by or
related to the administered product. A serious adverse event
(SAE) is any untoward medical occurrence that, at any dose,
results in death, is life-threatening, requires inpatient
hospitalization or causes prolongation of existing hospitalization,
results in persistent or significant disability or incapacity, or
comprises a congenital anomaly or birth defect. Early detection
of unknown adverse events, reactions, interactions, and an
increase in the frequency of (known) adverse events is a key
element of the pharmacovigilance and safety process. Provision
of up-to-date information on adverse events to health care
professionals, researchers, and regulatory bodies contributes to
the assessment of benefit, harm, effectiveness, and risk of the
intervention, thus advancing their safe, rational, and more
effective (including cost-effective) use.

In multicenter noncommercial clinical trials conducted in the
United Kingdom, the SAE reporting requirements are detailed
in the trial protocol, and the principal investigators at National
Health Service sites are responsible for reporting SAEs to the
coordinating clinical trial unit (CTU) for an assessment of the
seriousness, causality, and expectedness as delegated by the
clinical trial sponsor. An SAE report includes an event term
and additional signs and symptoms in a narrative. The narrative
is reported by a physician during their medical assessment of
the event. The report is then reviewed by a central CTU reviewer
to assess any potential causal relationship with the trial drug.
Each narrative is reviewed as a single report. The narratives are
typically received from sites as paper records. These are logged
electronically in the safety databases by the CTU
pharmacovigilance team for the relevant national competent
authorities (eg, the UK Medicines and Health Care Products
Regulatory Agency or European Medicines Agency). The
reports are searchable on request and subject to appropriate
regulatory permissions. There is now a clear recognition of the
potential for artificial intelligence in safety case management
to identify relationships and signals [1]. Although these
approaches may be implemented in commercial settings and
within competent authorities, such methods for classifying and
categorizing data are not yet standardized or explicit across
noncommercial pharmacovigilance settings.

It is possible that the narrative contains additional adverse events
or toxicities that are not coded as additional events and are
captured in the narrative only. However, there is no mechanism
for the detection of safety signals across individual reports or

individual trials and, thus, there is no possibility for early
detection of worrying trends. This is particularly the case for
toxicities for which reconciliation with the clinical database
would be advantageous. Such a tool would facilitate the
cross-checking of toxicities recorded in the narrative of the SAE
form with those recorded in the trial database, which is currently
only feasible if automated. Although these approaches may be
used in commercial trial settings, they would not always be used
in the public domain simply because of the nature of the drug
licensing pathway.

This study seeks to use text mining to automatically identify
and code adverse events from the narrative sections of SAE
reports in clinical trials of investigational medicinal products
coordinated by a noncommercial CTU, with the aim of
unlocking narrative evidence for further statistical analysis.
Although such an analysis is beyond the scope of this study, it
would serve to monitor the patterns of adverse events at the
cohort level rather than singular adverse events. Owing to their
narrative nature, such an analysis cannot be conducted directly
on the content of SAE reports.

Related Work
Text mining has been used to identify adverse events from a
variety of data sources, including spontaneous reporting systems,
medical literature, electronic health records, and user-generated
content on the internet [2]. The problem of mining adverse
events in text has been approached from different angles. Most
commonly, it has been defined as a text classification problem,
where a piece of text, either an entire document or its part (eg,
an individual sentence), is mapped to ≥1 predefined class that
correspond to a type of adverse event or its property. Some
approaches target a specific adverse event such as anaphylaxis
and perform simple binary classification with respect to the
presence of the event considered [3]. Other examples target a
range of drugs and use documents that mention them to train a
binary classifier with respect to their safety, using an existing
watch list of drugs that have an active safety alert posted on the
US Food and Drug Administration website [4].

In terms of semantics, adverse events are compatible with signs
and symptoms. When a dictionary-based method is used to
extract such instances, a binary classifier is needed to
differentiate between the signs and symptoms that correspond
to adverse events and those associated with the underlying
diagnosis [5]. Along similar lines, when an adverse event is
associated with medication, a system is needed to support safety
evaluators in identifying reports that may demonstrate causal
relationships with the suspect medications. To this end, it has
been shown that a binary classifier can be trained to successfully
differentiate between 2 causality categories: certain, probable,
or possible versus unlikely or unassessable [6]. Multifaceted
classification can be performed to identify additional properties
of an adverse event, for example, temporal (historical or
present), categorical (assertive, hypothetical, retrospective, or
a general discussion), and contextual (deduced or explicitly
stated) [7].

Alternatively, the problem of identifying adverse events can be
defined as that of information extraction [8]. More specifically,
we can differentiate between entity and relationship extraction.
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Here, the goal of entity extraction is to identify a text sequence
that describes an adverse event. Therefore, it can also be viewed
as a sequence labeling problem [9-11]. In addition, the text
sequence can be mapped to a relevant dictionary such as the
Medical Dictionary for Regulatory Activities [12,13] or the
Unified Medical Language System (UMLS) [9,14]. Such
normalization of named entities to standardized identifiers is
especially relevant when processing text originating from social
media, whose language tends to be highly colloquial
[4,9,10,13-17].

When multiple medicines are considered, 2 types of named
entities need to be extracted—medicines and adverse
events—and additional reasoning needs to be performed to
extract a relationship between the two [7,17,18]. Further
statistical analysis can be applied to such pairs to measure the
strength of such associations [18]. Information of interest can
be extracted using pattern-matching approaches, where patterns
are typically modeled using regular expressions [7,12,19].
Alternatively, frequent patterns of language for expressing
opinions about medications can be learned automatically using
association rule mining by considering sentences as transactions
and the words in a sentence as items in the transactions [15].

Specific methods chosen to mine adverse events from text
depend on the way the text mining problem is posed. Typical
approaches chosen for text classification include rule-based
methods [3,7,14,20] and supervised machine learning
[3-6,16,21]. A range of machine learning methods has been
used, including naive Bayes, support vector machines, random
forests, maximum entropy, and logistic regression. On occasion,
ensemble learning has been used to improve classification
performance by integrating multiple models using methods such
as bagging, majority voting, weighted averaging, and stacked
generalization [4,17,21]. The different types of lexical, syntactic,
and semantic features have been used by the classification
algorithms. Lexical features include n-grams [4,16], context
windows [17], and lexicon matches [16]. Typically, syntactic
features include part-of-speech tags, negation, syntactic
dependencies, and syntactic functions [16,17,21]. Semantic
features are either based on external sources such as the UMLS,
PubChem, or DrugBank [16,17,20,22] or manually engineered
[4-7]. Other used features were based on sentiment polarities
[4,16] and topic modeling [16]. A few examples of using feature
selection methods include binormal separation [4] and
information gain [17].

Finally, approaches chosen to address adverse event mining as
a sequence labeling problem include conditional random fields
(CRFs) [9,23] and, more recently, neural networks (NNs)
[21,22], including recurrent NNs [10] and long short-term
memory (LSTM) [24], which outperformed CRFs. For best
results, bidirectional LSTM is combined with CRF [11,25-29].
Most approaches used word embeddings, which represent words
as meaningful real-valued vectors of configurable dimensions
learned automatically from a large corpus based on their
co-occurrence using methods such as word2vec [22,27], fastText
[24], and GloVe [30]). Traditional bag-of-words (BOW)
approaches tend to struggle with unseen or rare words. Word
embeddings that are pretrained on a large corpus remedy this
problem and, consequently, boost recall (R).

The aforementioned word-embedding models generate a single
embedding for each word, thus conflating homonyms in the
corresponding vector space. Bidirectional Encoder
Representations from Transformers (BERT) [31] captures
contextual relationships in a bidirectional way to contextualize
the embedding of any given word based on the surrounding
words. BERT is based on an encoder–decoder NN architecture,
which can not only be used to generate word embeddings but
can also be fine-tuned and further trained for various text mining
tasks. For example, it has been used to model adverse event
extraction as a named entity recognition (NER) task [11,32].
The topics of word embedding and BERT, in particular, will
be revisited later in this paper in the context of motivating and
describing our own approach to this problem.

The after-the-fact nature of text data collected from sources
such as spontaneous reporting systems, medical literature,
electronic health records, and social media naturally gives rise
to postmarketing surveillance applications [2,33]. However,
pharmacovigilance starts by collecting safety information
derived from randomized controlled trials. Our review of text
mining applications related to the identification of adverse
events revealed that this source of data was underrepresented.
This study addresses this gap by using SAE report forms
collected during clinical trials as the primary source of data.
Given that each trial focuses on a specific medicinal product,
the problem is somewhat simplified as the need to extract
information about the product itself is obviated. This also makes
it more natural to define it as a multi-label text classification
problem rather than an information extraction problem. Using
the UMLS as our classification scheme, the main aim is to map
each document to a set of coded adverse events. The main
difficulty of the problem lies in differentiating between signs
and symptoms associated with the underlying condition and
those that represent adverse events. The fact that both types of
references to signs and symptoms can be found within a single
SAE report, often within the same sentence, renders a BOW
approach unsuitable. Instead, we opt for a deep learning
approach. Instead of LSTM approaches, which seem to dominate
in our review of the related work, we opt for transformers, which
tend to outperform recurrent NNs on a variety of natural
language processing tasks.

Methods

Data Provenance
Data were provided by the Center for Trials Research (CTR),
the largest group of academic (noncommercial) clinical trial
staff in Wales. Their portfolio of work includes drug trials and
complex interventions, mechanisms of disease and treatments,
cohort studies, and informing policy and practice in partnerships
with researchers across the United Kingdom and worldwide.
Across all these trials, standard procedures are put in place to
monitor and manage safety reporting and SAE in line with the
regulatory requirements for research.

Clinical trials SAE report forms (Figure 1) are completed by
research nurses and physicians at hospital or clinical trial sites
and submitted as PDF documents to the CTR central safety
team for management and processing. They contain data on the
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SAE and a narrative description of the event. The narrative is
used by the reviewer to help assess causal relationships with
the trial drug but is not entered into the trial database and is not
used in any analysis of the events. Completed SAE reports are

then sent for review by a physician and, depending on the
outcome of the review, are logged in the safety databases for
the regulatory authorities, ethics committees, and drug
companies.

Figure 1. A serious adverse event (SAE) reporting form. CTCAE: Common Terminology Criteria for Adverse Events; N/A: Not Applicable.

Although narratives in noncommercial settings, such as CTR,
can be digitized, this does not currently take place at the point
of initial SAE reporting, as electronic data capture for the SAE
report is associated with additional regulatory challenges,
primarily because of the requirement for signature verification
by a physician and a contemporaneous changelog. Clinical trial
staff reviewing SAE reports are, thus, unable to systematically
analyze the information provided in the narrative, missing an
opportunity to identify the trends and potential safety signals.
If the text mining approach were to identify additional safety
events and signals not detected through standard reporting,
processes could be altered to improve work practices at the level
of a noncommercial CTU pharmacovigilance team.

This study aims to assess the feasibility of text mining in the
context of such an analysis. The findings could affect the way
regulatory narratives are reviewed and analyzed, for example,
noncompliances or audit findings.

Data Collection
Data were collected from 6 ongoing clinical trials, as described
in Table 1.

Ethical review and approval were waived for this study as this
study involved the use of secondary SAE data that were fully
deidentified. All involved trials were conducted according to
the guidelines of the Declaration of Helsinki and approved by
the relevant research ethics committees. All chief investigators
from these trials were consulted, and sponsor agreement was
obtained for the use of the data in this secondary research study.
Participant consent was also waived for the reasons stated above.

A subset of SAE reports was sampled randomly from each trial,
giving a total of 286 reports. Phases 1 and 2 were early phases
with a smaller number of participants and were not powered.
The fewer numbers of reported SAEs were a function of the
smaller numbers of participants compared with phase 3; hence,
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there were variations in the number of documents across the 6
trials.

The original SAE reports were pseudoanonymized at the point
of extraction from the system by obscuring any links between
the patient and their individual records. The narrative sections
of the SAE reports were then transcribed and saved as Microsoft

Word documents. The transcription process was extended to
include deidentification by obscuring any personally identifiable
information in a way that minimizes the risk of unintended
disclosure of the identity of individuals and information about
them. The transcribed documents were an average of 37 (SD
24) tokens long.

Table 1. Clinical trials from which data were collected.

Documents, nDescriptionID

5A phase 2 study of neoadjuvant chemotherapy given before short-course preoperative radiotherapy as treatment for patients

with MRIa-staged operable rectal cancer at high risk of metastatic relapse

Trial-1

7A phase 1b/2 randomized placebo-controlled trial in postmenopausal women with advanced breast cancer previously
treated with drug A

Trial-2

131A randomized phase 3 clinical trial investigating the effect of drug B added to standard therapy in patients with lung
cancer

Trial-3

34Study of chemoradiotherapy in esophageal cancer, plus or minus drug CTrial-4

3A phase 1/2 single-arm trial to evaluate combination drugs for the treatment of advanced cancers, including first-line
treatment of patients with advanced transitional cell carcinoma of the urothelium

Trial-5

106A randomized phase 3, open-label, multicenter, parallel group clinical trial to evaluate and compare the efficacy, safety
profile, and tolerability of oral drug X versus intravenous drug Y in the treatment of patients with breast cancer and bone
metastases

Trial-6

aMRI: magnetic resonance imaging.

Data Annotation
The aim of this task was to annotate adverse events in the
transcribed versions of the SAE report forms. For the purpose
of this task, an adverse event was defined as any unfavorable
or unintended disease, sign, or symptom (including an abnormal
laboratory finding) that is temporally associated with the use
of a medical treatment or procedure, which may or may not be
considered related to the medical treatment or procedure. Such
an event could be related to the intervention, dose, route of
administration, or patient or caused by an interaction with
another drug or procedure.

The annotation guidelines prescribed the scope of the annotation
task as follows: (1) focus only on adverse events that have
occurred in the present or past, that is, ignore hypothetical or
future events; (2) annotate the entire phrase that describes an
adverse event; and (3) if the same adverse event were mentioned
multiple times, then annotate every mention. The annotation
process was based on the following instructions: (1) identify an
adverse event that is mentioned in the narrative, (2) select the

text that describes the adverse event, and (3) highlight the
selected text.

The text editing operations were performed using Microsoft
Word, which was preferred over a specifically designed
annotation tool such as BRAT or Bionotate [34] because of zero
installation and training overhead. Microsoft Word supports the
bulk selection of text based on its formatting. This functionality
was used to export highlighted text as standoff annotations,
which were later used to calculate the interannotator agreement.

A total of 2 annotators independently annotated all the
documents. Figure 2 provides an example. Here, both annotators
annotated 2 mentions of tremor but did not annotate the
historical mention of tremor as it was not temporally associated
with the use of the medical treatment that was the subject of the
given clinical trial. Further, 1 reviewer failed to annotate
vomiting, leading to disagreement, which was later resolved
through discussion. To identify all such cases, we compared all
annotations automatically and measured the interannotator
agreement.

Figure 2. A serious adverse event report annotated independently by 2 annotators. The annotations are highlighted in yellow.

The 2 annotators labeled SAEs as phrases, which were
sequences of words whose total number, together with their

start and end positions, were not prefixed. Comparing the
interannotator agreement at the token level, as suggested by
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Tomanek et al [35], was not entirely appropriate for 2 reasons.
First, the annotators labeled phrases as sequences of tokens
instead of labeling the tokens individually. Therefore, such an
approach approximated the original annotation task. More
importantly, the number of negative cases (ie, the tokens that
had not been annotated) would inevitably be much larger than
the number of positive cases, thus skewing the data. The lack
of a well-defined number of negative cases prevented the use
of traditional interannotator agreement measures such as Cohen
κ statistic [36]. A common way of quantifying interannotator

agreement in such circumstances is to use information retrieval
performance measures instead [37]. By treating one annotator’s
annotations as the gold standard and the other one’s as
predictions, we calculated the numbers of true positives (TPs),
false positives (FPs), and true negatives, as shown in the
confusion matrix (Table 2). When these values were combined
to calculate the F1 score, it no longer mattered which annotator
was considered the gold standard as this measure was
symmetrical.

Table 2. Agreement between 2 annotators.

Gold negativeGold positivePositive or negative

FPb=50TPa=744Predicted positive

N/AdFNc=98Predicted negative

aTP: true positive.
bFP: false positive.
cFN: false negative.
dN/A: not applicable.

These values can then be used to calculate the precision (P), R,
and F1-score as follows (where FN denotes false negative):

P=TP/(TP+FP)=744/(744+50)=0.9370

R=TP/(TP+FN)=744/(744+98)=0.8836

F1=(2×P×R)/(P+R)=0.9095

An advantage of using information retrieval performance
measures to estimate interannotator agreement is that their
values can later be used to gauge a system against human-like
performance. At F1=0.9095, the interannotator agreement was
found to be relatively high. A total of 148 disagreements were
resolved through discussions to establish the ground truth. As
part of the discussions, the agreed annotations of adverse events
were coded manually against the UMLS, which integrates

multiple terminologies, classifications, and coding standards in
an attempt to support the interoperability between biomedical
information systems, including electronic health records [38].
The MetaThesaurus Browser, a web-based search interface, was
used to query the UMLS for each annotation to identify the
corresponding concept (Figure 3). This searching procedure
involved checking concept definitions to make sure that the
chosen concept matched the sense of the adverse event
annotation. Each concept in the UMLS is assigned a concept
unique identifier (CUI), which was used to code the
corresponding annotation (see Figure 4 for examples).
Subsequently, the CUI codes were extracted, duplicates were
removed, and the remaining CUIs were used as class labels for
each document. Table 3 provides a statistical summary of the
annotated data set, which contains a total of 995 class labels.
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Figure 3. Metathesaurus browser search results.

Figure 4. Coding of documents against the Unified Medical Language System.

Table 3. Statistical properties of the annotated data set.

Class labelsAnnotationsDocument length (in tokens)Statistical properties

112Values, minimum

1920223Values, maximum

3331Values, median

3.48 (2.18)3.76 (2.46)36.71 (23.77)Values, mean (SD)

Problem Representation
The aim of this study was to automate the identification of
adverse events described in the narrative section of the SAE
reports. This goal was cast as a text classification problem.
Given a document and classification scheme, the system should
label the document with the relevant classes from the given
scheme. In our case, the document was an SAE report, a
classification scheme was the set of concepts encompassed by

the UMLS, and their CUIs were used as class labels. The second
column in Figure 4 provides an example of the expected output.

To identify the possible adverse events mentioned in a
document, the first step involved looking for concepts of the
relevant semantic types. In our approach, the UMLS dictionary
lookup was restricted to 6 manually selected semantic types:
disease or syndrome, finding, injury or poisoning, neoplastic
process, pathological function, and sign or symptom. Some of
their mentions could be in the context of medical history and,
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therefore, not necessarily constitute an adverse event. To
differentiate between the 2 types of mentions, we formulated a
binary classification task at the concept level: given a context,
does a specific UMLS concept constitute an adverse event?
Figure 5 provides different references to the concept of pleural
effusion. For example, the first 3 references do not constitute
adverse events. The first and third mentions of pleural effusion
refer to medical history, whereas the second mention is negated.
The remaining 3 mentions of pleural effusion refer to the cause
of hospital admissions that prompted SAE reporting.

The practical implementation of such problem representations
started with linguistic preprocessing, which was originally
developed to support cohort selection from hospital discharge
summaries, adapted for this study [39]. This module involved
text segmentation and basic string operations such as
lowercasing, fully expanding enclitics and special characters,
replacing a selected subset of words and phrases with their

representatives, and, in particular, replacing acronyms and
abbreviations with their full forms. Finally, the preprocessed
documents were analyzed using MetaMap [40], a highly
configurable dictionary lookup software, to find mentions of
UMLS concepts from the 6 semantic types listed above. Figure
6 illustrates a portion of the UMLS dictionary and how it was
matched against the input text. As the figure illustrates, a single
document might contain multiple adverse events. To support
the classification of one adverse event candidate at a time, a
separate copy of the given document was saved for each
candidate. Each copy anchored a single concept, which may
have had multiple occurrences, by marking them up in line. In
addition, the text was further regularized by replacing all the
concepts with their preferred names. Concept anchoring
provided a simple, uniform representation of the potential
adverse events, which enabled us to train a single binary
classifier based on the context surrounding the anchors.

Figure 5. Adverse event identification as a binary classification task. CT: computed tomography.
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Figure 6. Identification of potential adverse event mentions. CUI: concept unique identifier.

Classification Rationale
The binary task formulation itself—given a context, does a
specific UMLS concept constitute an adverse event?—indicates
2 main types of involved features: extrinsic (context) and
intrinsic (concept). Extrinsic features may include the number
of mentions within a document, the position within a document,
and other words within a fixed-size window. When combined
with gold standard annotations, machine learning can be used
to discover how to differentiate between positive and negative
contexts without having to manually describe the patterns of
positive and negative use. For example, by considering the
co-occurring words (see Figure 7 for examples) and the
corresponding annotations, a simple NN can learn to use words
such as previous and have as negative and positive modifiers,
respectively. By considering a wider context, more complex
patterns such as admitted to hospital with and known to have
(see Figure 8 for examples) would start to emerge as positive
and negative contexts, respectively. Traditionally, such patterns
were observed using corpus linguistics methods, which were
engineered manually and encoded formally as regular

expressions [41]. In recent times, NNs are used to automatically
capture both short- and long-range dependencies.

Similarly, lexical morphology could be explored in an NN
approach to learn the patterns of subwords within a concept’s
name, which were positively or negatively correlated with
adverse events. For example, it is reasonable to expect that any
concept identified as a potential adverse event that contains the
word chronic (eg, chronic obstructive airway disease or chronic
infection) is more likely to refer to a process than a single event.
Similarly, any concept whose name contains a word loss (eg,
loss of appetite or hair loss) is more likely to be an adverse
event. The words themselves can be analyzed for affixes. For
example, the prefix hypo- (low or below normal) can be used
to increase the likelihood of concepts such as hypocalcemia or
orthostatic hypotension corresponding to adverse events.
Similarly, the suffix -emia (presence in the blood) can be used
to identify concepts such as cerebrovascular ischemia or
hyperkalemia as strong candidates for adverse events. Again,
no prior medical knowledge is required to embed such features
into NNs, which consider inputs and outputs simultaneously to
support end-to-end learning and, hence, bypasses manual feature
engineering.
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Figure 7. Observing the patterns of positive and negative modifiers. CRTI: common respiratory tract infection; GI: gastrointestinal; OGD:
oesophagogastroduodenoscopy; PR: per rectum; SAE: serious adverse event.

Figure 8. Observing more complex patterns of positive and negative use. Hb: hemoglobin.

Text Representation
The first choice en route to implementing a binary adverse event
classifier is text representation. Traditionally, the BOW
representation, which is based on the frequency of occurrence
of individual words, has been used to support text classification.
Given that multiple signs and symptoms, some of which can be
adverse events, are commonly discussed in an SAE report, the
BOW representation would make it difficult to distinguish
adverse events from other signs and symptoms discussed within
the same document as it does not preserve local context. In
addition, the BOW representation is not robust with respect to
the out-of-dictionary problem; that is, any classifier trained
using this representation will not be able to use words that were
previously not encountered in the training data.

Word embedding can alleviate this problem. Word embedding
is a mapping from the lexicosemantic space of words to the
n-dimensional real-valued vector space. Methods such as
word2vec [42] and GloVe [43] for learning word embeddings
from large corpora rely on the hypothesis of distributional
semantics, which claims that words occurring in similar contexts
tend to convey similar meanings [44]. In other words, these
methods assume that the meaning of a word depends on its

context, that is, the frequency of co-occurrence with other words
within a text window. Consequently, word embeddings tend to
arrange semantically related words in similar spatial patterns.
Therefore, by mapping a word to its embedding, it becomes
possible to model its semantics numerically and thus use
arithmetic operations to reason about it. This property is
effectively used by NNs in which text is passed through a series
of layers that each combines and transforms embeddings to
eventually derive an output such as a class label in text
classification or an answer in question answering.

Context-free word-embedding models such as word2vec [42]
and GloVe [43] generate a single embedding for each word,
making it impossible to differentiate between homonyms in the
corresponding vector space. For example, the word mole would
have a single embedding regardless of its many different
meanings. Context-sensitive word-embedding models such as
BERT [31] generate an embedding for each word based on the
surrounding words. For example, the word mole used as a unit
of measurement and a disorder that affects the soft tissue will
have different representations in the word-embedding space.

BERT [31] is a transformer-based language model that captures
contextual relationships in a bidirectional way. A transformer
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[45] is an encoder–decoder NN architecture that uses attention
mechanisms to forward a holistic interpretation of a sequence
to the decoder simultaneously rather than sequentially, as is the
case in recurrent NNs such as LSTM and gated recurrent units.
For each word, which is represented by its embedding, the
self-attention layer considers other words, including their
positions, in the same sentence to improve its encoding. As a
workaround for the self-attention issue, BERT uses masked
language modeling, that is, hides a certain percentage of the
words using a special token [MASK] and uses their position to
infer these words. The context-sensitive nature of BERT
embeddings makes this language model perfectly suited for
practical implementation of the classification rationale described
earlier. In addition, BERT uses WordPiece tokenization to obtain
subword units by applying a greedy segmentation algorithm to
minimize the number of WordPieces in the training corpus [46].
This implies that the downstream classification model may be
able to use the word morphology.

Classification Model
The masked language modeling was 1 of the 2 tasks on which
BERT was trained simultaneously. The second task was the
next sentence prediction. In addition to [MASK], BERT uses
2 other special tokens for fine-tuning and specific task training:
(1) a classification token [CLS], which indicates the beginning
of a sequence and is commonly used for classification tasks (the
output associated with this token is used for the next sentence
prediction task); and (2) a sequence delimiter token [SEP],
which indicates the end of a segment.

The embedding layer shown in Figure 9 illustrates the input
format that BERT expects. Each token’s vocabulary identifier
is mapped to a token embedding that is learned during training.
Next, a binary vector is used to differentiate between 2 text
segments, typically sentences. The type of segment depends on
a specific task, for example, in question answering both
question, and the reference text could be appended and separated
by a special delimiter token [SEP]. In our model, we chose the
anchored concept as one segment and its context (ie, the whole
document) as another. The binary vector was mapped to a
segment embedding using a lookup table, which was learned
during training. Finally, local token positions were mapped to

positional embeddings using a lookup table, which was updated
during training.

The 3 types of embeddings were added and fed into the
pretrained BERTBASE model, which comprises 12 layers of
transformer encoders, each having a hidden size of 768 and 12
attention heads. Each layer produces a token-specific output,
which can be used as its (contextualized) embedding. Similar
to binary classification tasks described in [31], the final
transformer output corresponding to the special [CLS] token
was taken as an aggregate problem representation, that is, pooled
output, and passed on to the classification layer after a 0.1
dropout, which was used to reduce overfitting.

The classification layer reduced the size of the pooled output
from 768 to 2, which corresponds to the log-odds (or logits) of
the classification output with respect to the question of whether
the given concept was an adverse event or not. In contrast to
the network up to that point, the classification layer was not
pretrained. Instead, the corresponding weights were learned
during BERT fine-tuning. As suggested in the study by Devlin
[31], the weights were initialized using a truncated normal
distribution with mean 0 (SD 0.02). A softmax function was
then applied to obtain the probability distribution of the 2
classes. The loss function (softmax cross entropy between the
logits and the class labels) was optimized using the Adam

optimizer with an initial learning rate of 2×10–5, which was
chosen without any fine-tuning, based on the values suggested
in the study by Devlin [31].

The classification model was trained for 8 epochs. This
hyperparameter was preselected without any tuning. In each
epoch, the training data were looped over in batches of 8
samples. The batch size was limited by memory. All other
parameters were kept identical to those in the original BERTBASE

uncased model, including the clip norm of 1.0, and linear
warmup (100 warmup steps with linear decay of learning rate).
The system was implemented in TensorFlow [47], an
open-source software library for machine learning, with a
particular focus on training and inference of deep NNs, using
the GeForce RTX 2080 (Nvidia Corp) graphics processing unit
to accelerate deep learning.
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Figure 9. Architecture based on Bidirectional Encoder Representations from Transformer (BERT) for classification of adverse events. CLS: classification
token; SEP: sequence delimiter token.

Results

During preprocessing, MetaMap was used to extract adverse
event candidates. MetaMap failed to extract a total of 118
adverse events from the ground truth. Therefore, these instances
automatically constituted FNs. The remaining 1021 adverse
event candidates extracted by MetaMap were passed on to the
BERT-based classification model shown in Figure 9. To
understand the performance of the BERT classifier, we first
focused only on these 995 adverse event candidates before
amalgamating them with 118 FNs. Of the 995 candidates, 659
(66.2%) were positive instances (ie, regarded as adverse events

in the ground truth), and 336 (33.8%) were negative instances
(ie, not regarded as adverse events in the ground truth).

We performed 10 independent 5-fold cross-validations to
evaluate the performance of the classification model. In other
words, during each cross-validation, 20% of the documents
were held out for evaluation, whereas the remaining 80% were
used for training, and this was done 5 times in a row, each time
using a different fold for evaluation. More specifically, for each
of the 10 independent runs, we did the following:

The 286 unique document identifiers were first shuffled
randomly and then split into 5 folds. Remember that each
document may have contained multiple adverse event
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candidates, and a separate copy was created for each candidate
during preprocessing. All copies of the same document shared
the same document identifier; hence, there was no overlap of
data across the folds. As the splitting was done by document
irrespective of the number of events they contained, the actual
number of samples (ie, potential adverse events identified by
MetaMap) in each fold may vary. We looped over the folds,
each time using a different fold for evaluation and the remaining
4 folds for training. Each time, we measured P, R, and F1 scores.
Once each of the 5 folds was used for evaluation, we calculated
the mean values obtained for each evaluation measure. Finally,
these values were averaged over 10 independent runs.

The same cross-validation process was applied to the baseline
approach. Remember that the goal of our system was to code
adverse events against the UMLS; therefore, a UMLS lookup
was inevitable. The lookup itself could be performed as the first
step to identify an adverse event candidate (and code it at the
same time) and then classify it. Alternatively, it could be
performed as the last step to code an adverse event, which was
first extracted from free text. In the former approach, we were
dealing with a binary classification problem where it needed to
be determined whether a given UMLS concept was an adverse
event or not. In the latter approach, we were dealing with a
sequence labeling problem where the boundaries of a token

sequence that referred to an adverse event needed to be
determined. This is how Du et al [32] approached the extraction
of adverse events from safety reports by framing it as the NER
problem and fine-tuning BERT for this task. We reimplemented
and cross-validated their approach on our data set to establish
the baseline. Although the authors originally used BERT for
biomedical text mining (BioBERT) [48], we replaced it with
BERT in our experiments to make their approach directly
comparable with ours. The results achieved by the 2 contrasting
approaches are presented in Table 4. Despite the similarities in
the underlying technologies, we can observe a notable difference
in the performance of the 2 approaches, most prominently in
terms of P, where we can see an improvement of approximately
30 percent points over the baseline. A detailed analysis of this
phenomenon is provided in the Discussion section. In this
section, we proceed to describe the results achieved using our
own approach.

Figure 10 displays the distribution of the prediction probabilities.
The histogram combines the predictions from all folds used for
cross-validation. We can observe that most prediction
probabilities are concentrated around the 2 extremes, 0 and 1,
which suggests that the classification model is able to make
clear-cut decisions, as it does not depend on a specific threshold.

Table 4. Evaluation results.

Our approach: concept extraction (MetaMap)+classification
(BERT), mean (SD)

Baseline approach: named entity recognition (BERTa)+concept ex-
traction (MetaMap), mean (SD)

Parameters

0.8638 (0.0057)0.5715 (0.0076)Precision

0.7604 (0.0121)0.7116 (0.0096)Recall

0.8080 (0.0071)0.6335 (0.0072)F1 score

aBERT: Bidirectional Encoder Representations from Transformers.
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Figure 10. Distribution of prediction probabilities for all folds in a cross-validation experiment.

In Figure 11, we used receiver operating characteristic curves
to illustrate the diagnostic ability of the classification model. A
separate curve was provided for each of the 5 folds used for
cross-validation. The plot shows the TP rate versus the FP rate
at each classification threshold. The solid-colored lines
correspond to the model’s performance, whereas the gray dashed
line represents the performance of a classifier with no skill, that
is, the one that always predicts the majority class. An ideal
model would result in a curve that bows toward the coordinate
(1,0). With its curve consistently lying close to the top-left
corner, our model demonstrated very good classification
performance. We summarized the receiver operating
characteristic results by calculating the area under the curve to
measure the ability of our model to distinguish between the 2
classes, with higher values indicating better performance. With
an overall mean score of 0.8789 (SD 0.0101) and a range

between 0 and 1, our model was clearly able to distinguish
between adverse events and underlying conditions 87.79% of
the time on average.

Finally, to account for the class imbalance, we also looked at
the precision-recall (PR) curve shown in Figure 12. Again, the
solid-colored lines correspond to our model’s performance,
whereas the gray dashed horizontal line corresponds to a model
with no skill, that is, a model whose P is equal to the proportion
of positive samples. The PR curve of our model was relatively
close to that of an ideal model, whose curve would bow toward
the coordinate (1,1). In comparison to a no skill model, which
would achieve a PR area under the curve score of 0.6533, our
model reached a high score of 0.9108 (SD 0.0103),
demonstrating its ability to correctly classify adverse events
despite the class imbalance.

JMIR Med Inform 2021 | vol. 9 | iss. 12 |e28632 | p.79https://medinform.jmir.org/2021/12/e28632
(page number not for citation purposes)

Chopard et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 11. Receiver operating characteristic curve for each fold in a cross-validation experiment.

Figure 12. Precision-recall curve for each fold in a cross-validation experiment.
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Discussion

Principal Findings
Previously, we provided details on calculating the interannotator
agreement using P, R, and F1 score. When a system is evaluated
against the ground truth, the corresponding values establish the
human performance baseline, which in this case were P=0.9370,
R=0.8836, and F1=0.9095. If we compare these values against
the results provided in Table 4, we can observe a 10.15 percent
points difference in the F1 score. In particular, we notice that
the system’s R is 10.34 percent points lower than its P. There
are 2 potential sources of type 2 errors in the system. Remember
that the system first uses MetaMap to identify potential adverse
events, which are then classified by BERT as positive or
negative. Both components can give rise to FN results. First,
any adverse event that MetaMap failed to forward to BERT

would have been automatically counted as an FN. Second, any
adverse event that MetaMap did supply to BERT for further
classification could have still ended in an FN. MetaMap is a
predefined rule-based system, and as such, its performance
within our system is limited by external factors. BERT, on the
other hand, has been trained for a specific task using the data
set described here. Therefore, it is worth focusing specifically
on its classification performance.

To evaluate how well BERT learned to classify adverse events,
we removed those FNs from the ground truth that were never
actually classified by BERT because of MetaMap failing to
identify them in the first place. Table 5 provides the
cross-validation results for BERT’s performance alone. We
observe that the classification performance alone is much closer
to the human performance baseline, lagging behind the F1 score
by only 2.93 percent points.

Table 5. Bidirectional Encoder Representations from Transformers’ (BERT) performance.

Classification (BERT), mean (SD)Named entity recognition (BERT), mean (SD)Parameters

0.8651 (0.0053)0.7484 (0.0066)Precision

0.8974 (0.0104)0.8237 (0.0086)Recall

0.8802 (0.0044)0.7835 (0.0053)F1 score

If we now compare BERT’s classification performance given
in Table 5 with the overall system performance given in Table
4, we can see that the P is virtually identical (0.8638 vs 0.8651),
whereas R differs by 13.70 percent points (0.7604 vs 0.8974).
Hence, we can conclude that the R of the overall system is
primarily limited by MetaMap’s performance, which naturally
raises the question of whether its use as a preprocessing step
within our system was appropriate. The baseline method uses
MetaMap as the postprocessing step; therefore, we investigated
the extent of its effect on the overall performance by singling
out BERT’s performance on the NER task, which was evaluated
using the exact matching of phrases annotated in the ground
truth. If we compare the first column of Table 5 with the second
column of Table 4, we can observe that without MetaMap,
BERT can certainly achieve higher R (0.8237 vs 0.7604) when
it is allowed to determine the phrase boundaries on its own
rather than having them prescribed by MetaMap.

Although such an approach is unarguably more flexible, it can
also have a negative impact when the goal of the system is to
code adverse events rather than only recognize their mentions
in the text. If the phrase boundaries are not correctly detected
as part of the NER task, then searching the UMLS using an
incorrectly extracted phrase may provide an incorrect code.
Consider, for example, 2 adverse events, respiratory tract
infection (whose code in the UMLS is C0035243) and urinary
tract infection (whose code is C0042029). Suppose that a system
failed to correctly identify their boundaries, for example, by
suggesting tract infection in both cases. The UMLS has no
concept referring to tract infection; therefore, MetaMap would
at best suggest infection (whose code is C3714514) as the closest
concept matching the given search term, thus incorrectly coding
both respiratory tract infection and urinary tract infection,
resulting in 2 FNs (labeled C0035243 and C0042029 in the
ground truth) and 2 FPs (both labeled C3714514 by the system).

On the other hand, MetaMap can be configured to recognize
the longest phrases from relevant semantic types and, in that
way, impose tighter control of the process, reducing the number
of both FPs and FNs. Although MetaMap may limit R, it does
play an important role in controlling the P in our proposed
approach, as the results in Table 4 clearly depict. Nonetheless,
MetaMap could benefit from revising its rule-based dictionary
lookup approach in light of the new advances in text mining
and, in particular, deep learning approaches to bring its
performance in line with the state of the art.

Focusing on BERT’s performance alone in Table 5, we can see
that it performs better on the binary classification task than the
NER task. This is not surprising, as the sequence labeling task
is inherently more complex than binary classification. This is
because of the number of possible sequences growing
exponentially with the length of a document. In particular, the
performance gap is bound to widen when training the
corresponding models on a relatively small data set, as is the
case in this study. Having <300 annotated documents available,
we can see from Table 5 that BERT’s performance on the
classification task is in the high 80s across all metrics, whereas
its performance on the NER task is in the high 70s overall. This
again justifies our choice to run BERT after MetaMap rather
than the other way around.

Going back to the BERT’s classification performance provided
in Table 5, while examining the misclassified examples, we
noticed some patterns. Some simple negation patterns were not
captured by the classifier. For example, in the document
containing the sentence “Chest X-ray showed no new lesion,
no pleural effusion disorder or pneumothorax and history of
smoking,” both pleural effusion disorder and pneumothorax
were misclassified as adverse events. Similarly, in the document
with the sentence “admitted with right scaptula/back pain, no
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chest pain or dyspnea,” both chest pain and dyspnea were
misclassified as adverse events.

This finding is in line with the current evidence that neural
models struggle to generalize negation to out-of-sample data
sets, even within the same domain [49]. The generalizability of
negation remains a challenge, as none of the factors considered,
including the annotation guidelines, the amount of data
available, and their lexical and syntactic properties, fully
explained the poor performance [50]. Empirical evidence
suggests that the use of domain-specific embeddings such as
BioBERT [48] may improve negation detection [51]. BERT
can also be fine-tuned to support the negation detection task in
clinical text [51,52]; however, this requires data to be annotated
specifically for this task. Nonetheless, manual adaptation, be it
rule modification or in-domain data annotation, remains a
recommended strategy for optimizing performance in clinical
natural language processing [50]. Rule-based systems for
negation detection such as ConText [53] seem to transfer well
within a domain [54]. Therefore, the simplest and most effective
way of addressing negation as the source of errors in our
proposed framework would be to use the ConText algorithm
[53] to detect negated contexts and automatically exclude them
from further consideration.

Some words, such as the word decreasing, can have the opposite
effect depending on the context in which it is used. For example,
decreased mobility implies a negative effect, whereas decreased
pain implies a positive effect and not an adverse event. The
system was not able to differentiate between such contexts. This
could be remedied by incorporating domain knowledge about
candidate adverse events. Alternatively, with a larger training
data set, these properties could be learned directly from the data.

Finally, the classification model struggled when a given concept
was used in multiple contexts. For example, for the concept
infection in the document extract “admitted to hospital with
lower respiratory tract infection [...] not commenced
chemotherapy related infection,” the model misinterpreted the
latter mention as a negated one and, consequently, misclassified
this adverse event.

Conclusions
This study established the feasibility of automated coding of
adverse events described in the narrative section of the SAE
reports. This, in turn, enables statistical analysis of adverse
events and the patterns of such events so that any correlations
with the use of medicines can be estimated in a timely fashion.
An easy adaptation of an existing deep learning architecture
trained on a relatively small data set demonstrates that similar
tools can be built rapidly. In addition, the evaluation results
show that such tools also perform with high accuracy. This
performance can be attributed to the choice of the method.
BERT is already pretrained on a large unlabeled corpus, which
allows it to be fine-tuned on a small, labeled corpus for a
specialized task. This is particularly relevant for clinical text
mining applications, where the data annotation bottleneck has
been identified as one of the key obstacles to machine learning
approaches for clinical text mining [55].

Unfortunately, the relevant data are still mainly handwritten,
which means that they cannot be immediately processed in the
way proposed in this study. There are 2 ways in which this issue
can be addressed. We can work with the stakeholders to change
the policy on the means of collecting information on SAEs, for
example, by transcribing the notes when they reach the safety
and pharmacovigilance teams in the central trial unit, by
requiring them to be typed, or by using some combination of
these 2 approaches.

Alternatively, we can propose to develop methods to digitize
handwritten notes automatically using tools such as Transkribus
[56], which have been designed to digitize historical documents
and allow the training of specific text recognition models. This
would have a great potential for impact on safety by digitizing
and mining legacy data from previous trials, where some
medicinal products may have already reached the market, thus
exposing the population to previously overlooked safety
concerns. Currently, these issues prevent a systematic analysis
of the information provided in the narrative of SAE reports,
hence missing an opportunity to identify potential safety signals.
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Abstract

Background: With the increasing variety of drugs, the incidence of adverse drug events (ADEs) is increasing year by year.
Massive numbers of ADEs are recorded in electronic medical records and adverse drug reaction (ADR) reports, which are
important sources of potential ADR information. Meanwhile, it is essential to make latent ADR information automatically available
for better postmarketing drug safety reevaluation and pharmacovigilance.

Objective: This study describes how to identify ADR-related information from Chinese ADE reports.

Methods: Our study established an efficient automated tool, named BBC-Radical. BBC-Radical is a model that consists of 3
components: Bidirectional Encoder Representations from Transformers (BERT), bidirectional long short-term memory (bi-LSTM),
and conditional random field (CRF). The model identifies ADR-related information from Chinese ADR reports. Token features
and radical features of Chinese characters were used to represent the common meaning of a group of words. BERT and
Bi-LSTM-CRF were novel models that combined these features to conduct named entity recognition (NER) tasks in the free-text
section of 24,890 ADR reports from the Jiangsu Province Adverse Drug Reaction Monitoring Center from 2010 to 2016. Moreover,
the man-machine comparison experiment on the ADE records from Drum Tower Hospital was designed to compare the NER
performance between the BBC-Radical model and a manual method.

Results: The NER model achieved relatively high performance, with a precision of 96.4%, recall of 96.0%, and F1 score of
96.2%. This indicates that the performance of the BBC-Radical model (precision 87.2%, recall 85.7%, and F1 score 86.4%) is
much better than that of the manual method (precision 86.1%, recall 73.8%, and F1 score 79.5%) in the recognition task of each
kind of entity.

Conclusions: The proposed model was competitive in extracting ADR-related information from ADE reports, and the results
suggest that the application of our method to extract ADR-related information is of great significance in improving the quality
of ADR reports and postmarketing drug safety evaluation.

(JMIR Med Inform 2021;9(12):e26407)   doi:10.2196/26407
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Introduction

Adverse drug reactions (ADRs) are a significant factor
influencing the efficacy and safety of drugs and sometimes may
even be life-threatening [1]. These safety problems are recorded
as adverse drug events (ADEs) and reported to a special system
like the Spontaneous Reporting System, which receives
information from a wide range of sources, such as hospitals,
small clinics, pharmacies, drug manufacturers, surveillance
departments, and individuals [2]. Consequently, collecting and
analyzing the ADEs that were recorded in the ADR reports have
provided important content for drug safety supervision [3].
Conventional utilization of ADR reports mainly focuses on
direct statistical analyses of structured sections [4,5], while the
free-text section is quite underutilized because of the
unstructured format. The unstructured part mainly describes the
occurrence process of ADRs, which is a reference for
supervisors to evaluate the potential ADRs. It involves a large
amount of manual reading and a judgment process in the review
step, which reduces the efficiency of evaluation and increases
errors. Therefore, developing an automatic extraction tool to
extract unstructured ADR-related information from Chinese
ADE records is essential to improve the quality of ADR reports
and postmarketing drug safety evaluation.

Named entity recognition (NER) is the main task of information
extraction, in addition to natural language processing (NLP),
the aim of which is to convert the unstructured contents into
structured information. In the field of NLP, Word2Vec and
other word vector methods [6-8] have been used for a long time
to encode the text, which may bring only limited improvement
to subsequent NLP tasks and fail to solve the polysemy problems
[9,10]. Recently, numerous pretraining language models [11-13]
have been proposed one after another, and Bidirectional Encoder
Representations from Transformers (BERT) can greatly improve
the performance of domain-related NLP tasks when it is
fine-tuned with specific field datasets. BERT for Biomedical
Text Mining (BioBERT) [14] was pretrained on large-scale
biomedical corpora, which outperforms BERT on biomedical
NER tasks, biomedical relation extraction tasks, and biomedical
question answering tasks. And clinical NER (CNER) [15] also
pretrained the BERT model on a large number of Chinese
clinical literature sources crawled from the internet. Considering
the background of ADRs in this study, we also collected a
dataset of ADRs, and BERT was fine-tuned on this large
unlabeled Chinese ADR-related corpus. As for the NER tasks,
from the early dictionary-based [16] and rule-based method
[17] to the traditional machine learning method [18] and then
to the deep learning–based method, bidirectional long short-term

memory (bi-LSTM) and conditional random field (CRF) have
been widely used in the NER tasks. Wei et al [19] fused the
results of CRF with those of bidirectional recurrent neural
network (bi-RNN) by support vector machine and finally
obtained a higher F1 score than those from CRF or bi-RNN
models alone. The hybrid model of LSTM and CRF was
proposed by Lample et al [20] in 2016, and its outstanding
performance in many NER studies has made it the most popular
NER model in recent years.

Consequently, in our study, we created a novel model,
BERT-Bi-LSTM-CRF-Radical (BBC-Radical), that took token
features and radical features as input and accurately recognized
target entities in the sentence with the Bi-LSTM-CRF model.
In order to better verify the performance of the model in the
real world, we designed a Man-Machine comparison experiment
based on the ADEs recorded by the Drum Tower Hospital from
2016 to 2019. We found that our method had excellent
performance and efficiency (precision: 87.2%; recall: 85.7%;
F1 score: 86.4%) versus manual method (precision: 86.1%;
recall: 73.8%; F1 score: 79.5%). The automatically extracted
ADR-related entities can further jointly serve as resources for
ADR evaluation. On the whole, our study presented a novel
method to identify ADR-related information from Chinese ADE
reports.

Methods

Study Components
In our study, the model conducted the NER task in the free-text
section of the Chinese ADE report from 2010-2016 from the
Jiangsu province ADR Monitoring Center. According to the
original content and the structure characteristics of the ADR
cases and combined with other related research corpus
annotation process, we established annotation rules and a tool
for this study to recognize the entities and entity relationships
between parts of the corpus annotation. In addition, the
Man-Machine comparison experiment based on the ADE
recorded by the Drum Tower Hospital was conducted to verify
the extrapolation and robustness of the new data in the model.
Figure 1 shows the pipeline of our study. The whole study can
be divided into 3 parts: (1) training an NER model. The data
representation model based on the BERT and the combination
of token features (pink boxes) and radical features (green boxes)
were fed into the Bi-LSTM-CRF model. Then, (2) the model
performance was verified with real external data, and (3) a
Man-Machine comparison experiment was designed to compare
the efficiency and accuracy of NER tasks with a manual
extraction method and a deep learning method.
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Figure 1. The pipeline in our study; when training a named entity recognition (NER) mode, the data representation model based on the Bidirectional
Encoder Representations from Transformers (BERT) model and the combination of token features (pink boxes) and radical features (green boxes) were
fed into the bidirectional long short-term memory-conditional random field (bi-LSTM-CRF) model. ADR: adverse drug reaction, BBC-Radical:
BERT-Bi-LSTM-CRF-Radical.

Dataset and Data Annotation
An ADR report can commonly be divided into 2 parts: structured
section and free-text section. The data we used in this paper
were from the unstructured section of Chinese ADR reports
from the ADR monitoring center of Jiangsu Province in
2010-2016. The free-text section of a Chinese ADE report is
the narrative content of the ADE procedure, commonly
consisting of the process, solutions, and results of ADEs, along
with the reasons for the medications being used to generate or
degenerate the ADEs, in the form of one or more sentences,

which may include some information that has not been recorded
in the structured section. In this way, we applied NER
technologies to extract entities automatically from these texts,
which can be an auxiliary tool for ADR evaluation.

We manually annotated 24,890 cases from the free-text section
from Chinese ADR reports, which have been described in [21].
To cover most of the cases, only 3 entities (“Reason,” “Drug,”
and “ADR”) were annotated, with some other entities of low
frequency not taken into consideration. The annotation rules
and examples of entities are shown in Table 1.
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Table 1. The definition and annotation rules and examples of entity annotation.

ExamplesEntities and annotation rules

Reasona

Diabetes, feverSymptoms or disease states associated with drug use

Postoperative feverTreatment involved with drug use

Drugb

LevofloxacinGeneric names of medications

LipitorTrade names of medications

10% GS, 0.9% NSAbbreviations of medications

ADRa,c

BellyacheAdverse reactions during or after medication

aReference for the disease and adverse reaction definitions and classifications is the international Medical Dictionary for Regulatory Activities (MedDRA).
b“Drug” entity contains the generic name, trade name, abbreviation, and dosage form adjacent to the drug.
cADR: adverse drug reaction.

Input Representation of NER
To improve the efficiency of annotating work, the labeled cases
were annotated by an efficient tool [21,22]. We used a special
[CLS] at the beginning of the sentence, used [SEP] to separate
segments or denote the end of the sequence, and added [PAD]
tokens at the end of the sentences to make their lengths equal
to the maximum sequence length. Finally, 24,890 valid
annotated cases were obtained, including 147,451 entities in
the Chinese ADR reports.

BBC-Radical Method
Figure 2B shows the data representation model based on BERT
that takes the corresponding token, segment, and position
embeddings of each word as inputs in Figure 2C. The contextual
embeddings for each token can be obtained from the output of
the BERT model, which is the token feature input of the next
NLP task.

Figure 2. (A) Architecture diagram of our proposed model, in which the combination of token features (pink boxes) and radical features (green boxes)
were fed into the bidirectional long short-term memory-conditional random field (Bi-LSTM-CRF) model; (B) data representation model based on the
Bidirectional Encoder Representations from Transformers (BERT) model, in which the sequence of [E_1, E_2, E_3 … E_n] in the yellow boxes is the
input to the BERT model and the green ellipses represent the Transform blocks; and (C) construction of input sequence representations for the BERT,
in which the input is composed of token embedding, segment embedding, and position embedding.

Owing to the fact that the corpus we used in this study is highly
domain-specific, we also collected nearly 461,930 ADE records
from the ADR Monitoring Center of Jiangsu Province ranging

from 2010 to 2016 to improve the precision of domain-specific
word representation. These records were mainly from medical
personnel in hospitals and pharmacies and from follow-up
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records from pharmaceutical companies. The diversity of
submitting agencies and reporters enriched the sample and made
the language characteristics of the data sources more complex.
To fine-tune BERT, we first generated a pretraining data (a
tfrecord file) file with the clinical text. Then, we pretrained our
fine-tuned BERT model on the pretraining file from the existing
BERT checkpoint of the original language model
(BERTBASE-Chinese-uncased). Once the fine-tuning process was
completed, we got a TensorFlow model that was transformed
to a PyTorch model for further NER tasks.

Radical is a common form extracted from many Chinese
characters, so that these characters not only have the basis of
classification in the form but also become a common genus in
the meaning of the word, which is helpful for people to
summarize the meaning of the word. Therefore, the meaning
of radicals is very important for people to grasp the meaning of
a word. Moreover, the radical features of Chinese characters
have been widely used to enhance different Chinese NLP tasks
in recent years [23-25]; consequently, in addition to considering
Chinese characters themselves, we also considered applying
radical features to the model. The overall network architecture
of our NER model is shown in the Bi-LSTM-CRF in Figure
2A. In our study, each token in our sequence was fed into the
fine-tuned BERT model to train for the data representation of
the whole sequence. After obtaining a representation of the
entire sequence [T1, T2, T3, …Tn], we looked for the radical of
each word in the sequence and initialized each radical with
random values to indicate the radical feature. The concatenation
x = [w_1, w_2, w_3, … w_4] of the word vectors and the radical
vectors were fed into the Bi-LSTM model, and the context
vectors learned by forward and backward LSTM layers were
then transmitted into the CRF layer to compute the
corresponding probability values and to simultaneously predict
tags. The details of our NER method in the Bi-LSTM-CRF are
shown in Multimedia Appendix 1. We also implemented 3
baselines for the NER task, as follows:

1. CRF + + is a well-known open-source tool for CRF that is
also the CRF tool with the best comprehensive performance
at present.

2. The Bi-LSTM-CRF model that takes the input
representation trained by Word2Vec as input was used as
a baseline.

3. The combined model, BBC-Radical model without
fine-tuning BERT on domain-specific corpus, was also used
as a baseline (BERT + Bi-LSTM-CRF-Radical). The model
architectures and experimental settings were the same as
in our proposed model.

Results

Experimental Settings
All the models were trained on an NVIDIA Tesla V100 GPU
with 768 GB of memory using the PyTorch framework. The
longest length of a sentence can be set to 512 in the fine-tuned
BERT of our NER model. To maintain the complete information
from the sentences, the excess part was split into another
sentence once the length exceeded 512 tokens, until all the
segmented sentences could satisfy the length constraint. We
trained the model with a batch size of 16, the hidden unit of
bi-LSTM was 128, and we also used radical embedding, which
was initialized with 20 random values. We also set the initial

learning rate as 510-5 in the Adam optimizer.

Evaluation Metrics
The results were measured using a micro-averaged F1 score =
(2PR)/(P + R), where P denotes precision and R represents
recall. In our research, we followed the strict matching rule that
was defined at the start and end boundaries, and the extraction
result referred to the same entity types as the ground truth.

Findings
In the NER task, 15,000 and 8000 cases were randomly selected
separately from the annotated cases as the training set and testing
set, respectively, and the remaining 1890 cases were considered
the validation set, which was used to verify the generalization
ability of the model in the training process. In order to better
evaluate the model, we ran our proposed model and the third
baseline model 10 times, keeping all the other parameters the
same except the sampled training data. The average value of
each valuation metric was used to show the prediction results
in Table 2.

Table 2. Overall concept extraction performances from the free-text section of Chinese adverse drug reaction (ADR) reports.

F1 score (%), mean (SD)Recall (%), mean (SD)Precision (%), mean (SD)Model

93.9 (0.08)93.1 (0.28)94.4 (0.32)CRFa ++ [21]

94.4 (0.29)94.1 (0.30)94.6 (0.33)Word2Vec + Bi-LSTMb-CRF [21]

95.2 (0.06)95.2 (0.07)95.2 (0.07)BERTc + Bi-LSTM-CRF-Radical

96.0 (0.06)95.5 (0.08)96.0 (0.05)Fine-tuning BERT + Bi-LSTM-CRF

96.2 (0.04)96.0 (0.03)96.4 (0.04)Fine-tuning BBCd-Radical

aCRF: conditional random field.
bBi-LSTM: bidirectional long short-term memory.
cBERT: Bidirectional Encoder Representations from Transformers.
dBBC: BERT-Bi-LSTM-CRF.
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CRF is a probabilistic structure model by marking and
segmenting sequence data. The obvious disadvantage of the
word vector model represented by Word2vec is that it is
context-free, which results in the same word having the same
meaning in different contexts. Consequently, neither the CRF++
nor the second baseline model did very well in our NER task.
The third row in Table 2 represents the model combining the
original BERT and Bi-LSTM-CRF-Radical models, and the
BERT model in our proposed BBC-Radical model was
fine-tuned on the domain-specific corpus. The results in the
fourth row of Table 2 also show the contribution of radical
embedding in the NER task. The proposed model in our research
achieved an F1 score of 96.2%, which outperforms the 4
baseline models. The results showed that BERT plays an
important role in capturing more text information, and our
pre-trained BERT on a specific domain can significantly
improve the performance of entity extraction.

Our proposed method outperformed the other methods for all
entity types, and the entity of “Drug” achieved the highest F1

score, while the entity of “Reason” achieved the lowest (Figure
3). This can be implied from the definitions of each entity, in
which the entity of “Reason” included not only conventional
diseases and symptoms but also some other treatments involved
with drug use, along with their body parts and adjoining
adjectives, while the definitions of “Drug” and “ADR” were
relatively simpler. Because the definitions or annotations of the
rules were more varied, the error rate of the model was relatively
high. The overlap of the concepts of different kinds of entities
is another reason for the false recognition between “Reason”
and “ADR.” For instance, the entity of “Reason” was always
recorded in ADR reports with the colloquial expressions of
symptoms. And it was hard to recognize the “Reason” of
“anorexia” when it was recorded as “never feel like eating.” As
for the entity of “Drug,” we found that it was difficult to identify
infrequently used trade names, some English abbreviations, and
some traditional Chinese medicines that are composed of
peculiar characters.
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Figure 3. Precision, recall, and F1 score for each kind of entity: (A) reason, (B) drug, and (C) adverse drug reaction (ADR). CRF: conditional random
field; BERT: Bidirectional Encoder Representations from Transformers; bi-LSTM: bidirectional long short-term memory.

Validation Results

The Man-Machine Contrast on the External Validation
Dataset
As the frontier direction of artificial intelligence research,
man-machine confrontation technology has always been a hot
spot of artificial intelligence research. Research of artificial
intelligence, mainly in the form of man-machine confrontation,
provides an excellent experimental environment and verification
method for exploring the internal growth mechanism and key

technical principles of machine intelligence. The whole process
can not only make the machine serve humans more intelligently
but also free humans from some complex tasks. For further
validation, we selected 2479 ADE reports recorded by
physicians from The Drum Tower Hospital, School of Medicine,
Nanjing University from 2016 to 2019 and validated our
proposed model to conduct NER experiments on the descriptive
texts of adverse events. After professional training, the ground
truth for the 2479 cases was produced by 10 students majoring
in hospital pharmacy, who spent 2 weeks for 4 rounds of
annotating (including 1 round of pre-annotating, 2 rounds of
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formal annotating, and 1 round of annotation correction). The
rules for annotation were the same as those for our annotation
training set. In order to further illustrate the advantages of the
entity recognition model in this paper, we designed a
Man-Machine comparison experiment. In reality, the hospital
reports the ADEs to the ADR center every year, and then, the
staff of the adverse reaction center needs to review and return
reports that do not conform to the standard. Therefore, there are
some differences in the recognition performance between the
ADEs reported by the hospital and the data from the ADR
monitoring center. As for the manual method, we invited 5
additional pharmacy students to participate in the experiment.
Under the guidance of the ADR supervisor, the 5 students were
required to complete the entity extraction of the assigned data
by manual search within 2 weeks after training. Since manual
entity extraction is time-consuming and laborious, we only had
2 rounds of marking, and finally, we obtained the results of
manual entity extraction. The results of the Man-Machine
comparison to the external validation data are shown in
Multimedia Appendix 2.

Comparison of the Man-Machine Contrast Results
After the preprocessing step, the validation data were fed into
our model for prediction, and the performance of the prediction
results is provided in Figure 4 (light blue, gray, and blue bars).
From the perspective of the entity category, when the target
entity “Reason” was only defined as “Disease,” the identification
accuracy of the entity was relatively good [26], while our
definition of “Reason” also contained other drug use–related
treatments and symptoms. Tao et al [27] performed the NER
task of “Reason” and other medicine-related entities, and the
resulting F1 score for “Reason” was only 40.9%; our F1 score
for “Reason” was 74.3%. Figure 4 (orange, yellow, and green
bars) also shows the results of the manual extraction method.
The manual method achieved a precision of 86.1%, recall of
73.8%, and F1 score of 79.5% for the NER task. Therefore,
manual extraction of entities was not only inefficient, but also
had low accuracy, especially the identification of the entity
“Reason.” The accuracy of “Drug” entity extraction was
relatively high due to the normative name of the “Drug” entity
in each experiment, while the extraction of the “Reason” and
“ADR” entities was also negatively affected by nonstandard
documentation.

Figure 4. Comparison of the Man-Machine contrast. ADR: adverse drug reaction.

In Figure 4, the F1 score is only 42.4%, and recall is extremely
low in the recognition of “Reason,” far lower than with our deep
learning method. A possible reason could be that many entities
were not recognized when the entity of “Reason” was identified
manually because of limited human attention and accuracy. At
the same time, by comparison, we found that the F1 score of
the BBC-Radical model for the recognition of other entities was
also much better than the manual recognition method. As a
special machine learning method, deep learning can
automatically extract features from data samples, which reduces
the process of constructing artificial features and has more
advantages for processing large data sets.

Discussion

Principal Findings
In our study, we developed a domain-specific NER method on
Chinese ADE records. The extraction of biomedical entities
and their relationships from texts is of great application value
to biomedical research. Accurately extracting entity information
from free text in Chinese ADE reports with NER methods in
daily practical work can greatly simplify the approval work of
staff in the ADR monitoring center and improve the quality of
ADE reports. In addition to using medical reports for detecting
ADRs, it has been proposed to use data from social media [28],
since users tend to discuss their illnesses, treatments, and
prescribed medications and their effects on social media
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platforms. For example, when Cocos et al [29] and Xie et al
[30] extracted ADR entities from social media using dictionary
matching, using a CRF and bi-LSTM model, respectively, they
helped reduce the limitations of passive reporting systems. Also,
the automatic detection of chemical references in biomedical
literature is an essential step for further biomedical text mining
and has recently received considerable attention. In addition to
using a single model for training, Zeng et al [31] and Luo et al
[32] achieved high F1 scores when they integrated bi-LSTM
and CRF to extract the drug entity and chemical substance entity,
respectively, from the text. The performance of the baseline
model using a single CRF + + also proved that the single CRF
model was inferior to the BI-LSTM-CRF model. Due to the
excellent performance of the hybrid model with bi-LSTM and
CRF, the hybrid model architecture with bi-LSTM and CRF
was also applied in the entity extraction layer of our proposed
model.

Most NLP tasks based on deep learning can be divided into the
following 3 modules: data processing, text representation, and
a task-specific model. Word2Vec, GloVe, and BERT are
excellent models of text representation that are widely used in
different NER models. Chen et al [21] obtained a high F1 score
when Word2Vec and Bi-LSTM-CRF were used to extract the
named entities from the free-text section of Chinese ADR
Reports. However, Chen et al [21] applied Word2Vec in the
input layer to generate the data representation, which would
bring only limited improvement to subsequent NLP tasks and
failed to solve the polysemy problem. In Chinese text, Zhang
et al [33] extracted breast cancer–related entities with a
pretrained BERT model that was trained on a large-scale,
unlabeled corpus of Chinese clinical text. However, their
pretrained BERT on this domain was aimed at breast cancer,
not general medical records. In our study, we also established

a deep neural network algorithm based on a domain-specific
BERT model, and our model proved the competitive
performance of NER on ADE text in the setting of the same
training set with a higher F1 score. From the results of the
Man-Machine comparison experiment, our proposed method
achieved a high degree of agreement with ground truth.
Moreover, the method proposed in this paper was superior to
manual extraction in the accuracy and speed of NER.

Furthermore, the use of NER in NLP technology can achieve
the target entity in automatic extraction from free text, and the
extraction of information can be further used in statistical
analysis, such as knowledge base–building tasks. Besides that,
the model can be used to automatically extract ADR-related
information from electronic medical records or other relevant
texts to further supplement the information contained in ADR
reports.

Conclusion
In this study, we explored an NER task on Chinese ADR reports,
with an optimized deep learning method of BBC-Radical, which
took radical features of each token, token features obtained from
the fine-tuned BERT model as the input, and Bi-LSTM-CRF
as the feature extract model. The performance of our model was
compared with other baseline models on the same dataset, and
the experimental results indicated that the BBC-Radical model
outperformed other models and obtained a competitive F1 score
of 96.2%. Moreover, in the Man-Machine comparison
experiment, our method had an absolute advantage over the
manual extraction method in terms of time, efficiency, and
accuracy. This study conducted a domain-specific NER task in
Chinese ADE records, which may play a role in promoting ADR
evaluation and postmarketing evaluation of drug safety.
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Abstract

Background: In the era of big data, the intensive care unit (ICU) is likely to benefit from real-time computer analysis and
modeling based on close patient monitoring and electronic health record data. The Medical Information Mart for Intensive Care
(MIMIC) is the first open access database in the ICU domain. Many studies have shown that common data models (CDMs)
improve database searching by allowing code, tools, and experience to be shared. The Observational Medical Outcomes Partnership
(OMOP) CDM is spreading all over the world.

Objective: The objective was to transform MIMIC into an OMOP database and to evaluate the benefits of this transformation
for analysts.

Methods: We transformed MIMIC (version 1.4.21) into OMOP format (version 5.3.3.1) through semantic and structural
mapping. The structural mapping aimed at moving the MIMIC data into the right place in OMOP, with some data transformations.
The mapping was divided into 3 phases: conception, implementation, and evaluation. The conceptual mapping aimed at aligning
the MIMIC local terminologies to OMOP's standard ones. It consisted of 3 phases: integration, alignment, and evaluation. A
documented, tested, versioned, exemplified, and open repository was set up to support the transformation and improvement of
the MIMIC community's source code. The resulting data set was evaluated over a 48-hour datathon.

Results: With an investment of 2 people for 500 hours, 64% of the data items of the 26 MIMIC tables were standardized into
the OMOP CDM and 78% of the source concepts mapped to reference terminologies. The model proved its ability to support
community contributions and was well received during the datathon, with 160 participants and 15,000 requests executed with a
maximum duration of 1 minute.

Conclusions: The resulting MIMIC-OMOP data set is the first MIMIC-OMOP data set available free of charge with real
disidentified data ready for replicable intensive care research. This approach can be generalized to any medical field.

(JMIR Med Inform 2021;9(12):e30970)   doi:10.2196/30970

KEYWORDS

data reuse; open data; OMOP; common data model; critical care; machine learning; big data; health informatics; health data;
health database; electronic health records; open access database; digital health; intensive care; health care

Introduction

Intensive care units (ICUs) are designed to provide
comprehensive support to the most severely ill patients in a
hospital [1]. Mortality is typically high among these patients,
both during and after the hospital stay [2]. Understanding the

effects of interventions on patient outcomes remains a challenge
due to the heterogeneity of patients, complexity of disease, and
variation in care patterns. Intensivists use a limited level of
evidence to guide decision making [3], whereas ICUs are a
high-density environment for data production.
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With the increasing adoption of electronic health record (EHR)
systems around the world leading to large amounts of clinical
data [4] and the development of data mining, innovation through
data reuse is likely to play an important role in clinical medicine
[5]. Indeed, based on important medical information,
expectations are to improve clinical outcomes and practices,
enable personalized medicine and guide early warning systems,
and also easily enroll a large, multicenter cohort, while
minimizing costs [6,7].

The Medical Information Mart for Intensive Care (MIMIC)-III
is a high-granularity data set of over 60,000 intensive care stays
and 46,000 unique patients from 2 successive ICU systems at
the Beth Israel Deaconess Medical Center in Boston, admitted
from 2001 to 2012 [8]. It is the first ICU database available for
free, and it has been intensively used in research, resulting in
more than 300 international publications. However, its
monocentric nature makes it difficult to generalize findings to
other ICUs.

For Kahn et al [9], “Database modelling is the process of
determining how data are to be stored in a database.” It specifies
data types, constraints, relationships, and metadata definitions
and provides a standardized way to represent resources/data
and their relationships. Some studies have shown that using a
common data model (CDM) by standardizing the structure (data
model) and concepts (terminological model) of the database
allows larger-scale multicenter research and exploitation of rare
diseases or rare events and catalyzes research by sharing
practices, source code, and tools [10,11]. However, some studies
have shown that the results are not fully reproducible from one
CDM to another [12] or from one center to another [13]. Some
approaches argue that keeping the local conceptual model [14]
and the local structural model [15] leads to better results. On
the one hand, keeping MIMIC in its specific form will not solve
the limitation for multicenter research, but on the other hand, a
fully standardized form would introduce other disadvantages,
such as loss of data and lower computational performances. The
ideal solution is probably in between to allow local or
standardized analysis, depending on the research question.

The Observational Medical Outcomes Partnership (OMOP)
CDM is a data model originally designed for multicenter
research related to adverse drug events, which has been now
extended to medical, laboratory, and genomic cases. OMOP
provides structural and conceptual models relying on reference
terminologies, such as Systematized Nomenclature of Medicine
(SNOMED) for diagnostics, RxNORM for drugs, and Logical
Observation Identifiers Names and Codes (LOINC) for
laboratory results. Several examples of databases transformed
into OMOP have been published [16-18], and OMOP stores
more than half a billion patient records from around the world
[19,20]. The OMOP conceptual model is based on a closure
table pattern [21] capable of ingesting any simple, hierarchical,
and also graph terminologies, such as SNOMED. In addition
to local terminologies, OMOP defines and maintains a set of
standard terminologies to be mapped unidirectionally (local to
standard) by implementers. Although OMOP has proven its
reliability [22], the concept mapping process is known to have
an impact on results [23] and the application of the same
protocol on different data sources leads to different results [13].

This shows the importance of keeping local terminologies so
that local analysis is still possible. Previous preliminary work
has been done on the translation of MIMIC into OMOP [24].
This work remains to be refined and updated for proper
evaluation.

When comparing different CDMs [10,25], OMOP obtained the
best results for completeness; integrity; flexibility; simplicity
of integration; implementability for a wider coverage of the
structural and conceptual model; a more systematic analysis,
thanks to an analytical library and to visualization tools; and
easier access to data through SQL queries. In terms of a
conceptual approach, OMOP offers a broader set of standard
concepts. In terms of a structural CDM, it is rigorous in how
data should be loaded into specific tables, while other CDMs,
such i2b2, are flexible with a general table that solves all data
domains. This rigorous approach is necessary for
standardization. Previous work has been performed to load
MIMIC-III into i2b2 [26]; however, the work could not be
finalized due to the tricky concept mapping to standard
terminologies tasks. OMOP has the advantage of not making
the terminology-mapping step mandatory by keeping the local
codes accessible to analysts. Compared to the Fast Healthcare
Interoperability Resources (FHIR) [27], OMOP performs better
as a conceptual CDM because the FHIR resources currently do
not specify the terminology to be used for most of the attributes.
The OMOP relational model can be materialized in csv format
and stored in any relational database, while the FHIR uses json
files and needs some processing and higher skills to exploit.
Among the above models, OMOP is the best candidate to
overcome the MIMIC limitations mentioned earlier.

Our paper was guided by the 2 following objectives: (1)
transforming MIMIC into OMOP in terms of the time needed,
skills required, and quality of the result and (2) evaluating the
resulting data set to support efficient, shareable, and real-time
analysis.

Methods

Data
The majority of source code was implemented in PostgreSQL
9.6.9 (Postgres) because it is the primary support for the MIMIC
database. It also allows the community to reproduce our work
on limited resources without licensing costs and benefit from
recent Postgres improvements in the data processing area. Some
elaborated data transformations have been implemented as
Postgres functions.

OMOP CDM version 5.3.3.1 (OMOP) tables were created from
the provided scripts, with some changes documented in our
scripts. OMOP defines 15 standardized CLINICAL data tables,
3 HEALTH system data tables, 2 HEALTH ECONOMICS data
tables, 5 tables for DERIVED elements, and 12 tables for
standardized VOCABULARY. The VOCABULARY tables
were loaded from concepts downloaded from Athena [28], and
the clinical and derived tables were loaded from MIMIC.

MIMIC-III version 1.4.21 (MIMIC) was also loaded into
Postgres with the provided scripts. A subset of 100 patients over
the 46,000 total MIMIC patients was selected based on their
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broad representativeness in the database and was cloned into a
second instance to serve as a light and representative
development set.

Structural Mapping
The structural mapping aimed at moving the MIMIC data to
the right place in OMOP, with some data transformations. It
was organized into 3 phases: conception, implementation, and
evaluation.

The conception phase consisted of looping over each MIMIC
table and choosing an equivalent location in OMOP for each
column. In general, both projects were appropriately
documented, but in several cases, we needed some clarification
from MIMIC contributors on the dedicated MIMIC git
repository [29] or from the OMOP community forum [30].
Some trickier choices have been discussed in the MIMIC-OMOP
git repository [31] and can be tracked in the commit logs.

The implementation was done through an extract-transform-load
(ETL) process that consisted of Postgres scripts to extract

information from the source or concept mapping tables and then
transform it and load it into an OMOP target table. The scripts
were managed sequentially through a main program. As a last
resort, some modifications to the structural model of OMOP
were made. A dedicated script recaps all of them and contains
columns name modifications, new columns, column type
modifications, or database indexing modifications. In particular,
each source table has been given a unique global sequence
incremented from 0, which serves as the primary key and links
to the OMOP target tables. As a result, every record was
uniquely identified, allowing us to chain the information with
OMOP, while simplifying the maintenance of primary/foreign
keys.

Although evaluating a structural model is difficult [32], several
papers have attempted to assess the quality of the CDM [9,25].
The criteria developed by Khan et al [9], which refer to the
Moody and Shanks metrics [32], were adapted to assess the
quality of the data transformation (Table 1).

Table 1. Transformation quality evaluation metrics.

DescriptionData model dimension

Domain coverage: coverage of sources domains that are accommodated by the standard OMOPa modelCompleteness: structural mapping

Data coverage: coverage of sources data concepts that mapped to the standard OMOP conceptCompleteness: conceptual mapping

“Meaningful data relationships and constraints that uphold the intent of the data's original purpose” [9]Integrity

The ease to expand the standard model for new datatypes and conceptsFlexibility

The capacity of the standard model to use multiple terminologies and link them to standard onesIntegration

The stability of the models, the community, and the cost of adoptionImplementability

The ease of the standard model to be understoodUnderstandability

The ease of querying the standard model (the model should contain the minimum of concepts and rela-
tionship)

Simplicity

aOMOP: Observational Medical Outcomes Partnership.

In addition to the Moody and Shanks metrics, we provided a
set of controls to guarantee correct transformation. To compare
overall statistics, some SQL queries were set up to compare
MIMIC and MIMIC-OMOP, and we provided basic
characterizations of the populations. All tables were covered
and tested through simple counts, aggregate counts, or
distribution checks. We estimated the loss of information during
the ETL process by measuring the percentage of both columns
and rows lost in the process, as other previous studies have done
[17]. It is important to note that we chose not to keep irrelevant
information: for example, some rows are known to be invalid
in MIMIC or some information is redundant. Each ETL script
was tested using pgTAP, a unit testing framework for Postgres.
Each unit test script checked whether a particular OMOP target
table was correctly loaded. Integrity constraints (primary keys,
foreign keys, nonnull columns) were included to apply integrity
checks at ETL run time. The last part of the structural evaluation
was Achilles software. It is open source analysis software
produced by Observational Health Data Sciences and
Informatics (OHDSI) [33]. Like many previous authors, we
used Achilles to assess data quality [34]. This tool is used for
data characterization, data quality assessment (Achilles Heel),

and health observation data visualization. All the resulting tables
are presented in the Results section.

Conceptual Mapping
The conceptual mapping aimed at aligning the MIMIC local
terminologies to OMOP's standard ones. It consisted of 3 phases:
integration, alignment, and evaluation.

The integration phase consisted of loading both types of
terminologies into the OMOP vocabulary tables. The OMOP
terminologies are provided by the Athena tool and were loaded
with the associated programs. We used export with all
terminologies without licensing limitations. The local
terminologies were extracted from the multiple MIMIC tables
and loaded into the OMOP CONCEPT table. When possible,
relevant information from the original MIMIC tables was
concatenated in the concept_name column. MIMIC local
concepts were loaded with a concept_id identifier starting from
2 billion. In the OMOP CONCEPT table, MIMIC concepts
could be distinguished with the vocabulary_id identifier equal
to “MIMIC code” and a domain_id identifier targeting the
OMOP table in which the corresponding data were stored. This
domain information was used in the ETL to send the information
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to the proper table. Following OMOP documentation, the
conceptual mapping has to be performed before the structural
mapping because the nature of the standard OMOP concepts
guides in which table (domain) the information should be stored.

The alignment phase, aimed at standardizing local MIMIC codes
into standard OMOP codes, had 4 distinct cases. In the first
case, some MIMIC data were, by chance, already coded
according to standard OMOP terminologies (eg, LOINC
laboratory results) and, therefore, the standard and local concepts
were the same. In the second case, MIMIC data were not coded
according to the standard OMOP terminologies but the mapping
was already provided by OMOP (eg, International Classification
of Diseases, 9th Revision [ICD9]/Systematized Nomenclature
of Medicine-Clinical Terms [SNOMED-CT]), so the domain
tables were loaded accordingly. In the third case, terminology
mapping was not provided, but it was small enough to be done
manually in a few hours (eg, demographic status, signs, and
symptoms). In the fourth case, terminology mapping was not
provided and consisted of a large set of local terms (admission
diagnosis, drugs). Next, only a subset of the most represented
codes was manually mapped.

We chose to use simple SQL queries that were flexible enough
to be queried on demand or to generate a prefilled csv with the
best matches. We used Postgres full-text ranking features and
linked local and standard candidates with a rating function based
on their labels. This work was performed under the control of
an intensivist.

The evaluation phase was both quantitative and qualitative. The
quantitative evaluation measured the completeness of our work:
the percentage of local concepts that were mapped to standard
concepts. The qualitative evaluation assessed the correctness.
For newly generated mappings, this consisted of manually
tagging each mapping with a score between 0 and 1 and
eventually writing a commentary on each mapped concept. In
case where the mapping was provided by automatic OMOP
terminology mapping, the evaluation was performed on a subset
of concepts manually picked within each terminology.

Data Analytics
Beyond the model transformation and with regard to the OMOP
standardization process, we performed some analysis. MIMIC
provides a large number of SQL scripts for preprocessing and
normalizing data, calculating derived scores, and defining
cohorts. Some of them were implemented on top of the OMOP
format to load the OMOP-derived tables.

A set of general denormalized tables was built on top of the
original OMOP format and had the concept_name related to
the concept_id columns. The CONCEPT table is a central
element of OMOP, and therefore, it was involved in many joins
to obtain the concept label. By precalculating the joins with the
CONCEPT tables, the denormalized tables rendered faster
calculation and simplified SQL queries.

In addition, a set of specialized analytical tables was built, in
addition to the original OMOP tables. The
MICROBIOLOGICALEVENTS table was a reorganization of
the MEASUREMENT table data of microorganisms and
associated susceptibility testing antibiotics. It was based on the

MIMIC MICROBIOLOGICALEVENTS table. The ICUSTAYS
table allowed us to quickly determine the patients admitted in
resuscitation and was inspired by the MIMIC ICUSTAYS tables.

The OMOP NOTE_NLP table was originally designed to store
the final or intermediate derived information and metadata from
clinical notes. When definitive, the extracted information is
intended to be moved to the dedicated domain or table and then
reused as regular structured data. When the information is still
intermediate, it is stored in the NOTE_NLP table and can be
used for later analysis. To populate this table, we provided 2
information extraction pipelines. The first pipeline extracted
numerical values, such as weight, height, body mass index, and
left ventricular cardiac ejection fraction, from medical notes
with a SQL script. The resulting structured numerical values
were loaded into the measurement or observation tables
according to their domain. The second pipeline section extractor,
based on the Apache Unstructured Information Management
Architecture (UIMA) framework, divided notes into sections
to help analysts choose or avoid certain sections of their analysis.
Section templates (eg, “Illness History”) were automatically
extracted from text with regular expressions and then filtered
to keep only the most frequent (frequency >1%).

A 48-hour open access datathon was set up in the Assistance
Publique des Hopitaux de Paris (Paris AP-HP) in collaboration
with the Massachusetts Institute of Technology (MIT), once
the MIMIC-OMOP transformation was ready for research. This
datathon was organized to evaluate OMOP as an alternative
data model for accessing and analyzing MIMIC data during a
real event. Scientific questions were prepared in an online forum
where participants could introduce themselves and propose a
topic or choose an existing one. OMOP was loaded into Apache
HIVE 1.2.1 in ORC format. Users had access to the ORC data
set from a web interface Jupyter Notebooks with Python, R, or
Scala. A SQL web client allowed teams to write SQL queries
from Presto to the same data set. The hadoop cluster was based
on 5 computers with 16 cores and 220 GB of RAM. The
MIMIC-OMOP data set was loaded from a Postgres instance
to HIVE through Apache SQOOP 1.4.6 directly in ORC format.
Participants also had access to the Schemaspy database physical
model to access the OMOP physical data model with both
table/column comments and key primary/foreign relationships
materializing the relationships between the tables. All queries
were logged.

Results

Data Transformation
All transformation processes are freely accessible to the public
via the MIMIC-OMOP git repository maintained by MIT-LCP
[8]. The git repository centralizes the various resources of this
work, such as documentation, source code, unit tests, and
questioning examples, discussions, and problem issues. It also
indicates web resources, such as the physical data model for
MIMIC and OMOP data sets and the Achilles Heel web client.

The MIMIC-OMOP conversion was performed by 2 developers
(a data engineer and an intensivist) for 500 hours. This included
ETL, git documentation, concept mapping, contributions, and
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unit tests. ETL (with unit tests and generation of ready-to-load
archive) on a subset of 100 patients lasted 5 minutes and enabled
fast development cycles. ETL lasted 3 hours to process the
whole MIMIC database. The resulting csv archive was almost
the same size as the original archive, and MIMIC-OMOP was
also the same size as MIMIC once loaded and indexed into
Postgres.

Structural Mapping
The results of the structural mapping are presented in Table 2.
Of the 37 OMOP tables, the ones related to hospital costs were
not applicable, some tables related to derived data were not
populated, and some tables related to vocabulary were preloaded

with terminology information. The 26 tables of MIMIC were
dispatched into 19 OMOP tables. The reduced number of tables
resulted from the differences in the design of both models.
OMOP stores all the terminologies in 1 table, whereas MIMIC
has 1 table for each terminology. In addition, the same applies
for facts data, which are grouped by nature in OMOP, while
MIMIC tables are more specialized and respect the source EHR's
design. For example, the MEASUREMENT table gathers
measured information and combines 4 source tables, resulting
in 365,181,104 rows, which is 20% more than the largest
MIMIC table. To some extent, this is a regression in terms of
performance.

Table 2. MIMICa-OMOPb data flows.

MIMIC tablesNumber of rows (n)OMOP tables

transfers, service93CARE_SITE

callout228,379COHORT_ATTRIBUTE

d_cpt, d_icd_procedures, d_items, d_labitems30,344CONCEPT

admissions, diagnosis_icd716,595CONDITION_OCCURRENCE

patients, admissions14,849DEATH

prescriptions, inputevents_cv, inputevents_mv24,934,751DRUG_EXPOSURE

chart/lab/microbiology/in/output events365,181,104MEASUREMENT

noteevents2,082,294NOTE

noteevents16,350,855NOTE_NLP

admissions, chartevents, datetimevvents, drgcodes6,721,040OBSERVATION

patients, admissions58,976OBSERVATION_PERIOD

patients, admissions46,520PERSON

cptevents, procedureevents_mv, procedure_icd1,063,525PROCEDURE_OCCURRENCE

caregivers7567PROVIDER

chartevents, labevents, microbiologyevents39,874,171SPECIMEN

admissions58,976VISIT_OCCURRENCE

admissions, transfers, service271,808VISIT_DETAIL

aMIMIC: Medical Information Mart for Intensive Care.
bOMOP: Observational Medical Outcomes Partnership.

Two important tables are provided by OMOP to model the
relationship between the data: CONCEPT_RELATIONSHIP
and FACT_RELATIONSHIP. We used them to bind the drugs
into a solution for microbiology/antibiograms and for
VISIT_DETAIL/CARE_SITE links. The following SQL query

(Textbox 1) shows how a microorganism is linked to its
susceptibility test by a FACT_RELATIONSHIP and illustrates
the flexibility of the model. However, this flexibility affects the
simplicity and the performance of the model by increasing the
number of joins within SQL queries.
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Textbox 1. Original table microbiology SQL query.

SELECT measurement_source_value

, value_as_concept_id

, concept_name

FROM measurement

JOIN concept resistance

ON value_as_concept_id = concept_id

JOIN fact_relationship

ON measurement_id = fact_id_2

JOIN

(

SELECT measurement_id AS id_is_staph

FROM measurement

WHERE

measurement_type_concept_id = 2000000007

-- 'Labs - Culture Organisms'

AND value_as_concept_id = 4149419

-- 'Staph aureus coag +'

AND measurement_concept_id = 46235217

-- 'Bacteria identified in Blood product

unit.autologous by Culture'

) staph ON id_is_staph = fact_id_1

WHERE TRUE

AND measurement_type_concept_id = 2000000008

-- 'Labs - Culture Sensitivity'

Table 3 presents the basic characterization of the MIMIC-OMOP
population and assesses the overall quality of structural mapping.
Fortunately, most statistics remain similar between the 2
versions, with few differences. Table 3 shows that MIMIC

contains 61,532 intensive care stays, while OMOP contains
71,576 intensive care stays. This represents a 16% increase in
stays.
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Table 3. Baseline characteristics of MIMICa versus OMOPb.

MIMIC-OMOPMIMICItems

Overall

46,52046,520Persons (n)

58,97658,976Admissions (n)

61,53271,575ICUc stays (n)

20,399 (43.85)20,399 (43.85)Female gender, n (%)

Age (N=58,976)

64 years, 4 months64 years, 4 monthsMean

8110 (13.75)8110 (13.75)0-5 years, n (%)

1 (0.001)1 (0.001)6-15 years, n (%)

1434 (2.43)1434 (2.43)16-25 years, n (%)

5962 (10.11)5962 (10.11)26-45 years, n (%)

17,375 (29.46)17,375 (29.46)46-65 years, n (%)

15,793 (26.78)15,793 (26.78)66-80 years, n (%)

10,301 (17.47)10,301 (17.47)>80 years, n (%)

Other characteristics

42,07142,071Emergency, n

77067706Elective, n

19,24619,246Surgical patients, n

6.59 (3.84-11.88)6.46 (3.74-11.79)Length of hospital stay, days, median (Q1-Q3)

1.87 (0.95-3.87)2.09 (1.10-4.48)Length of ICU stay, days, median (Q1-Q3)

5815 (9)5814 (9)Mortality in ICU, n (%)

4559 (6)4511 (7)Mortality in hospital, n (%)

678478Lab measurements per admissions, mean

4.64.6Procedures per admission, mean

82.882.8Drugs per admission, mean

1111Exit diagnosis per admission, mean

aMIMIC: Medical Information Mart for Intensive Care.
bOMOP: Observational Medical Outcomes Partnership.
cICU: intensive care unit.

By design, MIMIC aggregates information from various
systems. Thus, the transfer information is divided into several
tables, such as ADMISSIONS, TRANSFERS, and also
ICUSTAYS, while OMOP centralizes this information in
VISIT_DETAIL. We also added emergency stays as a normal
location for patients throughout their hospital stay (unlike what
had been done by MIMIC). The ICUSTAYS MIMIC table was
not transformed, because it derives from the TRANSFER table
and we decided to assign a new VISIT_DETAIL row for each
ICU stay (based on the TRANSFER table), while MIMIC
prefers to assign a new ICU stay if a new admission occurs more
than 24 hours after the end of the previous stay. This table also
showed an increase in the number of laboratory measurements
per admission. This is because MIMIC-OMOP gathers
laboratory data from both the MIMIC-dedicated

LABORATORY table and the CHARTEVENTS table, which
is usually not considered for this purpose. For laboratory tests,
we put a specimen (ie, a blood sample) for many laboratory
results (because 1 blood sample can be used for several tests),
and we decided to create as many rows of samples as laboratory
tests because the information was not present in MIMIC. The
same was true when date information was not provided (start/end
_datetime} for DRUG_EXPOSURE).

As mentioned in Table 4, 20%-80% of the source columns were
not retained. Almost all were redundant or provided derived
information. The main concern was the loss of some timestamps.
For example, the MIMIC CHARTEVENTS table provides the
storetime and charttime columns, but OMOP only provides 1
column to store timestamps. Thus, the MIMIC \storetime column
was eliminated during ETL, which was considered less valuable.
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Table 4. Data lost.

Columns lost, %Rows lost, %Relationship

30—aadmissions

80—callout

50—caregivers

400.04chartevents

60—cptevents

500.0001datetimeevents

20—diagnoses_icd

60—drugcodes

41—inputevents_cv

4610.0inputevents_mv

34—labevents

30—microbiologyevents

190.04noteevents

39—outputevents

50—patients

16—prescriptions

703.0procedureevents_mv

40—procedures_icd

34—services

47—transfers

aNot available.

As mentioned in the Methods section, incorrect entries were
not kept in the process. Five MIMIC tables
(INPUTEVENTS_MV, CHARTEVENTS,
PROCEDUREEVENTS_MV, NOTEEVENTS, and
DATETIMEEVENTS) had deleted rows in the ETL process.
All of them were tagged in MIMIC as erroneous or cancelled.

A set of minor modifications of the OMOP table structure was
made in order to fit the data. All character columns with limited
length were modified to unlimited length since this could cause
unpredictable truncation of content, while having no negative
impact on the Postgres storage size or performance. The
VISIT_OCCURRENCE and VISIT_DETAIL tables were
corrected according to some discussions of the OHDSI forum.
The NLP_NOTE table was extended with fields mentioned in
online documentation but forgotten in the scripts. In addition,
the offset column was divided into 2 integer-type columns
because the offset term was a SQL reserved word and it made

sense to fill the resulting offset_begin and offset_end columns
with integer values.

All the PgTAP unit tests passed. Moreover, OMOP had a 100%
match of the integrity constraints and the foreign key
relationships of the data models. After 18 hours of computations,
Achilles Heel issued 15 errors, 18 warnings, and 8 notifications.
This result is good compared to other studies [27].

Conceptual Mapping
The results of the conceptual mapping's completeness are
presented in Table 5. We have often mapped many source
concepts to a unique standard concept_id because MIMIC
provides a large number of equivalent concepts. For example,
MIMIC provides 6 distinct concepts for body temperature:
temperature C, temperature C (calc), temperature F, temperature
F (calc), temperature Fahrenheit, and temperature Celsius. All
of them were mapped to the LOINC “Body temperature”, and
numerical values were normalized.
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Table 5. Terminology mapping coverage.

Mapped concepts source, n (%)Concept source, nMapped records, n (%)Records, nOMOPa tables (domain)

58 (100)58144 (100)144CARE_SITE

6565 (94)6984644,936 (90)716,595CONDITION_OCCURRENCE

4143 (56)73989,475,205 (38)24,934,751DRUG_EXPOSURE

787 (76)103529,303,310 (73)40,141,521MEASUREMENT

1152 (80)14404,570,307 (68)6,721,040OBSERVATION

43 (100)4393,040 (100)93,040PERSON

2181 (99)22031,052,890 (99)1,063,525PROCEDURE_OCCURRENCE

71 (77)9227,911,920 (70)39,874,171SPECIMEN

15 (100)152,082,294 (100)2,082,294NOTE

34 (100)34176,928 (100)176,928VISIT_OCCURRENCE

28 (100)28396,932 (100)396,932VISIT_DETAIL

aOMOP: Observational Medical Outcomes Partnership.

OMOP's terminology coverage has already been rated as
excellent [24]. We used the OMOP terminology mappings
(National Drug Code [NDC]-RxNorm, ICD9-SNOMED,
Common Procedural Terminology Fourth Revision
[CPT4]-SNOMED) to standardize a consequent set of MIMIC
nonstandard terminologies.

The automatic OMOP terminology mapping was evaluated by
an intensivist. The results are in favor of good integration of
the model. We checked 100 elements for each mapping used
(NDC, ICD9, and CPT4). ICD9 and CPT4 were correctly
mapped to SNOMED (100%). However, only 85% of NDCs
were linked to a correct RxNorm code. This was partly due to
an incorrect NDC drug code (from MIMIC) and partly because
only 78% of NDC codes are mapped to RxNorm. Moreover,
even if this does not seem to have affected our ETL, we know
that some of ICD-9-CM codes can have a one-to-several match
with SNOMED (28%) [35].

In several cases, OMOP had no suitable concepts for the
ICU-specific cases. In particular, the VISIT_DETAIL table
does not yet introduce relevant information and duplicate
information from the VISIT_OCCURRENCE table. Therefore,
we extended the concepts to track bed transfers and room
transfers through admitting_concept_id,
discharge_to_concept_id, or visit_type_concept_id columns.
These added concepts were introduced with concept_id between
2 billion and 2.001 billion to distinguish them from OMOP
concepts (0-2 billion) and MIMIC locals (>2.001 billion).

Some local concepts could not be mapped to standard ones.
These unmapped concepts were linked with the concept_id =
0 and appeared in different cases. In the first case, the local
concept has no equivalent in the standard vocabularies. In the
second case, it has not yet been mapped and may have a standard
equivalent. In the third case, the value is missing and cannot be
mapped. In our opinion, although not all of these cases can be
used for standard queries, they should have a different concept
identifier in order to be treated differently (not just concept_id

= 0). Some of the domain_id do not match the table name, and
this makes sense because the OBSERVATION domain can be
the MEASUREMENT table and vice versa. Although various
types of information are stored in the MEASUREMENT table,
the  dedica ted  OMOP concepts  for  the
measurement_type_concept_id column were not sufficient to
distinguish them. Therefore, we added some measurement_type
concepts (eg, Labs - Chemistry, Labs - Culture Organisms).

Analytics
Some MIMIC raw information was transformed and added to
match the structural model. The laboratory textual values were
split into operators, numeric values, and units, when needed,
with a dedicated Postgres stored procedure. The free text
conditions were normalized and mapped to standard OMOP
codes to meet the conceptual model.

As indicated in the Methods section, we provided many derived
values. Common derived information was introduced and
loaded: corrected serum calcium, corrected serum potassium,
the P/F ratio, corrected osmolarity, and the Simplified Acute
Physiology Score (SAPS) II.

Denormalized derived tables improved SQL query performance
and verbosity. In addition, the resulting tables were much more
human-readable, with the concept label directly in the table and
greatly reduced joins. Therefore, a little denormalization greatly
improved the analysts’ experience of the data model and
simplicity by adding some redundancy in the data, while not
interrupting existing SQL queries. Moreover, these normalized
views were backward-compatible and remained standardized,
allowing the creation of multicentric algorithms. We provided
2 examples of materialized specialized views derived from
MICROBIOLOGYEVENTS and ICUSTAYS MIMIC that
simplified the experience for scientists (Textbox 2). These
results reflect the lack of simplicity of the model in its original
form, but this can be easily overcome with such analytics tables.
These results were in favor of good flexibility of the model,
allowing us to store derived data.
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Textbox 2. Optimized and denormalized microbiology table SQL query.

SELECT antibiotic_source_value,

antibiotic_interpretation_concept_id,

antibiotic_interpretation_concept_name

FROM microbiology

WHERE

organism_concept_id = 4149419

-- 'Staph aureus coag +'

AND specimen_concept_id = 46235217

-- 'Bacteria identified in Blood product

unit.autologous by Culture';

The note section extraction pipeline resulted in 1200 sections
that were collected and then manually filtered to exclude false
positives; 400 similar groups were highlighted. The extracted
sections were not mapped to standard terminologies, such as
the LOINC clinical document ontology (CDO). The reason for
this is that the LOINC CDO decided not to keep these sections
up to date, considering that they are not widely used [36].

The Paris AP-HP organized a datathon with MIMIC-OMOP,
in which 160 participants from 25 teams had 48 hours to
undertake a clinical project using the MIMIC-OMOP database.
They launched around 15,000 queries, with a maximum duration
of 1 minute. They got an opportunity to create mixed teams:
clinicians brought the issues that required data mining, as well
as their data expertise, while data scientists judged the technical
feasibility and finally implemented the various analyses needed.
Writing standard queries (ie, with standard concepts) requires
knowing the organization of relational models (SQL) and also
mastering the graphical nature of certain terminologies, such
as SNOMED-CT, in order to capture all potential codes that
might be related to the one analysts think of first. Overall, the
teams quickly mastered the OMOP model and managed to
produce results at the end of the datathon. These results were
in favor of good understandibility and simplicity of the model.

Discussion

Principal Results
In this paper, we presented the transformation of the MIMIC
database into the OMOP CDM and its evaluation. The first
major contribution of this study is to provide a freely accessible
data set in OMOP format that could be useful to researchers.
The second major contribution is to share with the OMOP
community some useful transformations dedicated to intensive
care that can be reused on any OMOP data set. The last
contribution is to evaluate the implementation of MIMIC into
the OMOP CDM.

Lessons Learned
We observed that the OMOP CDM can be implemented at low
cost and downstream of an existing architecture, since the scripts
are freely available on the project's GitHub, for 8 different
database management systems. The rationale of the data model
can be understood through the numerous resources made

available by the OHDSI community: tutorials, forums, working
groups, and documentation. The structural mapping is carried
out without difficulty as question marks can be raised with the
community. The main difficulty remains the step of semantic
mapping, especially in countries or institutions using local
terminologies and vocabularies. Since the CDM model proposes
to store both international and local vocabulary codes for each
table, it is possible to start conducting studies using only the
local codes. The mapping to the international codes can be
carried out in a second phase, project by project, for the codes
presented by each study. This will make it easier to spread out
the difficulty of global mapping over thousands of codes.

Data Transformation
The choice of a simple SQL-based ETL over dedicated ETL
software has several advantages. SQL, as a unique language,
factors both people's knowledge and computer resources,
allowing analysts to become implementers and revise code or
contribute to transformations. SQL was also used for semantic
mapping, and OHDSI provides Usagi [37]. The use of csv
format for sharing information is simple and universal. Both
SQL and CSV are standard and target a large community
(physicians, engineers, and analysts) with translational profiles
and is compatible with multiple technologies.

The calculation time of ETL on the Postgres instance on a
modest personal computer is compatible with community work
where the collaborator can clone the source code and configure
a development instance to reproduce or improve the work.

Choosing a public GitHub repository for documentation and
source code support allows analysts to learn more about the
project and also learn how to contribute. The highly active
OMOP forum is full of details and training. In contrast, the
implementation guide suffers from not being as detailed and
maintained. We believe that the OMOP community would
greatly benefit from a systematic and concise synchronization
between the forum, mailing lists, source code repository, and
end-user documentation.

Any data transformation is likely to generate bugs that can later
have an impact on medical research. The foundations of the
relational database management system (RDBMS), such as
transactions, standardization, and integrity constraints, are
integrated safeguards that have been useful throughout the
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process. In addition, the implemented unit tests ensure that past
bugs are not repeated. An ideal but complex validation method
would be to replicate existing MIMIC studies and ensure that
the results are consistent across data models. The OHDSI
Achilles tool completes our quality assessment. It is a
surprisingly slow tool to process. The rules and their descriptions
are difficult to understand. A more specific tool should be
provided and described.

Another missing aspect is a set of quality tables for assessing
and measuring data quality. MIMIC has a column to keep track
of corrupted information. It would be interesting to be able to
keep the disordered data in OMOP and enable research in the
data cleaning/quality field. Although the OMOP-CDM provides
rules to name columns, there are some mistakes, and we have
to modify it. One the one hand, it is a problem for a CDM to
contain errors, but on the other hand, it is easy to relay issues
that are now corrected.

Data Analytics
It is important that OMOP maintain a level of standardization
in order to simplify ETL and make it consistent. However, once
done, it makes sense to give access to scientific data through
more denormalized and specialized tables. There are many
concerns about OMOP's performance and optimization.
However, there will never be a perfect multipurpose case table,
and it is the responsibility of data scientists to build their own,
simplified, specialized tables for their research and to respond
effectively and clearly to their needs.

The derived data integrate quite well into OMOP. We used the
NOTE_NLP table to store information derived from notes, the
MEASUREMENT table to store derived numerical information,
and the COHORT_ATTRIBUTE table to store derived scores.
However, it is not yet clear whether derived data should be
stored by domain or whether they should be stored in dedicated
derived tables. We found that there are no tables to track the
source and description of these data.

The pipeline notes' section extractor we used was based on the
Apache UIMA framework. Although some methods already
exist to extract medical sections [38], the prior work of
describing sections was too complex, and we opted for a naive
approach.

Last but not least, as noted in the Introduction section, a good
CDM for the ICU would allow for near real-time early warning
systems and inference modeling on fresh data. OMOP is clearly
designed to provide a static data set and does not have real-time
ingestion and data versioning control mechanisms like EHRs
usually do. Analysis of static data sets is essential for
reproducible results. However, when the algorithms need to be
moved to the bedside, it is necessary to have fresh data and a
way of re-identifying the patient that OMOP does not yet
provide. That said, a solution such as the HL7 FHIR is a great
way to implement real-time inference from EHR data, and that
is how the FHIR and OMOP are complementary. This has
already been studied but needs further optimization [39].

The MIT regularly organizes datathons using their open-access
databases [40-43]. From a human point of view, these events

enable teamwork and collaboration between different specialties
(ie, physicians, computer scientists, statisticians, data scientists),
which can benefit from each other's expertise. This time, the
datathon was also an opportunity for these profiles to
collaborate, and it allowed novices to be introduced to the
OMOP CDM and its analytical tools. The critical point in the
conducting of such an event is related to the IT architecture,
which must allow dozens of users to run large queries at the
same time and to share scripts and results. We used a platform
similar to the one used by Celi et al [41], with several analytical
tools (Jupyter Notebook, Python, R, Scala).

The datathon showed that distributed platforms with basic
hardware provide SQL tools for online analytical processing
(OLAP) with excellent performance that overcomes RDBMS
weaknesses. Therefore, OLAP takes advantage of SQL language
analysis functions, such as grouping, windowing, assembling,
and mathematical functions, that are often missing in NoSQL
databases. Although some are open source, these distributed
technologies are not easily accessible; however, cloud-based
solutions are increasingly affordable for researchers.

The real-life test of the datathon revealed the strong need to
make the physical data model accessible, including comments
on columns and tables, and we discovered that an open source
tool called schemaspy is helpful. In addition, we found that the
GitHub repository is the best place to document and interact
with the community.

The OMOP model is powerful because it allows a broad
spectrum of analysis from specialized local models to
evidence-based statistical analysis in an easy-to-learn and
accessible format. The major complexity of this model is
intrinsically linked to the terminologies’ complexity with the
use of its closure table [21].

Compared to the original MIMIC data model, working with
OMOP offers the ability to write standard code and analyses
that could benefit other international users.

The effectiveness of the OMOP model has some weaknesses
because it seems to focus on consistency rather than
performance. However, we have shown that it is easy to
overcome these weaknesses and improve OMOP with design
or technology optimization and a dedicated structure that
ultimately remains a standard and is shareable because it derives
from the original model.

Conclusions
The transformation of MIMIC into OMOP required efforts that
remain reasonable. It is and always will be a work in progress
because standard concept mapping is an almost infinite process
with constant improvements. Fortunately, the published version
of MIMIC-OMOP is search ready and already offers the same
scope of data as the original MIMIC version and even more
with the derived data. It is publicly available on the GitHub
repository and have been designed to be easily revised, copied,
or enriched according to the OMOP or MIMIC philosophy by
any users who know SQL.
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CDO: clinical document ontology
CPT4: Common Procedural Terminology Fourth Revision
EHR: electronic health record
ETL: extract-transform-load
FHIR: Fast Healthcare Interoperability Resources
ICD9: International Classification of Diseases, 9th Revision
ICU: intensive care unit
LOINC: Logical Observation Identifiers Names and Codes
MIMIC: Medical Information Mart for Intensive Care
MIT: Massachusetts Institute of Technology
NDC: National Drug Code
OHDSI: Observational Health Data Sciences and Informatics
OLAP: online analytical processing
OMOP: Observational Medical Outcomes Partnership
RDBMS: relational database management system
SAPS: Simplified Acute Physiology Score
SNOMED: Systematized Nomenclature of Medicine
SNOMED-CT: Systematized Nomenclature of Medicine-Clinical Terms
UIMA: Unstructured Information Management Architecture
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Abstract

Background: Accurate assessment of the percentage total body surface area (%TBSA) of burn wounds is crucial in the
management of burn patients. The resuscitation fluid and nutritional needs of burn patients, their need for intensive unit care, and
probability of mortality are all directly related to %TBSA. It is difficult to estimate a burn area of irregular shape by inspection.
Many articles have reported discrepancies in estimating %TBSA by different doctors.

Objective: We propose a method, based on deep learning, for burn wound detection, segmentation, and calculation of %TBSA
on a pixel-to-pixel basis.

Methods: A 2-step procedure was used to convert burn wound diagnosis into %TBSA. In the first step, images of burn wounds
were collected from medical records and labeled by burn surgeons, and the data set was then input into 2 deep learning architectures,
U-Net and Mask R-CNN, each configured with 2 different backbones, to segment the burn wounds. In the second step, we
collected and labeled images of hands to create another data set, which was also input into U-Net and Mask R-CNN to segment
the hands. The %TBSA of burn wounds was then calculated by comparing the pixels of mask areas on images of the burn wound
and hand of the same patient according to the rule of hand, which states that one’s hand accounts for 0.8% of TBSA.

Results: A total of 2591 images of burn wounds were collected and labeled to form the burn wound data set. The data set was
randomly split into training, validation, and testing sets in a ratio of 8:1:1. Four hundred images of volar hands were collected
and labeled to form the hand data set, which was also split into 3 sets using the same method. For the images of burn wounds,
Mask R-CNN with ResNet101 had the best segmentation result with a Dice coefficient (DC) of 0.9496, while U-Net with
ResNet101 had a DC of 0.8545. For the hand images, U-Net and Mask R-CNN had similar performance with DC values of 0.9920
and 0.9910, respectively. Lastly, we conducted a test diagnosis in a burn patient. Mask R-CNN with ResNet101 had on average
less deviation (0.115% TBSA) from the ground truth than burn surgeons.

Conclusions: This is one of the first studies to diagnose all depths of burn wounds and convert the segmentation results into
%TBSA using different deep learning models. We aimed to assist medical staff in estimating burn size more accurately, thereby
helping to provide precise care to burn victims.

(JMIR Med Inform 2021;9(12):e22798)   doi:10.2196/22798
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deep learning; semantic segmentation; instance segmentation; burn wounds; percentage total body surface area
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Introduction

Background
According to the World Health Organization, an estimated
265,000 deaths occur each year from burn injuries. In the United
States, burn injuries result in 10 million visits to the emergency
department and 40,000 patients requiring hospitalization
annually. The most critical aspect of managing burn injuries is
the accurate calculation of the burn area, expressed as percentage
total body surface area (%TBSA). However, many articles have
reported discrepancies in the %TBSA diagnosed by different
doctors. In adult burn injuries, Harish et al reported that
overestimation by the referring institution occurred in 53% of
cases and that the difference was statistically significant [1]. In
child burn injuries from a national survey, Baartmans et al
reported that burn size was often overestimated by referrers, by
up to 30% TBSA, while underestimation was up to 13% TBSA
[2].

There are 2 types of inaccurate estimations of burn injuries:
misdiagnosis of burn depth and miscalculation of burn area.
Misdiagnosis of burn depth comes from the dynamic nature of
wound change. The initial presentation of burn depth may be
quite different from the presentation several days after injury.
Hence, the reported accuracy of diagnosis of burn depth is only
64% to 76% among experienced burn surgeons [3]. When
evaluations are performed by less experienced practitioners, the
accuracy declines to 50%. Fortunately, many technologies have
been developed for accurate diagnosis of burn depth, such as
laser Doppler imaging (LDI), infrared thermography, and
photoacoustic imaging [4-7]. For example, LDI, which is based
on perfusion in the burn area, provides information that is highly

correlated with burn wound healing potential. Healing potential
is a practical indicator of burn depth.

Though the assessment of burn depth with such technologies
is often satisfactory, miscalculation of burn area may be hard
to avoid. Such miscalculation often occurs when an area of
irregular shape is estimated by comparing it with another area
of irregular shape, for example, estimating the %TBSA of an
irregularly shaped burn area on the upper extremity of an adult
using the estimation that the upper extremity has roughly 7%
to 9% TBSA as a guide [8,9]. In an interesting study, Parvizi
et al reported that even when participants reached consensus on
the margin of the burn wound, their estimations of %TBSA
were still different [10]. The difference in %TBSA resulted in
discrepancies in estimating the amount of resuscitation fluid
needed by as much as 5280 mL using the Parkland formula.
Clearly, there is an unmet need to improve the accuracy of burn
diagnosis.

Machine learning has many applications in the field of medicine,
such as in drug development and disease diagnosis [11-14].
Although machine learning has also been implemented in many
aspects of surgery, its application in burn care is relatively rare
[15,16]. Burn care is a field where human error can be reduced
by computer assistance.

Prior Work
Early work in the use of machine learning to assist burn
diagnosis focused on classification of burn depth (Table 1).
Since burn injuries result in a mixture of different burn depths,
most images of burn wounds cannot be simply classified as
superficial partial burn, deep partial burn, or full thickness burn.
Before images of burn wounds are input for feature extraction,
the images need to be processed.

Table 1. Segmentation of burn wounds.

ObjectivePerformance metricModelImage databaseStudy

Burn depthAccuracy 88.57%Fuzzy-ARTMAP38 imagesSerrano et al [17]

Burn depthAccuracy 82.26%Fuzzy-ARTMAP50 imagesAcha et al [18]

Burn depthError rate 0.7%SVMa, Fuzzy-ARTMAP50 imagesAcha et al [19]

Need for skin graftsAccuracy 83.8%KNNb, MDSc74 imagesAcha et al [20]

Need for skin graftsAccuracy 79.73%SVM, MDS94 imagesSerrano et al [21]

Burn depthAccuracy 90.54%VGG16, GoogleNet, ResNet50,
ResNet101

23 imagesCirillo et al [22]

Burn area segmentation,
burn depth

Accuracy 85%AlexNet, VGG16, GoogleNet749 imagesDespo et al [23]

Burn area segmentationDCd 84.51%Mask R-CNN1000 imagesJiao et al [24]

Estimation of burn %TBSAeDC 94%Mask R-CNN, U-Net2591 imagesOur study

aSVM: support vector machine.
bKNN: K-nearest neighbor.
cMDS: multidimensional scaling.
dDC: Dice coefficient.
e%TBSA: percentage total body surface area.
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Small Regions of Images
The most common method of addressing different burn depths
in a given image is to select small regions of the image, called
boxes, for processing. These small boxes are then transformed
into a red/green/blue (RGB) matrix in a color coordinate system.
The relative distance of each of the pixels from the others is
then calculated and a threshold is set to check whether the box
is homogeneous in texture and color. Homogeneous boxes are
classified into different burn depths and input for machine
learning.

Acha and Serrano collected 62 images of burn wounds with a
resolution of 1536×1024 pixels. They selected regions of only
49×49 pixels from the images and classified these small boxes
into 5 appearances to yield 250 images. They input the data set
into Fuzzy-ARTMAP for training. A neural network was then
used to classify burns into the 3 aforementioned types of burn
depths with a success rate of 82% to 88% [17,18]. Later, they
reduced the error rate from 1.6% to 0.7% by applying 5-fold
cross-validation to the data sets and used support vector machine
(SVM) to perform the classification [19]. In 2 subsequent
studies, they further applied multidimensional scaling combining
SVM and k-nearest neighbor classification to predict the need
for a skin graft, with success rates of 79.73% and 83.8%,
respectively [20,21].

Continuous Monitoring
Another method used to get the burn depths of a region
corresponding to any specified pixels of the images of a burn
wound is to record the wound from the time of injury to
complete healing with the same protocol. Cirillo et al
continuously collected images from the same burn wound until
it healed [22]. They were then able to draw lines on the image
corresponding to healing time and divide the area into 4 types
of burn depths. To be more precise, they used the method
mentioned above to extract small regions of the images (676
regions of 224×224 pixels from 23 images of 3456×2304 pixels).
They then input these square regions of interest (RoIs) into
several pretrained convolutional neural network (CNN) models,
such as VGG19, ResNet18, ResNet50, and ResNet101.
ResNet101 showed the best classification results with an average
accuracy of 0.8166.

Goal of This Study
The use of machine learning in burn diagnosis to classify burn
depth is currently quite limited. Technologies, such as LDI and
thermography, are readily available and far more commonly
employed. The treatment of burn injury may last for days or
months. Without the use of special technologies, burn depth
can still be determined by clinical assessment during the course
of treatment. Recently, CNNs have been used in burn diagnosis
to segment burn wounds. Despo et al reported a mean
intersection over union (IoU) of around 0.7 with a fully
convolutional network (FCN) [23]. Jiao et al reported a mean
Dice coefficient (DC) of 0.85 with Mask R-CNN [24]. Such
segmentation results could further be used to calculate %TBSA.
This is important because all formulae for emergent fluid
resuscitation (eg, the Parkland formula = %TBSA × body weight

× 4) and calorie needs (eg, the Curreri formula = 25 × body
weight + 40 × %TBSA) are based on %TBSA.

In this study, we implemented deep learning models to segment
burn wounds and perform conversion to %TBSA based on the
number of pixels. We tried to decrease the human error of
estimating an area of irregular shape by inspection. We aimed
to help medical staff obtain accurate formulae to aid in making
decisions about triage, acute management, and transfer of burn
patients.

Methods

Image Acquisition
This study was approved by the research ethics review
committee of Far Eastern Hospital (number 109037-F). We
reviewed the medical records of patients in Far Eastern Hospital
from January 2016 to December 2019 with ICD9 codes 940-948,
983, and 994. We collected the images of burn wounds from
their medical records and saved them as JPG files. These images
were assigned random numbers for deidentification and were
randomly presented to 2 out of 5 burn surgeons for labeling.

Labeling and Processing
Since many burn wounds have a mixture of different burn
depths, the images were roughly classified into the following
3 categories: superficial/superficial partial burn, deep partial
burn, and full thickness burn. Clinically, the color of
superficial/superficial partial burns is red or pink, and the color
of deep partial burns is dark pink to blotchy red. Blistering is
common in superficial partial burns and is also present in deep
partial burns of a relatively large size. Full thickness burns are
white, waxy, or charred without blisters. All images were
co-labeled by 2 burn surgeons to yield a single consensus result.
The margins of the burn wounds were labeled without regard
to burn depth with the labeling tool LabelMe and saved as JSON
files. A burn wound image was excluded if the wound was on
the face; it involved tattooed skin; it was coated with burn
ointment; it appeared to have undergone an intervention, such
as debridement or skin graft; or no agreement was reached on
the margin of the burn wound by the 2 burn surgeons.

Since the images of burn wounds were collected from various
medical records, their sizes were not uniform and ranged from
4000×3000 to 2736×1824 to 2592×1944 pixels. All labeled
images were resized to 512×512 pixels. The data set of burn
wounds was randomly split in a ratio of 8:1:1 into 3 sets for
training, validation, and testing. We applied 2 deep learning
architectures, U-Net and Mask R-CNN, in combination with 2
different backbones, ResNet50 and ResNet101, to segment these
images.

Evaluation Metrics
The DC and IoU are 2 common metrics used to assess
segmentation performance, whereas precision, recall, and
accuracy are common metrics for assessing classification
performance. The DC is twice the area of the intersection of the
ground truth and prediction divided by the sum of their areas.
It is given as follows:
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where TP (true positive) denotes the number of correctly
classified burn pixels, FP (false positive) denotes the number
of mistakenly classified burn pixels, and FN (false negative)
denotes the number of mistakenly classified nonburn pixels.

The IoU denotes the area of the intersection of the ground truth
and prediction divided by the area of their union. It is given as
follows:

Precision is defined as the ratio of burn pixels that models
correctly classified in all predicted pixels. It is also called
positive predictive value and is given as follows:

Precision = TP / (TP + FP) (3)

Recall is defined as the ratio of burn pixels that are correctly
classified in all actual burn pixels. It is also called sensitivity
and is given as follows:

Recall = TP / (TP + FN) (4)

Accuracy denotes the percentage of correctly classified pixels.
It is given as follows:

Accuracy = (TP + TN) / (TP + FP + TN + FN) (5)

where TN (true negative) denotes the number of correctly
classified nonburn pixels.

Semantic Segmentation: U-Net
The convolutions in the U-Net path can be replaced with a deep
network framework, such as the ResNet framework, which can
explore and learn more features from the data (Multimedia
Appendix 1). Then, the networks can be initialized using
pretrained model weights derived from large-scale object
detection, segmentation, and captioning data sets such as
ImageNet and COCO. In our case, we trained our model using
2 different backbones, ResNet101 and ResNet50, with weights
from the pretrained ImageNet model (Table 2). The standard
augmentations of images we used were rotations, shifts, scale,
gaussian blur, and contrast normalization. The standard Dice
loss was chosen as the loss function. The formula is as follows:

The   term is used to avoid the issue of dividing by 0 when
precision and recall are empty.

Table 2. Configuration of the models.

U-NetMask R-CNNVariable

11Number of classes

ResNet101 & ResNet50ResNet101 & ResNet50Backbone

N/Aa8, 16, 32, 64, 128Regional proposal network anchor scales

N/A128Train RoIsb per image, n

N/A256Anchors per image, n

0.0010.0001 (initial rate, change in different epochs)Learning rate

0.90.9Learning momentum

N/A0.0001Weight decay

88Batch size

512×512512×512Image dimensions

aN/A: not applicable.
bRoI: region of interest.

Instance Segmentation: Mask R-CNN
In our implementation of Mask R-CNN, we trained our model
using ResNet101 and ResNet50 with weights from the pretrained
COCO model (Table 1). Mask R-CNN uses a multitask loss
function given by L = Lclass + Lbox + Lmask (Figure 1). The Lclass

component contains the regional proposal network (RPN) class
loss (failure of the RPN to separate object prediction from

background) added to the Mask R-CNN class loss (failure of
Mask R-CNN object classification). The Lbox component
contains the RPN bounding box loss (failure of object
localization or bounding by the RPN) added to the Mask R-CNN
bounding box loss (failure of object localization or bounding
by Mask R-CNN). The last component Lmask loss constitutes
the failure of Mask R-CNN object mask segmentation.
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Figure 1. Mask R-CNN architecture with ResNet101. FPN: feature pyramid network; RoI: region of interest; RPN: regional proposal network.

Burn Segmentation to %TBSA
When the burn wounds are correctly segmented, the final step
is to convert the pixels to %TBSA. To solve this problem, we
applied the rule of hand/palm. The original rule is that a person’s
hand with digits accounts for 1% TBSA. It is the most common
method of estimating burn %TBSA [25,26]. Recent studies have
shown that a hand without digits represents precisely 0.5%
TBSA (the rule of palm) and a hand with digits should be
adjusted to around 0.8% TBSA (the rule of hand) [8]. If we use
deep learning models to segment a patient’s burn wounds as
well as hands, we can then convert the segmentation result of
burn wounds into %TBSA.

To produce the data set of hands and the data set of palms, we
collected images of both volar hands from our colleagues. For
each image, we labeled the hand with digits and without digits
corresponding to the rule of hand and the rule of palm,
respectively. These 2 data sets were split in a ratio of 8:1:1 into
training, validation, and testing sets as well. The hand data set
and the palm data set were processed according to the previous
methods for burn wounds. The %TBSA of a burn wound can
be calculated by comparing the mask area of the burn wound
with the mask area of the hand or palm of the same patient. The
formula is given by:

where Mburn is the number of pixels of the masked burn area,
Mhand is the number of pixels of the masked hand area (0.8%
TBSA), Mpalm is the number of pixels of the masked palm area
(0.5% TBSA), Dburn is the filming distance of the image of the

patient’s burn wound, and Dhand is the filming distance of the
image of the patient’s hand.

Results

Segmentation of Burn Wounds
There were 3 data sets used in our study, 1 each for burn
wounds, hands, and palms. For the burn wound data, we
collected 3571 images from the medical records of Far Eastern
Hospital, 980 of which were excluded (mostly because the burn
wounds had undergone interventions, and some because they
were coated with burn ointment). The 2591 selected images
were labeled and included in the burn wound data set. Among
these images, 2073 were used as the training set and 259 were
used as the validation set. The remaining 259 images were
preserved as the testing set.

In our study, there was only 1 class in the ground truth. From
the definitions of the DC and IoU, they have the relation of 1/2
× DC ≤ IoU ≤ DC and perfect positive correlation. We used DC
as our main metric to evaluate segmentation performance
because it penalizes false negatives more than IoU does, and it
is better to overestimate burn size than underestimate it.

Both U-Net and Mask R-CNN had better segmentation
performance with the ResNet101 backbone than with ResNet50
(Table 3 and Table 4). The improvement was obvious in U-Net
(DC: 0.8545 vs 0.8077) but negligible in Mask R-CNN (DC:
0.9496 vs 0.9493). Under the same backbone, Mask R-CNN
had better performance in burn wound segmentation and
classification than U-Net. Mask R-CNN with ResNet101 had
the best segmentation result with a DC of 0.9496.
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Figures 2-4 illustrate the performance of the 2 models in
segmenting different burn depths. Both Mask R-CNN and U-Net

showed poor segmentation results when they encountered small
scattered burns (Figure 5).

Table 3. Segmentation results of burn wounds with ResNet101.

Mask R-CNNU-NetVariable

0.94960.8545Mean DCa

0.90890.7782Mean IoUb

0.96130.9041Mean precision

0.93900.8541Mean recall

0.91300.7893Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.

Table 4. Segmentation results of burn wounds with ResNet50.

Mask R-CNNU-NetVariable

0.94930.8077Mean DCa

0.90750.7190Mean IoUb

0.96100.8947Mean precision

0.93820.8002Mean recall

0.91170.7331Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.

Figure 2. Superficial partial burn. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.
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Figure 3. Deep partial burn. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.

Figure 4. Full thickness burn. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.
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Figure 5. Small scattered burns. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.

Segmentation of Hands and Palms
A total of 400 images of both volar hands were collected and
labeled. The male-to-female ratio was 193:207. Since U-Net
and Mask R-CNN both performed better with the ResNet101
backbone than with the ResNet50 backbone in the burn wound
segmentation, only ResNet101 was applied in the segmentation
of the hand and palm data sets.

Contrary to the burn wound results, U-Net had slightly better
overall performance in the segmentation of the hands and palms
than Mask R-CNN (Table 5 and Table 6). For hand
segmentation, U-Net had a DC of 0.9920 and Mask R-CNN
had a DC of 0.9692. For palm segmentation, the difference was
not as obvious with a DC of 0.9910 versus 0.9803. Figure 6
provides a representative example of the segmentation of a
particular hand by both U-Net and Mask R-CNN, while
Multimedia Appendix 2 provides an example for a palm.

Table 5. Segmentation results for hands with ResNet101.

Mask R-CNNU-NetVariable

0.96920.9920Mean DCa

0.94050.9842Mean IoUb

0.96570.9906Mean precision

0.97280.9935Mean recall

0.94070.9933Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.
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Table 6. Segmentation results for palms with ResNet101.

Mask R-CNNU-NetVariable

0.98030.9910Mean DCa

0.96140.9822Mean IoUb

0.98360.9904Mean precision

0.97700.9916Mean recall

0.96150.9878Mean accuracy

aDC: Dice coefficient.
bIoU: intersection over union.

Figure 6. Segmentation of the hand. A: original photo; B: ground truth; C: result of Mask R-CNN; D: result of U-Net.

Burn Segmentation to %TBSA
In the last part of our study, we designed a test to compare the
estimation of the percentage of TBSA burned according to
surgeons and Mask R-CNN. Photos of the abdomen, left thigh,
left leg, right leg, and left hand of a patient were taken from the
same distance (Figure 7). Images of the burn wounds and of the
hands were co-labeled by 2 surgeons as ground truth. The
previously trained Mask R-CNN with the ResNet101 backbone

was used to calculate the %TBSA of each wound. Then, pictures
of the burn wounds and the hands were given to 5 burn surgeons,
and they gave their respective estimations of %TBSA. The
results of each surgeon, ground truth, and Mask R-CNN are
shown in Multimedia Appendix 3. The ground truth was a
pixel-based calculation (abdomen: 2.07%, thigh: 2.06%, right
leg and knee: 2.64%, and left leg: 2.85%). Mask R-CNN had a
smaller average deviation (0.115% TBSA) from ground truth
than all of the burn surgeons (0.45%-1.14% TBSA; Figure 8).
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Figure 7. A1-A5: original image of the left hand, abdomen, left thigh, right leg, and left leg. B1-B5: labeled images as ground truth.

Figure 8. Differences between ground truth and estimated %TBSA of Mask R-CNN and burn surgeons at various burn sites. %TBSA: percentage total
body surface area.

Discussion

Data Sets
Studies of machine learning in burn diagnosis are relatively
rare, because there are challenges in establishing accurate data
sets. To begin with, unlike medical images from X-ray or
computed tomography (CT) scans, images of burn wounds are
not acquired under a standard protocol. Images of burn wounds
are acquired using different equipment under various
circumstances, such as illumination conditions, distance to the
patient, and the background scene. These factors make it difficult
to achieve a uniform standard of labeling and annotation.

Next, the numbers of burn images compared with other open
image data sets, such as MNIST (70,000 images) and CIFAR-10
(60,000 images), are limited. In recent studies of burn wound
segmentation, Despo et al used 656 images for training [23]
and Jiao used 1000 images for training [24]. We used 2332
labeled images from all burn depths for training and 259 images
for testing. Images of burn wounds are difficult to collect. Unlike
cancer imaging archives, there are no high-quality open data
sets of images of burn wounds. This may be because complete

deidentification of these images is not possible. Researchers
are asked not to publish these images as open data sets due to
patient privacy. Researchers from different medical facilities
are not permitted to share the images with each other as well.
Under these circumstances, federated learning to form a global
model may be a feasible method to improve the accuracy of
different individual models. The concept of federated learning
is to share only the weights and bias of different models without
sharing data sets [27,28].

In addition, burn wounds, unlike tumors that are detected on
magnetic resonance imaging (MRI) images, are not commonly
sampled for biopsy to confirm diagnosis. For any pixels on the
images, if no other diagnostic technology is used, the true burn
depths are hard to ascertain. The images, even when labeled by
burn specialists, are relative ground truth only. A given image
may receive many different labels when assessed by many
doctors.

Finally, many burn wounds have a mixture of several burn
depths. If the object of deep learning is to build a burn depth
classifier, most images cannot be included for training. Images
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of burn wounds require preprocessing as discussed previously
in the methods.

In the early work of our study, we tried to build a burn depth
classifier. We divided the images of burn wounds into the
following 4 categories based on burn depth: superficial (112
images), superficial partial (201 images), deep partial (165
images), and full thickness (170 images). We imported the data
set into IBM Visual Insights (previously PowerAI Vision), a
tool that can train models to do the classification task. We did
data augmentation to enlarge the data set and improve
generalization. Then, we chose pretrained GoogLeNet as our
network structure. This model showed decent results, with a
mean accuracy of 93% (Multimedia Appendix 4). However,
some images in the category “superficial partial” had regions
with other burn depths as well. The confusion matrix showed
more false negative results in this group than in the others
(Multimedia Appendix 5). Hence, the accuracy of the model as
a burn depth classifier largely depended on the burn wound
images collected.

The abovementioned confounding factors also had an impact
in previous studies of machine learning used to segment images
of burn wounds. In the study by Despo et al, the margins of
burn wounds on images were labeled by a surgeon. Then, every
image was annotated to 1 severity of burn depth. Since the burn
wound depths were not homogeneous, accuracy and IoU were
greater in partial thickness burns [23]. In our study, we also
faced the same challenges. Initially, every image was labeled
by 2 burn surgeons to obtain 2 labeled images. When the burn
wounds had multiple burn depths, the labeled areas of the 2
surgeons had more discrepancy. When we input the discrepantly
labeled images to train the models, they resulted in a good mask
of the overall burn area but an incorrect classification of burn
depth segmentation (Multimedia Appendix 6 and Multimedia
Appendix 7). Zhang et al reported an interesting finding [29].
When they input randomly labeled objects or random pixels,
after 10,000 steps, their neural network models still converged
to fit the training set perfectly. The neural networks were rich
enough to memorize bad training data. Yet, their results on
testing data sets were poor. To avoid the problem of ambiguous
ground truth, we modified the method so that only the burn
wound margin was co-labeled by the 2 burn surgeons. This was
because the ground truth of the margins had the highest
consensus and because all formulae used for burn resuscitation
only involved total burn area, which is equivalent to burn margin
and is not related to burn depth.

Segmentation Results
We chose U-Net and Mask R-CNN as our main models for
segmentation of burn wounds and hands because they are both
popular and well-developed CNN models. Although they have
different architectures and use different loss functions, their
segmentation output seems similar. U-Net outputs semantic
segmentation, and it is the most common segmentation model
in the medical field [30]. U-Net has been deployed in the
evaluation of various sources of medical images, such as
positron emission tomography (PET) scans of brain lesions [31],
microscopy images of cells [32], CT scans of thoracic organs
[33], and MRI scans of breast lesions [34]. Mask R-CNN was

developed by Facebook AI Research, and it outputs object
detection with instance segmentation [35,36]. Mask R-CNN
began getting attention in the medical field in 2018. It has been
deployed in the analysis of various sources of medical images
as well, such as PET scans of lung lesions [37], sonographic
images of breast lesions [38], and MRI scans of knee injuries
[39].

Previous studies have also applied these 2 models. Vuola et al
reported a study of nuclei segmentation of microscopy images.
U-Net had a better DC and created more accurate segmentation
masks. Mask R-CNN had better recall and precision, and could
detect nuclei more accurately but struggled to predict a good
segmentation mask [40]. Zhao et al reported a study of tree
canopy segmentation of aerial images. Mask R-CNN performed
better in segmentation as well as in tree detection [41]. Bouget
et al reported a study of thoracic structure segmentation
combining 2 models. Mask R-CNN had the weakness of
underestimating structural boundaries, and it required a longer
training time. U-Net had the weakness of spatial inconsistency
when compiling 2D segmentation results into 3D [42]. In our
study, Mask R-CNN was better at burn wound segmentation,
while U-Net was better at hand segmentation. We believe that
when the segmented objects have similar shape and size, such
as with nuclei, hands, and palms, U-Net can achieve better
segmentation results than Mask R-CNN. Mask R-CNN had to
take into account the loss function components from estimating
the bounding box and class, not just the mask. The weights of
the bounding box and class components are calculated prior to
the weight of the mask component in order to get accurate
instance location. Huang et al proposed a modified Mask
R-CNN to improve mask prediction [43].

However, the performance of U-Net in burn wound
segmentation was not as good as that of Mask R-CNN. The
burn wounds comprised 3 types of burn depths with various
colors, hues, and textures, and were also of irregular shape and
different sizes. Because it lacks the RPN function of Mask
R-CNN, U-Net may not have the volume to “memorize” all the
features of burn wounds by convolution and de-convolution. In
the Kaggle science bowl, both U-Net and Mask R-CNN
achieved excellent results after fine tuning. Hence, the
performance of the 2 models may depend on the segmentation
task, the data sets, and fine tuning.

The segmentation result is not the only consideration. There are
other comparative pros and cons of these 2 models. If a model
is deployed in mobile devices, time consumption for prediction
is an important factor. In our study, it took less time for U-Net
(0.035 s/image) to do the prediction than for Mask R-CNN
(0.175 s/image). The total time needed to train Mask R-CNN
was about 1.5 times that needed to train U-Net. In addition,
semantic segmentation involves direct pixel classification. If
the objective is to calculate the total burn area, U-Net is capable
of producing good results. If we want to segment different types
of wounds on the same images, such as incisions and abrasions,
Mask R-CNN can provide classification confidence in each of
the RoIs, not just the masks.

Both U-Net and Mask R-CNN can segment burn wounds of
any burn depths (Figures 2-4). The segmentation result was
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more satisfactory when areas were large and confluent (Figure
4). If the burn wound (pixels) was small, the segmentation
results of both models were not satisfactory (Figure 5). This is
because a small area is susceptible to resizing, convolution, and
max pooling. Similar observations were reported by Bouget et
al, when they segmented structures inside the chest wall [42].
Large structures, such as the heart, lungs, and spine, had a DC
of more than 0.95. Small structures, such as lymph nodes, had
a DC of only around 0.41. In the study by Vuola et al, they
removed the very small masks (under 10 pixels) to improve the
prediction [40]. Fortunately, small and scattered burns are less
critical clinically.

Conversion of Segmentation Mask to %TBSA
There exist other methods for converting a segmentation mask
to %TBSA. One approach is to acquire the actual burn area (eg,

225 cm2) by calculating the relation of pixels of the mask area
on the image and the distance from the wound to the camera.
The next step is to calculate the body surface area (BSA; eg,

17,525 cm2) via the patient’s body weight, height, and gender.
The %TBSA of the burn wound can be calculated by dividing
these 2 numbers. Although this approach seems straightforward,
there are more than 25 formulae to estimate BSA based on
studies of different populations [44]. When it comes to child
BSA, we need completely different formulae for calculation,
again with various degrees of accuracy [45].

We adopted the rule of hand/palm as a guide to estimate
%TBSA, because the rule of hand/palm shows very little
difference between racial groups, genders, BMI, and ages [8,46].
The rule of hand/palm can also be used in children and infants,
where it is closer to the original 1% TBSA rule. Moreover,
thumbprints, which are approximately 1/30 TBSA, can also be
used as a guide to estimate areas of small burns [47]. In our
study, only 17 images were burn injuries involving the volar
hand. We therefore collected images of healthy hands from our
colleagues rather than using burned hands to train the models.

In the last stage of our study, we conducted a test to compare
the %TBSA estimated by burn surgeons and by Mask R-CNN
with a ResNet101 backbone. Mask R-CNN had less variance
from ground truth on average. It is very important to have a
small deviation on every estimation. If a patient has multiple
burn sites, the errors from each wound may add up to become
a large deviation. In a study by Parvizi et al, the difference in
estimation by inspection across burn experts was found to be
as large as 16.5% TBSA in an adult patient and 31.5% TBSA
in a child patient, which resulted in great volume differences
in the estimation of fluid needed for resuscitation [10]. Our
method was aimed to derive similar estimates when the same
burn wound was estimated by different burn experts by
inspection, such as by teleconsultation. In reality, burn surgeons
would typically visit patients and calculate the area more
meticulously. Additionally, the burn area would be recalculated
in the days following the burn injury. Theoretically, the
variability among estimations would be less than when the burn
area is estimated just by inspecting an image of the burn wound.

Limitations
The data set of burn wounds was collected from a single medical
center in Taiwan. Although it is currently the largest data set,
the number of training images was small. The models require
more input images to improve accuracy.

Our deep learning models can segment a burn wound of any
burn depth. However, they are unable to classify burn depths
on segmentation. This is so because the ground truth of burn
depths is hard to define by burn surgeons consistently. Further
study may apply machine learning to assist in burn depth
labeling before input for training.

We used normal hands as a template to calculate the %TBSA
burned. When a patient had burns involving both hands, our
models could still segment the burned hands. Since children’s
hands are shaped similarly to those of adults, our models can
presumably also segment the hands of children (Multimedia
Appendix 8). However, we did not collect enough images to
directly assess accuracy in these circumstances.

Our data set did not include burn wounds from patients with
markedly different skin tones. We hypothesize that the deep
learning models will accurately detect burn wounds when the
burn injury is more severe than superficial second degree, where
the skin layers that are deeper than the pigment cells are
disrupted. For example, a superficial second-degree burn injury
with ruptured bullae shows a similar shade of pink even on
different skin tones. Yet, skin tone will definitely contribute to
the performance of the models. Convolution layers and the RoI
obtained by deep learning largely depend on the relationship
with their adjacent pixels. To test our hypothesis, we collected
100 web scraping images of burn wounds from different skin
tones and input them into our models for wound segmentation
(Multimedia Appendix 9). The results confirmed that our models
performed well when the burn injury was more severe than
superficial second degree. However, the segmentation results
varied when the burn wound had no bullae formation or rupture
(whether superficial second or first degree). To resolve this
problem, we need more quality images to correlate skin tone
with segmentation performance.

Finally, burn wound images are 2D projections of 3D burn
wounds, akin to the Mercator world map. Unlike the world map,
the cross sections of the trunk and extremities of the human
body are not just ellipses or circles. The distance of the camera
from the wound bed can be adjusted for by a simple formula,
but adjusting for the angle at which the photos are taken requires
complex differential and integral formulae with multiple
variables. To get the most accurate estimation of %TBSA, we
suggest taking all photos at a constant distance of around 30 to
50 cm and holding the camera (cellphone) parallel to the wound
bed to decrease the effect of the angle. Our study will further
deploy models on images taken with a 3D camera to acquire
more accurate results.

Conclusions
To the best of our knowledge, this is the first study to determine
the %TBSA of burn wounds with different deep learning
models. Based on the rule of hand, %TBSA can be calculated
by comparing segmentation masks of the burn wound and hand
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of a patient. In our study, Mask R-CNN with ResNet101
performed this task satisfactorily in comparison with burn
surgeons. With the assistance of deep learning, the fluid

resuscitation and nutritional needs of burn injury patients can
be more precisely and accurately assessed.
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Abstract

Background: Electronic medical records (EMRs) are usually stored in relational databases that require SQL queries to retrieve
information of interest. Effectively completing such queries can be a challenging task for medical experts due to the barriers in
expertise. Existing text-to-SQL generation studies have not been fully embraced in the medical domain.

Objective: The objective of this study was to propose a neural generation model that can jointly consider the characteristics of
medical text and the SQL structure to automatically transform medical texts to SQL queries for EMRs.

Methods: We proposed a medical text–to-SQL model (MedTS), which employed a pretrained Bidirectional Encoder
Representations From Transformers model as the encoder and leveraged a grammar-based long short-term memory network as
the decoder to predict the intermediate representation that can easily be transformed into the final SQL query. We adopted the
syntax tree as the intermediate representation rather than directly regarding the SQL query as an ordinary word sequence, which
is more in line with the tree-structure nature of SQL and can also effectively reduce the search space during generation. Experiments
were conducted on the MIMICSQL dataset, and 5 competitor methods were compared.

Results: Experimental results demonstrated that MedTS achieved the accuracy of 0.784 and 0.899 on the test set in terms of
logic form and execution, respectively, which significantly outperformed the existing state-of-the-art methods. Further analyses
proved that the performance on each component of the generated SQL was relatively balanced and offered substantial
improvements.

Conclusions: The proposed MedTS was effective and robust for improving the performance of medical text–to-SQL generation,
indicating strong potential to be applied in the real medical scenario.

(JMIR Med Inform 2021;9(12):e32698)   doi:10.2196/32698

KEYWORDS

electronic medical record; text-to-SQL generation; BERT; grammar-based decoding; tree-structured intermediate representation

Introduction

Electronic medical records (EMRs) contain abundant medical
information on patients and are usually stored in structured
relational databases with multiple relational tables [1]. Using

EMRs, patient data can be traced back over an extended period
of time and by multiple health care providers. EMRs can help
identify those who are due for preventive checkups, screenings,
or vaccinations. They also can record whether a patient’s vital
signs (eg, blood pressure, weight) fall within normal limits [2,3].
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However, retrieving EMRs from databases may not be easy for
medical experts. They usually lack specific training on using
SQL to perform queries on relational databases. Even for
experienced informaticians, it could be troublesome to deal with
massive SQL queries from databases of different structures and
applicable scenarios, especially if complex SQL grammars were
involved. Therefore, automating the transformation of textual
questions written in natural language into SQL queries has great
potential to facilitate clinical information retrieval and improve
the efficiency of medical diagnosis and treatment decisions.

Text-to-SQL generation [4,5] is the task of transforming natural
language questions into SQL queries. As shown in Figure 1,
given the medical textual question “Tell me the insurance and
primary disease of James Sloan,” a text-to-SQL model can
transform the question into a SQL query. It is then used to
retrieve the corresponding EMR information that is stored in
structured medical databases. This task has attracted widespread
attention from different domains. The representative studies
include automatic terminal information service [6-8] for a flight
booking system, GeoQuery [9,10] for a US geography query,

WikiSQL [5] for querying Wikipedia, and Spider [11] for
realistic applications of several different domains. In many
studies, the text-to-SQL generation is regarded as a task similar
to natural language generation. Deep neural networks are often
adopted as encoders and decoders (eg, the sequence-to-sequence
[Seq2Seq] [12] framework with an attention [13,14] or copy
mechanism) [15]. The input of the model is the textual question
and the output is the SQL query that is viewed as an ordinary
word sequence [16,17]. However, the same SQL query can be
represented by multiple word sequences, which may affect the
training effectiveness of Seq2Seq models. For example, the
order of the 2 column names in the Select clause shown in
Figure 1 may not influence the execution result of the query,
but the Seq2Seq models may treat them as 2 different sequences.
To solve this problem, several methods were proposed by
incorporating the syntactical structure of SQL [18,19]. For
instance, SQLNet [18] proposed a sketch-based sequence-to-set
method. A generic sketch highly in line with the SQL grammar
was first used and then it only needed to predict the slots in the
sketch instead of generating the entire sequence in order.

Figure 1. Application scenario of medical text–to-SQL generation.

Compared with other domains, corresponding explorations in
the medical domain are insufficient. Due to the privacy
requirements of medical data, a large-scale training corpus is
still lacking. Furthermore, jargon and specialized phrases often
occur in the medical text. They cannot be represented well by
the models trained on other domains. But these terms are
sometimes the key points of a medical question. In the limited
relevant research, rule-based or those verified on small-scale
datasets are most often found, such as methods of translating
the medical questions into SPARQL Protocol and RDF Query

Language (SPARQL) queries [20] and converting the clinical
questions into EMR-dependent structured queries [21]. To push
this forward, Yu et al [22] introduced a new criteria-to-SQL
generation dataset for clinical trials. However, the targeted free
text is quite different from other query text in terms of length
and content. Wang et al [23] constructed the first large-scale
text-to-SQL generation dataset, MIMICSQL, in the medical
domain based on the widely used Medical Information Mart for
Intensive Care (MIMIC III) dataset [24]. They also proposed a
Seq2Seq-based model, Translate-Edit Model for
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Question-to-SQL (TREQS), to directly generate the SQL query
for a given medical question by using the dynamic and temporal
attention mechanism and controlled copying technique. But
these works are preliminary explorations and do not integrate
much intrinsic information related to the SQL itself (eg, the tree
structure of SQL). Therefore, there is still much room left for
further progress.

In this study, we propose a novel model for medical text–to-SQL
generation named MedTS for the medical text–to-SQL
generation task. First, the medical entities (ie, the table and
column names) are recognized via schema linking. A pretrained
Bidirectional Encoder Representations From Transformers
(BERT) [25] model is then used as an encoder to enhance the
question representation. The BERT-based encoder can exploit
the relationship of entities between medical text question and
database schema. Second, a grammar-based long short-term
memory (LSTM) [26] decoder is adopted to generate the
tree-structured intermediate representation instead of directly
transforming a medical question into SQL query. It is in
accordance with the chronological order of the syntax tree of
SQL and can reduce the search space at each decoding step.
Finally, according to the predefined set of context-free grammar,
the intermediate representation is transformed into the
corresponding SQL query. Experiments were conducted on the
MIMICSQL dataset. We compared the proposed model with 5

competitor methods and further analyzed the performance of
each component of the generated SQL query. An online system
is accessible to better demonstrate the application of MedTS
[27].

Methods

Dataset
We evaluated our proposed method on MIMICSQL [23], which
is the first large-scale medical dataset for text-to-SQL generation
task in the health care domain. The medical information in
MIMICSQL is derived from MIMIC III. All of the medical
information was first anonymized to protect patient privacy and
then stored in 5 tables in the medical database (Figure 1),
including demographic (Demo), laboratory tests (Lab), diagnosis
(Diag), procedures (Pro), and prescriptions (Pres). The questions
and corresponding SQL queries in MIMICSQL were
automatically generated based on fixed templates [28]. Next, 8
freelancers with medical domain knowledge were recruited
from a crowd-sourcing platform to validate the question as
realistic and reasonable or rephrase the generated question. The
information of the MIMICSQL dataset is summarized in Table
1. We adopted the same data partition as in the TREQS [23],
in which all the question-SQL pairs were randomly split into
training, validation, and test sets in the ratio of 0.8:0.1:0.1,
respectively.

Table 1. The summary of the MIMICSQL dataset.

CountType

46,520Patients, n

5Tables, n

23/5/5/7/9Columns in tablesa, n

10,000Question-SQL pairs, n

18.39Template question length (in words), mean

16.45Rephrased question length (in words), mean

21.14SQL query length, mean

1.1Aggregation columns, mean

1.76Conditions, mean

aThe 23/5/5/7/9 correspond to the numbers of columns in the Demographics/Diagnosis/Procedure/Prescriptions/Laboratory tests tables.

Overview of the Proposed Method
Given a textual question X={x1,x2,x3,...} and the database
schema, the goal of this work was to transform the textual
question into a SQL query, while ensuring the SQL query
retained the same semantic meaning as the textual question.

An overview of MedTS is shown in Figure 2. In the first step,
schema linking recognized the database schema information
and added corresponding linking marks into the question.
Second, the textual question along with linking marks and the
database schema information were fed into the pretrained
encoder and grammar-based decoder to generate an intermediate
representation. Third, the final SQL query was generated based
on the intermediate representation.
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Figure 2. Overview of our proposed method of medical text–to-SQL task. LSTM: long short-term memory.

Schema Linking
Similar to the method in IRNet [19], the purpose of schema
linking was to recognize the mentioned entities in the medical
question and assign a linking mark, which referred to
recognizing the column names and table names in the medical
database. We enumerated all the n-grams (n∈[1,5]) in a question
and arranged them in descending order based on the length. If
an n-gram exactly matched a column name or was a subset of

a column name, we marked this n-gram as a column. The
recognition of a table followed the same way. If an n-gram was
recognized as both a column and a table, we marked it as a
column because the column mark has higher priority than the
table mark. Once an n-gram was identified, we removed other
n-grams that overlapped with it. By doing this, we obtained all
the entities mentioned in the question. Once an entity was
recognized and linked with a mark, it became a span and was
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encoded into one vector in the encoding process, such as the
insurance recognized as a column in Figure 2.

Attention-Based Encoder Using Pretrained BERT
After schema linking, we identified the entities and assigned
linking marks. The given medical question X was transformed

to [(x1,τ1),...,(xm,τm)] where xi was the ith span and τi was the
mark of xi assigned during schema linking. If xi was not an
entity, τi was None. Let C={c1,c2,...} and T={t1,t2,...} denote
the set of all column names and table names. In order to enhance
the relationship between the question and database schema, we
concatenated the question X and database schema [C,T] with
special tokens, where one classification token [CLS] was used
as the first token and several separation tokens [SEP] were used
as separators of different information, as follows:

In this work, we first used a pretrained BERT as the encoder.
The purpose was to convert the textual question with marks
assigned by schema linking and database schema into hidden
representations via the multihead attention mechanism [29].

Then, for each span, we took the average of the hidden
representations of word and mark as the span representation.
Last, through a fully connected pooling layer, we obtained the
final hidden representations of question HX, column names HC,
and table names HT. The nonlinear transformation of [CLS]
representation tanh(WHCLS+b) was used to initialize the decoder,
where W and b were trainable parameters.

Tree-Structured Intermediate Representation
Tree-structured intermediate representation refers to a syntax
tree that bridges the question and the SQL query. It contains
SQL information implicated in the textual question and could
be transformed to a SQL query more intuitively due to the nature
of the tree structure of SQL. Figure 3 demonstrates an example
of generating an intermediate tree from an input question.
Different from the previous works that used the grammar to
assist the SQL generation [19,22], we designed the grammatical
rules based on the MIMICSQL dataset. Specifically, we kept
only the necessary rules occurring in the dataset to make the
prediction more accurately and added a new rule for predicting
the condition value.

Figure 3. Example of tree-structured intermediate representation: (a) grammar rules that transform the SQL query into an abstract syntax tree, (b)
example of the action sequence generated by the grammar-based decoder with 4 types of actions, and (c) intermediate tree constructed from the action
sequence in b following the grammar rules in a.

To construct the intermediate tree from a SQL query, we first
defined a set of grammar rules, as shown in Figure 3a. The
intermediate tree starts from a root node Z. Since there are no
complicated SQL components such as Union in this task, a
single node R was directly attached to Z. Then, we attached a
node Select or Filter under R, which was determined by the
Select clause or Where clause, respectively. For the subtree of
node Select, according to the number of columns in the Select

clause, the same number of nodes A were attached to node
Select. Each node A comprised an aggregation function node,
a node C, and a node T. The aggregation function could be either
of none, max, min, count, etc, while node C denoted the column
name and node T denoted the table name. For the subtree of
node Filter, it was determined by the conditions in the Where
clause. If there was more than one condition, the corresponding
number of Filter nodes would be attached. Next, for each Filter
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node, it attached a relational operator, a node A, and a node V.
Relational operators include more than (mt), less than (lt), equal
(e), etc. Node V denotes the condition value. The intermediate
tree in Figure 3c was generated by the action sequence in Figure
3b following the grammar rules defined in Figure 3a. The
generation process was in the depth-first, left-to-right order.

Grammar-Based Decoder
The generation process of the intermediate tree was formalized
into sequential applications of actions. The actions either applied
a production rule on the derivation tree or produced a terminal
node. According to the grammar rules, we defined 4 types of
actions (ie, ApplyRule, SelectColumn, SelectTable, and
SelectValue) and adopted the grammar-based decoding strategy
[30,31]. ApplyRule(r) applied a production rule r to construct
the skeleton of the intermediate tree, and the other 3 types of
actions were designed to produce the terminal tokens. Thus, the
goal of the decoder was to generate an action sequence A based
on the outputs of the encoder. Formally, the decoding process
was formalized as follows:

where ai was the action taken at time step i, a<i was the sequence
of actions before i, and n was the number of total time steps of
the whole action sequence.

The probability of selecting a rule r as the current action ai was
calculated as follows:

where denoted the current hidden state of LSTM, vi and ui

denoted the context vectors that were obtained by performing
attention over HX and [HC;HT], e(r) was the one-hot vector for
rule r.

The SelectColumn action was implemented via a
memory-enhanced pointer network to select a column c, in
which the memory was used to record the selected columns
[32]. Once a column was selected, it was removed from the
schema and recorded in the memory. The probability of selecting
a column c was calculated as follows:

where SCH denoted selecting from the schema, MEM denoted

selecting from memory, and and denoted the
corresponding hidden representations of columns.

For the SelectTable action, we leveraged the relationship
between columns and tables to prune irrelevant tables. Thus,
the decoder predicted the table t that the selected columns belong
to. The probability of choosing a table t was calculated as
follows:

As for SelectValue, since the value was always mentioned in
the textual question, the decoder extracted a condition value v

by finding a start position and an end position from the question
via 2 different pointer networks, respectively, as follows:

where pstart and pend denoted the probabilities of the start and
end positions.

Afterward, in order to keep the extracted value consistent with
the value in the database, we also adopted the
condition-value-recover technique proposed in TREQS [23] to
find the most similar value in the look-up table content by
computing the ROUGE-L (Recall-Oriented Understudy for
Gisting Evaluation based on the Longest Common Subsequence)
[33] score between them.

SQL Query Generation
According to the grammar rules in Figure 3, when inferring a
SQL query from an intermediate tree, we traversed the whole
intermediate tree and mapped each node to the corresponding
SQL component. The production rule applied on node Z denoted
that it was just a single SQL query. The node R represented the
start point. Following the child nodes of node R, we generated
the skeleton of a SQL query, such as whether the SQL query
had a Select clause or Where clause corresponding to the node
Select and Filter, respectively. The node Select indicated how
many columns the Select clause had. The node Filter indicated
how many different conditions were in the Where clause. Based
on the subtree of node Select or Filter, we filled in the details
(ie, the aggregation function, relational operator, column name,
table name, and condition value). The From clause was
generated from the nodes of selected tables by identifying the
shortest path that connected these tables in the schema.

Experimental Settings
We adopted the pretrained uncased base BERT as our encoder,
and the hidden size was set as 768. For the decoder module, the
hidden size of LSTM was set as 300. The maximum length of
the action sequence was set as 128. The size of the attention
vector was set as 300. The coarse-to-fine framework [34-36]
was used to model the generation process. The Adam optimizer
[37] was adopted to train the model parameters for 100 epochs.
The learning rate was set as 1e-06, and gradient clipping was
used with a maximum gradient norm of 5.0. During training,
we set the batch size as 8. The numbers of ApplyRule,
SelectColumn, and SelectTable candidate actions were 24, 39,
and 5 respectively. The size of the SelectValue candidate action
was based on the length of the input textual question. We
selected the model which achieved the best performance on the
validation set. The MedTS was implemented with PyTorch [38]
and trained on a Tesla V100 GPU (NVIDIA Corp). Our code
has been shared on GitHub to facilitate other researchers [39].

We compared our proposed MedTS with 5 competitor methods.
Seq2Seq [14] is an LSTM-based model with the attention
mechanism, in which the SQL query is regarded as an ordinary
word sequence. PtrGen [15] is a Seq2Seq-based
pointer-generator network, which can directly copy the word
from the input question to alleviate the repetition and
out-of-vocabulary (OOV) phenomenon. SQLNet [18] is a
sketch-based text-to-SQL model to avoid the order problems
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that occurred in the Seq2Seq model. Coarse2Fine [36] is a
2-stage neural architecture for text-to-SQL. A classifier is first
used to obtain a rough sketch of the SQL query and then the
details of SQL are filled in based on the input and the sketch
individually. TREQS [23] is also a 2-stage text-to-SQL model,
including an attentive-copying mechanism and condition value
recovery mechanism.

All text-to-SQL methods were evaluated with 2 popular metrics
[5], execution accuracy (AccEX) and logic form accuracy (AccLF),
which are complementary to evaluate the quality of the
generation of SQL queries.

• AccEX=NEX⁄N, where N denotes the total number of
question-SQL pairs and NEX denotes the number of SQL
queries that can be executed and achieve the correct answers

• AccLF=NLF⁄N, where NLF denotes the number of queries that
match exactly with the ground truth of the SQL query

Results

Quantitative Evaluation
Table 2 provides the quantitative results on the validation and
test sets. Seq2Seq achieved 0.103 AccLF and 0.173 AccEX on

the test set. SQLNet performed better than Seq2Seq, since it
considered the dependencies between the components of SQL
query based on a graph derived from the sketch. But it was not
easy to cover all the queries. PtrGen performed much better
than SQLNet with 0.180 AccLF and 0.292 AccEX on the test set
because it directly extracted words from textual questions to
reduce the OOV words, especially when most values occurred
in the original question. Coarse2Fine achieved decent
performance since it incorporated the schema information into
question encoding, but it was limited by the number of sketches
and had difficulty handling more complex SQL. TREQS further
improved the performance via several effective mechanisms,
such as controlled generation and placeholder replacement. But
it is just based on the Seq2Seq framework and did not consider
the intrinsic structure information of SQL itself. Compared to
all the methods mentioned above, MedTS achieved the best
performance with 0.681 AccLF and 0.880 AccEX on the validation
set and 0.784 AccLF and 0.899 AccEX on the test set, which
outperformed the best competitor method by at least 29% and
27% in terms of AccLF and AccEX, respectively, on the test set.

Table 2. The logic form accuracy (AccLF) and execution accuracy (AccEX) of SQL query generated by various methods.

TestValidationMethods

AccEXAccLFAccEX
bAccLF

a

0.1730.1030.1950.092Seq2Seq

0.2600.1420.2250.086SQLNet

0.2920.1800.3250.181PtrGen

0.4960.3780.3090.217Coarse2Fine

0.6540.5560.6750.562TREQS

0.8990.7840.8800.681MedTS

aAccLF: logic form accuracy.
bAccEX: execution accuracy.

Performance on Each Component of SQL
In order to further analyze the generation result, we broke down
the SQL queries into 5 components according to the SQL
grammar structure, including aggregation operation, aggregation
column, table, condition column along with its operation, and
condition value. The experimental results are shown in Table
3. Since Coarse2Fine cannot handle multitable questions and
is limited by table-aware assumption, its performance cannot
be compared to other methods. Aggregation operation refers to
the operations in the Select clause used to aggregate all the
values of a column and return a single value, such as Count,
Sum, Avg, etc. All methods except for Coarse2Fine achieved a
very high accuracy of more than 97%. Aggregation column was
the target column in the Select clause for the aggregation
operation. MedTS outperformed other methods significantly

by at least 5% and 12% on validation and test sets, respectively.
Table was the target table in the From clause. Except for the
Coarse2Fine, the other methods achieved similar accuracy.
MedTS achieved the best performance. Condition column along
with its operation represented the column and operation in the
Where clause. Compared to the other competitor methods,
MedTS achieved a large improvement by at least 8% on the test
set. Condition value refers to the condition value in the Where
clause. It was observable that the performance on condition
value primarily played a vital role in the overall SQL generation
performance. MedTS achieved improvement by at least 11%
on the test set. In summary, the experimental results of MedTS
on each component of SQL were relatively balanced and better,
especially the performance on aggregation column and condition
value.
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Table 3. Accuracy of each component of SQL query.

TestValidationMethods

ConvalConc+oTableAggcolAggopConval
fCon d

c+o
e

TableAggcol
cAgg a

op
b

0.4130.4480.5280.4900.5240.2140.2600.3210.3130.321Coarse2Fine

0.2960.5650.8920.6960.9700.1740.4710.9260.8720.978Seq2Seq

0.1400.7490.9410.8730.9890.0800.7220.9330.9390.994SQLNet

0.2350.8240.9260.8300.9870.2360.7950.9440.9170.987PtrGen

0.7630.8440.9410.8270.9930.6940.8340.9420.9120.990TREQS

0.8510.9190.9510.9850.9910.7850.8930.9710.9880.994MedTS

aAgg: aggregation.
bOp: operation.
cCol: column.
dCon: condition.
ec+o: column and operation.
fVal: value.

Ablation Study
We also conducted an ablation study to analyze the impact of
schema linking as well as the use of different types of pretrained
representations on question encoding and show the results in
Table 4. When the schema linking was not used, the
performance of MedTS dropped by 1.4% on AccLF and 1.3%
on AccEX on the test set, which demonstrated the effectiveness
of schema linking. The tested pretrained representations included
a recurrent neural network (RNN)-based encoder (ie,
BioWord2Vec [40]) and two BERT-based encoders (ie,
ClinicalBERT [41] and BioBERT [42]). As shown in Table 4,

the RNN-based encoder with pretrained BioWord2Vec
performed far worse than the BERT-based encoder by at least
21.0% on AccLF and 17.9% on AccEX on the test set. We argue
that the main reason is that the LSTM encoder cannot model
the interaction of the entire sequence itself. As for the
BERT-based encoders, we observed that the performance of
ClinicalBERT was inferior to the others since it specializes in
clinical notes that are obviously different from the natural
language text. Compared to MedTS (with uncased base BERT),
BioBERT achieved slightly better performance since it uses the
medical literature for pretraining which is more beneficial to
the representations of medical questions.

Table 4. The experimental results of the ablation study.

TestValidationMethods

AccEXAccLFAccEX
bAccLF

a

0.8990.7840.8800.681MedTS

0.8870.7730.8700.669w/o SL

0.6440.5010.6900.472w/ BioWord2Vec

0.7840.6340.7710.556w/ ClinicalBERT

0.9040.7900.8820.684w/ BioBERT

aAccLF: logic form accuracy.
bAccEX: execution accuracy.

Discussion

Principal Findings
Our proposed model MedTS achieved the best AccLF and AccEX

on the validation and test sets, with pretrained encoder and
grammar-based decoder. The abstract syntax tree was introduced
as the intermediate representation to bridge the gap between
medical text and the SQL query. The primary outcomes of this
study were (1) a new state-of-the-art model for medical
text-to-SQL generation task was proposed and validated and
(2) an online demonstration system with the capabilities of

transforming the medical text to SQL query and further returning
the query results was provided. Experimental results
demonstrated that MedTS has great potential to help medical
experts facilitate clinical information retrieval and improve the
efficiency of decision-making for medical diagnosis and
treatment.

Model Performance
MedTS has the ability to capture the semantic relationship
between words within textual questions and the dependency
relationship between the text and database schema, benefitting
from the multihead attention mechanism adopted by the
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pretrained encoder. It is difficult for competitor methods to
obtain information as rich using the RNN-based encoder.
Meanwhile, MedTS can effectively reduce the search space via
the grammar-based decoding strategy, which predefines
grammatical rules and introduces the tree-structured intermediate
representation. Although several mechanisms were designed in
the competitor methods to make the generated SQL query more
accurate, they still view the SQL query as an ordinary word
sequence and ignore the intrinsic structure characteristic of SQL
itself, which makes them perform worse than MedTS.

Case Study
In addition to quantitative evaluations, we conducted an
extensive set of qualitative case studies on the test data to
analyze the generated SQL query. We manually analyzed all
1000 text-SQL pairs in the test set. Among them, 784 generated
SQL queries that were entirely consistent with the ground truth,
and 115 generated SQL queries that were not identical to the
ground truth in the logical form but also achieved accurate
execution results. Most of them were caused by the different
positions of the 2 tables connected by the join operation (eg,
example 1 in Table 5). This phenomenon also explains why the
quantitative evaluation results of AccEX are higher than AccLF

in Table 2. In addition, 5 generated SQL queries were correct
but considered wrong by the AccEX because of the various orders
of column in the select clause (eg, example 2 in Table 5). The
remaining 96 pairs generated incorrect SQL queries. We grouped
their errors into different categories from 2 perspectives: clause

and element. The clauses included select, join, and where, and
the elements included operator, table, column, value, and others.
The statistical results are shown in Table 6. Note that there was
no operator in the join clause. Similarly, since the value only
presented in the where clause, the value error of select and join
clauses was none. When there was a table error in the where
clause, it was usually due to the wrong decision in the select or
join clauses, so we did not count these types of errors again.
The rest of the errors, such as more or less conditions, are
grouped into other categories.

From the element’s perspective, we observed that the prediction
errors of column and value account for the majority. From the
perspective of the clause, more than 50% of clause errors were
in where clauses, while most where clause errors were due to
incorrect values or columns. Example 3 in Table 5 is a
representative case of where clause error due to the incorrect
value. The value of expire_flag is a numeric type in SQL but a
text description in the question. Example 4 in Table 5 shows a
case of where clause error due to the wrong column, in which
the admityear and dob_year are semantically close, leading to
the wrong choice. It was challenging to achieve high accuracy
in these cases, since MedTS is based on the pointer network
that selects terms from textual questions to generate SQL
queries. The operation error means that the condition column
and value in the where clause are correct but the operator is
wrong, which may return completely opposite results, as shown
by example 5 in Table 5.
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Table 5. Five representative examples of qualitative case study.

Examples

Example 1

Qa: Let me know the short title and ICD-9b codes of diagnoses for patient John Gartman.

Gc: Select diagnoses.“icd9_code,” diagnoses.“short_title” from demographic inner join diagnoses on demographic.hadm_id = diagnoses.hadm_id
where demographic.“name” = “john gartman”

Pd: Select diagnoses.“icd9_code,” diagnoses.“short_title” from diagnoses inner join demographic on diagnoses.hadm_id = demographic.hadm_id
where demographic.“name” = “john gartman”

Example 2

Q: Tell me which primary disease the patient Walter Locher is suffering from and whether he is still alive or not.

G: Select demographic.“expire_flag,” demographic.“diagnosis” from demographic where demographic.“name” = “walter locher”

P: Select demographic.“diagnosis,” demographic.“expire_flag” from demographic where demographic.“name” = “walter locher”

Example 3

Q: Calculate the number of dead patients who were admitted to hospital before 2123.

G: Select count (distinct demographic.“subject_id”) from demographic where demographic.“expire_flag” = “1” and demographic.“admityear”
< “2123”

P: Select count (distinct demographic.“subject_id”) from demographic where demographic.“expire_flag” = “0” and demographic.“admityear”
< “2123”

Example 4

Q: How many American Indian/Alaska Native ethnic background patients were born before 2148?

G: Select count (distinct demographic.“subject_id”) from demographic where demographic.“ethnicity” = “american indian/alaska native” and
demographic.“admityear” < “2148”

P: Select count (distinct demographic.“subject_id”) from demographic where demographic.“ethnicity” = “american indian/alaska native” and
demographic.“dob_year” < “2184”

Example 5

Q: Find the minimum number of days of hospital stay for patients born before the year 2200.

G: Select min (demographic.“days_stay”) from demographic where demographic.“dob_year” > “2200”

P: Select min (demographic.“days_stay”) from demographic where demographic.“dob_year” < “2200”

aQ: textual question.
bICD-9: International Classification of Diseases Clinical Modification, 9th Revision.
cG: golden truth.
dP: predicted result.

Table 6. Statistical analysis of error categories.

#Element Error (%)WhereJoinSelect

12 (10.6)3—a9Operator, n

14 (12.4)—68Table, n

27 (23.9)10—17Column, n

44 (38.9)44——Value, n

16 (14.2)394Other, n

113 (100)60 (53.1)15 (13.3)38 (33.6)#Clause Error (%)

aNot applicable.

Comparison With Prior Work
In the medical field, a few studies have focused on the
text-to-SQL task, but most of them either proposed rule-based
methods [20,21] or validated on the small-scale datasets [22].

Wang et al [23] constructed the first large-scale medical
text–to-SQL dataset and proposed a neural model TREQS to
undertake this task. However, TREQS focused on solving the
OOV problem and condition value generation. Compared with
the rule-based methods, our proposed model has better
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applicability and can be extended to other datasets. Compared
with the previous neural models, our model adapts more
advanced deep learning methods to this task and achieves the
optimal experimental performance on a large-scale dataset.

Limitations and Future Work
As discussed above, several problems are still to be solved, such
as improving the accuracy of the conditioncolumn and value in
the where clause, especially the gap between natural language
description and the value stored in the database. In future work,
we will continue to improve the accuracy and robustness of the
model (eg, introducing more schema information such as the
data type of column to achieve the goal of practical deployment).
In addition, the form of question and SQL in MIMICSQL is
relatively simple, which is not enough to cover various situations
in the practical applications. Therefore, we plan to keep

exploring different data forms for more practical scenarios, such
as generating SQL queries containing more complex clauses.

Conclusion
In this work, we proposed a medical text–to-SQL method named
MedTS, which incorporates a BERT-based attention encoder
to obtain schema-enhanced text representation and a
grammar-based LSTM decoder to generate the intermediate
action sequence before generating a SQL query. By introducing
the intermediate representation, MedTS can reduce the search
space during decoding and mitigate the mismatch problem
between the medical question and the SQL query. Experiments
on the MIMICSQL dataset demonstrate that MedTS
substantially outperforms the state-of-the-art methods. Further
analyses on each component of SQL query and the case study
confirm MedTS’s effectiveness and robustness, demonstrating
its strong potential.
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Abstract

Background: Despite strong evidence of clinical benefit, cardiac rehabilitation (CR) programs are currently underutilized and
smartphone-based CR strategies are thought to address this unmet need. However, data regarding the detailed process of development
are scarce.

Objective: This study focused on the development of a smartphone-based, patient-specific, messaging app for patients who
have undergone percutaneous coronary intervention (PCI).

Methods: The AnSim app was developed in collaboration with a multidisciplinary team that included cardiologists, psychiatrists,
nurses, pharmacists, nutritionists, and rehabilitation doctors and therapists. First, a focus group interview was conducted, and the
narratives of the patients were analyzed to identify their needs and preferences. Based on the results, health care experts and
clinicians drafted messages into 5 categories: (1) general information regarding cardiovascular health and medications, (2)
nutrition, (3) physical activity, (4) destressing, and (5) smoking cessation. In each category, 90 messages were developed according
to 3 simplified steps of the transtheoretical model of behavioral change: (1) precontemplation, (2) contemplation and preparation,
and (3) action and maintenance. After an internal review and feedback from potential users, a bank of 450 messages was developed.

Results: The focus interview was conducted with 8 patients with PCI within 1 year, and 450 messages, including various forms
of multimedia, were developed based on the transtheoretical model of behavioral change in each category. Positive feedback was
obtained from the potential users (n=458). The mean Likert scale score was 3.95 (SD 0.39) and 3.91 (SD 0.39) for readability
and usefulness, respectively, and several messages were refined based on the feedback. Finally, the patient-specific message
delivery system was developed according to the baseline characteristics and stages of behavioral change in each participant.

Conclusions: We developed an app (AnSim), which includes a bank of 450 patient-specific messages, that provides various
medical information and CR programs regarding coronary heart disease. The detailed process of multidisciplinary collaboration
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over the course of the study provides a scientific basis for various medical professionals planning smartphone-based clinical
research.

(JMIR Med Inform 2021;9(12):e23285)   doi:10.2196/23285

KEYWORDS

cardiac rehabilitation; smartphone app; coronary heart disease

Introduction

Coronary heart disease (CHD) is a major cause of death [1,2],
especially in developing countries [3]. Over the last few decades,
there have been many advances in cardiovascular treatment and
treatment strategies in patients with atherosclerotic
cardiovascular disease, but a residual risk for recurrent
cardiovascular events still exists [4]. Various treatment strategies
have emerged for secondary prevention, such as optimal medical
therapy, including high doses of statins or proprotein convertase
subtilisin/kexin type 9 (PCSK9) inhibitors. However, relatively
little attention has been paid to lifestyle modification and cardiac
rehabilitation (CR).

CR programs deliver comprehensive clinical information, patient
support, and monitor patient status. Recent studies have
consistently reported the clinical benefits of CR, such as
improved survival, reduction of hospital admissions, and
improvements in the quality of life [5-7]. Current guidelines
strongly recommend CR for secondary prevention [8-10].
However, CR is so underutilized that the participation rate after
acute coronary syndrome or revascularization is only 20%-50%
[5]. Furthermore, the adherence rate to CR programs at 6 months
was only one-third [11]. Although a low referral rate to CR is
one of the main factors related to poor participation or
adherence, there are several other factors, such as old age,
female sex, geographic distance, low physical activity, costs,
and lack of insurance coverage, which are difficult or impossible
to change [11-14]. Thus, a new model for enhancing the delivery
and maintenance of CR services in patients with CHD is
required to improve clinical outcomes and reduce social costs.

Recently, several studies have proved the effectiveness of SMS
text messages, a simpler form of intervention compared with
hospital-based CR, in improving risk factors and patient
adherence to treatment [15-17]. Moreover, smartphone apps are
expected to be useful tools for CR as they can deliver various
forms of content as well as SMS text messages, and in small
studies, they have shown favorable clinical results [18,19].
However, previous text messaging systems have many common
limitations as follows: (1) The messaging interventions of the
previous studies were primarily in a 1-way direction; therefore,
the interaction between the patients and medical experts was
limited [15]. (2) Although psychosocial factors influence
behavioral change, and psychosocial theory–based programs
such as transtheoretical model intervention have shown
promising results in patients with cardiovascular disease [20,21],
it has not been considered during the app development [14]. (3)
The majority of messages are text based [22,23], which might
have limitations in education and rehabilitation.

This study focused on developing the Application for
Self-improvement (AnSim), a smartphone-based,
patient-specific messaging app for patients who have undergone
percutaneous coronary intervention (PCI), using the
transtheoretical model of behavioral change.

Methods

Process of Message Development
A bank of 450 messages was developed by a multidisciplinary
team of cardiologists, psychiatrists, nurses, pharmacists,
nutritionists, and rehabilitation doctors and therapists using a
5-phase systematic approach. The scheme of the message
development process is illustrated in Figure 1.
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Figure 1. The scheme of the message development process.

Phase 1: Focus Group Interview
A focus group interview was conducted to develop an app that
reflects the needs of patients and an understanding of CHD and
CR. Patients who had a smartphone and who had undergone
PCI within the past 1 year at the Korea University Guro Hospital
volunteered for the focus interview. Eight patients of different
ages, sexes, and education levels were selected, and in-depth
interviews were conducted. The subject of the interview
consisted of 5 categories: (1) the degree of smartphone app
utilization, (2) exercise, (3) nutrition, (4) stress management,
(5) and knowledge about CHD and prevention. The participants
of the focus group interview were selected according to the field
of CR [24,25] and the design of other CR studies using mobile

phone in patients with CHD [15,26,27]. Interviews were
recorded with the consent of patients and were transcribed
verbatim. Documented interview content was reviewed to
exclude repetitive or irrelevant content, such as self-introduction,
research participation fee for patients, and personal content to
naturally elicit patient’s response. Then, 10 nodes (taking
medicine, disease, smoking cessation, first diagnosis, recurrence,
nutrition, stress, exercise, smartphone, and app) were derived
based on the refined interview contents and a conceptual
framework that is widely used for qualitative analysis [28,29]
(Figure 2). The interview data were coded under each node and
analyzed using NVivo (QSR International), a software package
for organizing the analysis of qualitative research.
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Figure 2. The conceptual framework for the coding. CAD: coronary artery disease; PCI: percutaneous coronary intervention.

Phase 2: Message Development and Its Theoretical
Basis
Based on the needs of patients, derived from the focus group
interview, experienced health care experts and clinicians drafted
messages for the 5 categories: (1) general information regarding
cardiovascular health and medications, (2) nutrition, (3) physical
activity, (4) destressing, and (5) smoking cessation. Each
message was between 40 and 140 Korean characters, in keeping
with international guidelines and official educational resources
from cardiovascular health–related academic societies.

Furthermore, each message was developed according to 26
behavioral change techniques, which have theoretical
backgrounds, such as the information–motivation–behavioral
skills model, Theory of Reasoned Action, Theory of Planned
Behavior, Social Cognitive Theory, Control Theory, and operant
conditioning [30]. In particular, techniques such as the
demonstration of behavior and planning of social support, which
are difficult to implement with general messaging services,
could also be included by providing multimedia, such as sample
exercise videos and dietary regimens, and helping participants
to connect with smoking cessation centers by actively utilizing
smartphone functions. In addition, negative statements in
messages were avoided because positive statements are known
to help sustainable changes in behavior [31].

To allow participants to receive messages tailored to their stage
of behavioral change on a specific topic, messages were

developed on the basis of the transtheoretical model of
behavioral change, which originally consisted of 5 stages:
precontemplation, contemplation, preparation, action, and
maintenance [32]. In this study, we simplified these 5 steps into
3 steps: (1) precontemplation, (2) contemplation and preparation,
and (3) action and maintenance. According to these 3 simplified
steps, behavioral change techniques were categorized, and 30
messages were developed for each step in each category. Finally,
a bank of 450 messages was created covering the 5 categories
and 3 stages of behavioral change.

Phases 3 and 4: Internal Review and Feedback From
Potential Users
The initially developed messages were checked for evidence,
appropriateness, and readability, and then the messages were
amended through internal review by experts. Each message was
corrected or deleted according to the rating (suitable, need to
be corrected, unsuitable) given by 9 researchers during an
interdepartmental, internal review process. In the next step,
feedback was obtained from potential users (n=458) who were
outpatients of various ages, sex, and comorbidities with their
CHD being treated at the cardiovascular centers of a secondary
general hospital (Sejong General Hospital) and a large tertiary
general hospital (Korea University Guro Hospital). Each person
evaluated 10 messages and rated the readability and usefulness
of each message using a 5-point Likert scale survey
questionnaire. Simultaneously, free comments were requested
for each message. The messages were reviewed again and
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refined, based on the feedback from the survey (Multimedia
Appendix 1).

Phase 5: Development of App and Pilot Testing for
Message Delivery
Researchers, web designers, and engineers collaborated and
developed the user-friendly app by repeatedly discussing the
screen composition, function, design, etc. We recruited 20
volunteers to pilot test the message delivery system. All
participants were offered brief training at enrollment on how to
use the AnSim app and how to input and monitor their health
data through the app. Each participant received 6 messages per
week for 4 weeks. This frequency was proven to be acceptable
for recipients through focus group interviews. Messages were
sent randomly at 9 AM, noon, or 3 PM from Monday to
Saturday. One message from each of the 5 categories was
delivered from the message bank. An additional message was
sent for the weak category of each patient.

To provide patient-tailored messaging intervention, baseline
characteristics (ie, having diabetes or not, smoking status) of
each participant were identified through the enrollment survey,

and messages for the dedicated category were selected randomly
by an automated system. For example, participants who were
nonsmokers or did not have diabetes did not need to receive
messages regarding smoking cessation or diabetes management,
respectively. Furthermore, each participant’s behavior stage
was identified by administering simple questionnaires each
week (Multimedia Appendix 2), and the messages corresponding
to a specific stage of behavior change were sent, and no message
was repeated (Figure 3). If the message contained video or audio
data that could incur additional data costs, a pop-up message
preceded the message saying it must be opened in a Wi-Fi
environment.

The number of steps taken in a day was automatically recorded
by the AnSim app, and the blood pressure, blood glucose,
exercise, diet, stress level, and medicine intake were directly
recorded by the participants, although it was not enforced.
Instead, to enhance patient participation and motivation, a brief
weekly review of health data and support messages was sent
every week to participants by an independently designated health
care provider from an outsourced health care coaching company.

Figure 3. Delivery of patient-specific messages according to baseline characteristics and stage of behavioral change. BP: blood pressure.

Results

Phase 1 and 2: Focus Group Interview and Message
Development
The focus group consisted of 8 patients of different ages, sexes,
and education levels who had a smartphone and had undergone
PCI within the past 1 year. Detailed patient characteristics are
presented in Multimedia Appendix 3. In-depth interviews were

conducted, and a summary of the results is presented in Textbox
1. Based on the focus group interview, 90 messages in each of
the 5 categories were collected: (1) general information
regarding cardiovascular health and medications, (2) nutrition,
(3) physical activity, (4) destressing, and (5) smoking cessation.
Each message was tailored according to 3 stages of behavioral
change: (1) precontemplation, (2) contemplation and
preparation, and (3) action and maintenance (Table 1).
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Textbox 1. Summary of the focus group interview.

Utilization of smartphone

• Participants had no problem in reading and sending SMS text messages regardless of age.

• Participants below 50 years used smartphones not only for communication, but also for information and business. By contrast, participants over
50 years used smartphones for communication only.

• Positive response for receiving messages on cardiac health.

Exercise

• Concerns about lacking knowledge about proper exercise.

Nutrition

• Participants wanted to know foods and recipes that are good for cardiovascular health.

• Participants tried to avoid fatty foods and eat vegetable-rich diets.

Stress management

• Most of the participants did not know about specific and active stress management method.

Knowledge about coronary artery disease

• Lack of insight regarding recurrence.

• Lack of knowledge about how to prevent recurrence.

Table 1. Examples of messages developed for smoking cessation according to the transtheoretical model of behavior change.

Example (English translation. The original messages were
in Korean)

ContentStage of the transtheoretical model of
behavior change

Smoking is a drug addiction disease, which is registered in
the international disease classification.

Provide information about behavior–health link
(information–motivation–behavioral skills
model)

Precontemplation

Let <NAME>’s family, friends, and co-workers know that
you are being treated for heart disease and will quit smoking.
In particular, let the friends who smoke know you have heart
disease. Everyone will help <NAME> quit smoking.

Plan social support or social change (social
support theories)

Contemplation and preparation

Smoking 1 or 2 cigarettes does not mean that you have failed
to quit smoking. Think about the situation in which you
smoked, and how you can avoid that particular situation. It
may help you in giving up smoking in future.

Relapse prevention (Relapse Prevention Theory)Action and maintenance

Phases 3 and 4: Message Refinement
Message feedback was obtained from potential users (n=458)
using a 5-point Likert scale survey questionnaire. Each person
evaluated 10 different messages and replied about the readability
and usefulness, and approximately 9 comments (feedback) were
obtained regarding readability (9.47 responses) and usefulness

(9.30 responses) in each message. Nearly 98% of messages
received more than 3.0 points regarding readability and
usefulness, and the average 5-point Likert scale score was 3.95
and 3.91, respectively (Figure 4). Messages with scores less
than 3.5 points were further refined and the final expression
was formulated by a linguist. Examples of messages developed
after refinement are listed in Table 2.
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Figure 4. Five point Likert scale scores of various message categories and stages of behavior change.

Table 2. Examples of the final version of developed messages after refinement.

Example (English translation. The original messages were in Korean)Stage of behavior changeaCategory

Taking antiplatelet agents such as aspirin is very important for patients who received percuta-
neous coronary intervention. When you plan a tooth extraction or endoscopic examination,
do not arbitrarily stop the medication without consulting your doctor first.

2General cardiovascular
health and medications

Eating too much salt may burden your heart, leading to swelling and raising the blood pressure
(low-salt diet recipes: Link)

1Nutrition

We applaud you for maintaining a steady routine of exercise. Exercise not only helps you lose
weight but also strengthens your heart.

3Physical activity

Did you know that depression and coronary artery disease are correlated? Coronary artery
disease may lead to depression, and depression in turn can also increase the risk of coronary
artery disease.

1Destress

Get free smoking cessation counseling. You can get free personalized 1:1 counseling at any
time, at home or at work. (Phone number of the national antismoking organization)

1Smoking cessation

a1=precontemplation; 2=contemplation and preparation; 3=action and maintenance.
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Phase 5: Development of App and Test of the Delivery
System
We developed the AnSim app for both Android and iPhone OS
versions. Various multimedia forms, such as exercise videos
and dietary regimens, and links for smoking cessation centers
have been developed. During the 1-month pilot test, 20
volunteers participated and found no problems in transmitting
text and multimedia messages. The participants were evaluated
regarding the stage of behavioral change for each category via
a simple questionnaire administered through the app
(Multimedia Appendix 2) and messages tailored to the current
stage were delivered.

Discussion

Rationale for Developing the AnSim App
The AnSim app was developed to support behavioral changes
and decrease cardiovascular risk factors in patients who had
undergone PCI. The messages of AnSim were developed based
on the transtheoretical model of behavior change. A 5-phase
systematic approach, from focus group interviews to the
development of patient-specific message delivery systems, was
conducted in collaboration with a multidisciplinary team.

Globally, CHD remains the major cause of death, despite
advances in cardiovascular treatment. Further, the incidence
rate of CHD is increasing in developing countries [3]. As an
integral component of the continuum of cardiovascular care,
secondary prevention and CR programs are recommended by
most cardiovascular clinical guidelines as a Class I
recommendation, and huge amounts of medical resources are
devoted toward this endeavor. Although the clinical benefits
[5,7] and cost-effectiveness [33] of CR programs have been
reported, the supply and accessibility of CR programs are not
satisfactory, especially in low-to-middle-income countries
[34,35]. There are many hurdles that prevent patients from
enrolling into CR programs, such as the distance from the
patient’s house to the CR center or a shortage of cost and time.
Recently, the use of smartphones has increased worldwide,
owing mainly to the development of mobile technology, and
interest in mobile health care systems is increasing in various
medical fields [14,19]. Smartphone-based CR can be a good
alternative strategy that can enhance accessibility to medical
care at a low cost [36].

Comparison With Prior Work
There had been many studies, although with varying number
of participants, that showed the feasibility and positive results
of mobile phone messaging in reducing body weight [37-39],
increasing physical activity [40], and smoking cessation [41].
In particular, the Tobacco, Exercise and Diet Messages (TEXT
ME) trial, one of the largest randomized controlled trials
involving 710 patients with CHD, demonstrated that the use of
an SMS text messaging service resulted in a modest

improvement in the management of dyslipidemia and other
cardiovascular disease risk factors [15]. These results are not
surprising considering that home-based CR programs or
education and counseling programs, which do not involve
structured exercise therapy, show equivalent CHD prevention
effects compared with traditional center-based CR or CR
programs, including exercise programs [42].

With regard to smartphone apps, several small randomized
studies, including patients with acute coronary syndrome having
PCI, demonstrated improvement in treatment adherence [43]
and weight loss [44] and a nonsignificant reduction in
cardiovascular events [44]. The recent nonrandomized controlled
trial with 1064 patients with acute myocardial infarction showed
fewer all-cause 30 days readmissions in the digital intervention
group compared with the control [45]. Unlike general concerns
of smartphone-based interventions for the elderly, who account
for a large proportion of patients with CHD, it has successfully
improved physical activity and cognitive function in the older
population [14,46]. Previous intervention strategies using mobile
phones for CR were basically in a 1-way direction, and the
contents were provided only as text messages and were not
patient specific [8,15,27]. Through the AnSim app, the message
is specific, tailored to the patient’s behavioral stage after a brief
review of recent medical records. The process is similar to that
of a recent randomized controlled trial, the Smartphone and
Social Media-Based Cardiac Rehabilitation and Secondary
Prevention in China (SMART-CR/SP) trial, involving 312
patients with PCI [26].

Limitation
The 2-way direction system of the AnSim app is not complete,
as it cannot directly answer or react to the patient’s questions
and needs immediately. However, the active interaction between
CR apps and patients is expected to improve soon as artificial
intelligence develops. Instead, the AnSim can deliver
patient-specific messages that align with the step of each
lifestyle category using the transtheoretical model of behavioral
change and serial tracking of the status of patients. In addition,
messages in the AnSim app can provide a variety of images,
videos, sounds, and feedback, which can improve patient
understanding and adherence and may allow for better effects.

Conclusions
In conclusion, this study reports the development of an app
(AnSim) that provides a variety of medical information and CR
programs regarding CHD. The messages were developed based
on focus interviews, transtheoretical model, feedback, and
refinement with various forms of multimedia, and the messages
were intended to be specific to baseline characteristics and stage
of behavioral change in each participant. Providing CR programs
using mobile technology has a huge potential, and we expect
that the AnSim app would be helpful for secondary prevention
in patients who have undergone PCI. However, future studies
are needed to determine the feasibility and efficacy of this app.
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Abstract

Background: Screening mammography is recommended for the early detection of breast cancer. The processes for ordering
screening mammography often rely on a health care provider order and a scheduler to arrange the time and location of breast
imaging. Self-scheduling after automated ordering of screening mammograms may offer a more efficient and convenient way to
schedule screening mammograms.

Objective: The aim of this study was to determine the use, outcomes, and efficiency of an automated mammogram ordering
and invitation process paired with self-scheduling.

Methods: We examined appointment data from 12 months of scheduled mammogram appointments, starting in September
2019 when a web and mobile app self-scheduling process for screening mammograms was made available for the Mayo Clinic
primary care practice. Patients registered to the Mayo Clinic Patient Online Services could view the schedules and book their
mammogram appointment via the web or a mobile app. Self-scheduling required no telephone calls or staff appointment schedulers.
We examined uptake (count and percentage of patients utilizing self-scheduling), number of appointment actions taken by
self-schedulers and by those using staff schedulers, no-show outcomes, scheduling efficiency, and weekend and after-hours use
of self-scheduling.

Results: For patients who were registered to patient online services and had screening mammogram appointment activity, 15.3%
(14,387/93,901) used the web or mobile app to do either some mammogram self-scheduling or self-cancelling appointment
actions. Approximately 24.4% (3285/13,454) of self-scheduling occurred after normal business hours/on weekends. Approximately
9.3% (8736/93,901) of the patients used self-scheduling/cancelling exclusively. For self-scheduled mammograms, there were
5.7% (536/9433) no-shows compared to 4.6% (3590/77,531) no-shows in staff-scheduled mammograms (unadjusted odds ratio
1.24, 95% CI 1.13-1.36; P<.001). The odds ratio of no-shows for self-scheduled mammograms to staff-scheduled mammograms
decreased to 1.12 (95% CI 1.02-1.23; P=.02) when adjusted for age, race, and ethnicity. On average, since there were only 0.197
staff-scheduler actions for each finalized self-scheduled appointment, staff schedulers were rarely used to redo or “clean up”
self-scheduled appointments. Exclusively self-scheduled appointments were significantly more efficient than staff-scheduled
appointments. Self-schedulers experienced a single appointment step process (one and done) for 93.5% (7553/8079) of their
finalized appointments; only 74.5% (52,804/70,839) of staff-scheduled finalized appointments had a similar one-step appointment
process (P<.001). For staff-scheduled appointments, 25.5% (18,035/70,839) of the finalized appointments took multiple appointment
steps. For finalized appointments that were exclusively self-scheduled, only 6.5% (526/8079) took multiple appointment steps.
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The staff-scheduled to self-scheduled odds ratio of taking multiple steps for a finalized screening mammogram appointment was
4.9 (95% CI 4.48-5.37; P<.001).

Conclusions: Screening mammograms can be efficiently self-scheduled but may be associated with a slight increase in no-shows.
Self-scheduling can decrease staff scheduler work and can be convenient for patients who want to manage their appointment
scheduling activity after business hours or on weekends.

(JMIR Med Inform 2021;9(12):e27072)   doi:10.2196/27072

KEYWORDS

electronic health record; schedule; patient appointment; preventive health service; office visit; outpatient care; mammogram;
software tool; computer software application; mobile applications; self-schedule; app; EHR; screening; diagnostic; cancer

Introduction

About 1 in 8 women in the United States will develop breast
cancer during her life [1]. Breast cancer screening with
mammograms can help detect breast cancer at an early stage
when treatment is most successful [2]. Despite the need for
breast cancer screening, 31% of women in the screening age
range of 45-55 years have not had a mammogram in the last 2
years [3]. Several interventions have been tried to increase the
percentage of women receiving screening mammograms [4].
Primary care health care providers have historically played a
major role in advising patients about screening mammography.
Typically, providers address preventive health services,
including screening mammography, during the periodic
examination [5]. However, despite some continued promotion
of the periodic health care examination [6], there is no
overwhelming evidence for the periodic examination to
significantly change health outcomes, including breast cancer
[7]. In addition, screening mammography is often just one of
many recommended actions that primary care providers need
to address with their patients. In a study at Mayo Clinic, we
found that primary care patients aged 50-65 years, on average,
had 5.5 unmet health care recommendations, with the conclusion
that there needs to be “new approaches to address the
burgeoning numbers of uncompleted recommendations” [8].
Yarnall et al [9] also noted the large amount of time that is
required for primary care providers to address every preventive
service, including screening mammography.

Automated ordering and self-scheduling of screening
mammography with the assistance of the electronic health record
(EHR) is an intervention that could help deliver the preventive
service of early breast cancer detection in a primary care
practice. Criteria for screening mammography can often be
found within the EHR. For example, the American Cancer
Society recommends mammograms up to every year for women
aged 40-75 years depending on the life expectancy [2].
Determining whether a screening mammogram is due for a
given individual can be accomplished through software rules
that query the EHR for patient characteristics and dates of
previous mammograms. Self-scheduling has been used for
airline, hotel, and event bookings for years. So why has the
self-scheduling of medical appointments lagged? The short
answer is that medical appointments encompass many different
appointment types and appointment purposes that require very
different rules for scheduling. For example, Zocdoc.com is an
internet third party medical appointment enabler that matches

individuals on the web with health care providers for scheduled
visits. Zocdoc makes some of the details of the matching process
available [10,11]. Scheduling in Zocdoc includes very specific
rules such as matching insurance coverage, preferred medical
specialty, and availability for face-to-face or video visit [12,13].
COVID-19 visits are another very specific visit type requiring
specific criteria for booking. In a recent study, Judson et al [14]
noted how self-triage rules in the self-scheduling process were
designed to limit COVID video visits to those who did not
require more emergent care. Because of the differences in
appointment purpose and type, the COVID-19 self-scheduling
rules are very different from those used by Zocdoc for more
general appointments. The periodic well-child examination is
another example of a self-scheduling appointment type that
requires a completely different set of rules. Scheduling of the
well-child examination is based on the age of the child, the date
of the last well-child examination, and matching with the child’s
primary care provider [15].

The screening mammogram appointment is also a visit type
with its own unique set of rules that distinguish it from other
visit types. The unique challenges for self-scheduling screening
mammograms are (1) there are specific criteria for patient age,
date of the last mammogram, and whether a screening
mammogram is appropriate; (2) it is a radiologic procedure
requiring an electronic order; (3) there are patient and provider
requirements so that the assignment and communication of
results is assured. In addition to examining the outcomes of
self-scheduled mammograms, we show our automated processes
for the self-scheduled screening mammogram visit that address
the unique challenges of this visit type.

Methods

Setting
The implementation of automated ordering paired with
self-scheduling of mammograms took place at Mayo Clinic in
2019. Mayo Clinic is a multispecialty group practice with
several locations in the United States and internationally. Our
study focuses on the screening mammogram process of the
primary care practices of Mayo Clinic for 12 consecutive months
from September 2019 through August 2020. Mayo Clinic has
primary care practices in the United States in Florida, Arizona,
and many locations in the upper Midwest, primarily in the states
of Minnesota, Wisconsin, and Iowa. All the primary care sites
were included in this study. This study was limited to the
bilateral breast screening mammogram examination, which is
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the recommended radiographic procedure for the early detection
of breast cancer.

Automated Screening Mammogram Order Process
At Mayo Clinic, screening mammography requires an order for
the specific imaging examination. Patients are not allowed to
self-order a mammogram. However, Mayo Clinic has developed
a process with rules that automatically generates orders for
screening mammograms, allowing one-click bulk ordering of
hundreds of mammograms by a single provider. The top part
of Figure 1 shows the one-time EHR system configuration set-up
needed for the mammogram bulk ordering process. The
configuration of the order and visit types in the scheduling
system were needed to allow automated mammogram ordering.
A special EHR report was configured to identify patients
meeting the screening mammogram criteria and to produce the
bulk mammogram order. Creation of patient email/text/push
notification content was also required for the self-schedule
electronic invitation process.

After the prerequisite EHR system configurations are completed,
the mammogram ordering process starts by using EHR data to
identify patients who are eligible and due for screening
mammography. The appointment scheduling system is also
queried for those who are due and have a mammogram ordered

but not scheduled. For those who do not have an active
mammogram order but are due for a mammogram, a
mammogram order is created. Thus, all patients who are due
for a mammogram either have a mammogram order generated
automatically to enable scheduling or they are identified to
enable scheduling if an active mammogram order is already in
place but not yet scheduled. Figure 1 (bottom third) shows that
once the mammogram order is generated or identified as needing
scheduling, the process diverges depending on whether the
patient is enabled with patient online services. All patients who
are due and had the mammogram order generated or who have
an existing mammogram order needing scheduling are sent
invitations to schedule their mammograms. Those who use
patient online services are sent invitations by an email message
and, if mobile app, a push notification. Those without patient
online services are sent a letter by post. The mammogram
invitations sent by the portal included an invitation to
self-schedule. All those with patient online services are enabled
to self-schedule both by using web and mobile app. Patients
with patient online services also have the option to have staff
help them schedule their mammograms (staff scheduled) via a
phone call or portal message. For patients without patient online
services, mammograms can only be scheduled with staff
assistance (staff scheduler).
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Figure 1. Prerequisite system configuration and process flow for automated identification of eligible patients for screening mammograms, automated
mammogram order generation, and communication to patients for self-scheduling versus staff scheduling. EHR: electronic health record.

Staff Scheduling Versus Self-scheduling
Staff schedulers are clinic staff employees who schedule or
cancel appointments for patients. Until the self-scheduling
process was implemented, staff employee appointment
schedulers were responsible for working with patients and
radiology schedules to schedule mammograms. Patients, whether
patient online services–enabled or not, can schedule their

mammograms by telephone or in person via staff appointment
schedulers. Appointment scheduling via staff schedulers
normally occurs during business hours of 7 AM to 5 PM on
weekdays. Appointment schedulers have the ability to schedule
mammograms more than 12 weeks into the future.
Self-scheduling via patient online services can be done either
via web or via mobile and is available 24/7. Patients can directly
see the mammogram scheduling template for the days that they
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select and can click on the appointment time that they want.
Self-schedulers are restricted to scheduling their mammogram
in a 12-week rolling window from the day that they could
schedule. Self-schedulers are also not allowed to double book.

Appointment Definitions
Self-schedulers or self-cancelers are the patients who used the
Mayo software interface (web or mobile) to self-schedule or
self-cancel the mammogram appointments. It should be noted
that we focus on self-schedule actions in this study. There were
some patients who never used the self-scheduling feature but
self-cancelled the appointments made by the staff schedulers.
To be considered self-scheduled, a patient had to have at least

one appointment action of self-scheduling (booking an
appointment with the self-schedule software). The few patients
who self-cancelled their staff-scheduled appointment were
classified as staff-scheduled.

An appointment action is either a schedule or cancel event. With
the self-scheduling process, appointment actions could be done
either by the patient (self) or staff. An appointment path is the
sequence of appointment actions leading to a finalized
appointment or cancellation outcome (Figure 2). Appointment
paths can contain both self and staff appointment actions. The
example above of a self-cancelled appointment that was
scheduled by a staff would have 2 appointment actions: a
staff-scheduler action and a self-cancel action.

Figure 2. Examples of different appointment paths showing the appointment actions and appointment steps leading to a finalized appointment or
cancellation.

Finalized appointments were those scheduled appointments that
were left scheduled up to the appointment date and time (not
cancelled before appointment time). Figure 2 shows examples
of appointment paths and appointment outcomes. Our data start
with a time-stamped appointment schedule action. We
dichotomized appointment actions into those by staff schedulers
and those by self-schedulers. As shown in Figure 2, each patient
(whether self-scheduled or staff-scheduled) begins with a
scheduling action that we term as appointment step 1. Patients
can then go through several decision steps of whether to cancel
or reschedule (a cancel and schedule pair). Some patients would
reschedule multiple times before a finalized appointment. To
quantify this activity, we counted the appointment steps. Figure
2A shows an appointment path to appointment finalization with
just 1 step, the initial scheduling action. Figure 2B and Figure
2C show appointment paths to appointment finalization taking
2 and 4 steps, respectively. Appointment paths ending in a

cancellation outcome also may take several appointment steps.
Figure 2D and Figure 2E show cancellation examples that take
2 and 3 appointment steps, respectively, to result in a
cancellation.

Appointment outcomes are dichotomously categorized as
finalized appointments or cancellations. Finalized appointments
are further dichotomously categorized as completed or no-shows
(never arrived at the scheduled appointment time). Figure 2A
also shows the appointment lead time, which is the scheduled
appointment date/time minus the date/time the appointment was
made. This is the lead time that the patient has from the date of
scheduling the appointment to the actual future-reserved
appointment date.
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Mammogram Appointment Selection and Follow-up
Our data source was EHR-generated scheduling and cancelling
information on all bilateral screening mammogram appointments
made for primary care patients for the 12 months from
September 1, 2019 through August 31, 2020. Scheduled
mammogram appointments were either cancelled or completed
(patient arrived or no-show) by September 1, 2020 for our
follow-up on finalized appointments and no-shows. Patients
eligible for automated ordering and invitation to schedule a
mammogram were primary care practice patients of Mayo Clinic
in Arizona or Florida or in the Mayo Clinic Health System
(Minnesota, Wisconsin, Iowa). Self-scheduling through web or
mobile required patient online service registration; staff
scheduling was available for all patients who had an active
mammogram order, regardless of patient online service
registration status.

Summary of the Outcome Measures
A finalized scheduled mammogram was the outcome of
scheduling and cancelling actions as shown in Figure 2. A
finalized mammogram appointment was defined as a
mammogram appointment scheduled and remaining active until
the date and time of the scheduled mammogram radiology visit.
Scheduling and cancelling actions were outcomes of interest
defined as the scheduling of a mammogram (booking an
assigned time and date for the mammogram) or the action of
cancelling a mammogram (cancelling a previously booked
mammogram appointment). Scheduling and cancelling actions
were dichotomized depending on whether they were
accomplished by self-scheduling or by staff schedulers. The
no-show mammogram appointment, defined as the finalized
appointment for a patient who never arrived for their scheduled
mammogram, was also an outcome of interest. Appointment
lead time was defined as the time difference between the actual
appointment date and time and the date and time it was last
scheduled, after any prior schedule and cancel actions as noted
in Figure 2. Appointment lead times were of interest because
staff schedulers could schedule mammogram appointments
beyond the 12-week lead time limit of self-scheduling. Patient
uptake of the self-scheduling process was measured as counts
and percentage of patients over time who used self-scheduling
or a combination of self-scheduling and self-cancelling
exclusively or in combination with staff scheduling for their
appointment actions for a finalized appointment. The mutually
exclusive 3 categories of patients who finalized appointments
were as follows: self-scheduled exclusively (could also
self-cancel), self- and staff-scheduled (any combination of self
and staff scheduling actions), and patients who used staff
schedulers exclusively (no self-scheduling or self-cancelling
appointment actions).

Data Collection and Analysis
Data were collected by the Epic EHR of Mayo Clinic. Patients
who either staff-scheduled or self-scheduled were registered
patients of Mayo Clinic. In addition, we limited this study to
portal-registered patients who were established primary care
patients; therefore, there were essentially complete demographic
data available for each patient (age, race, sex, ethnicity). Any
uncategorized or missing information on race or ethnicity was

placed in the other or unknown category. Appointment data
were entered by the Epic scheduling software. Dates and times
of self-scheduling and staff scheduling were automatically
entered into the EHR software by patient record number and
categorized on data entry as being sourced from self-scheduling
(patient online services) or by the staff scheduler. Mammograms
were not done unless the patient was checked in by radiology
staff as “arrived.” If the patient did not arrive and the radiology
staff overlooked listing the patient as a no-show, an EHR
scheduling rule marked the visit as a no-show 72 hours after
the scheduled appointment to ensure the capture of these
overlooked no-shows.

We categorized scheduling and cancelling actions according to
whether they occurred outside of the usual business hours
(Monday through Friday, 7 AM to 5 PM). The proportion of
mammogram appointment lead times over 12 weeks was
calculated for both staff-scheduled and self-scheduled
appointments. As mentioned above, only those scheduled for
mammography who were registered with patient online services
were analyzed. Thus, portal registration status was not in our
primary analysis. Those without portal registration were
included in additional analysis as described below. Age is a
known confounder for no-shows in radiology visits [16];
therefore, we adjusted for age in our analysis of no-shows. We
conducted additional analyses to determine how sensitive our
findings were to the disruption that the COVID-19 pandemic
had on mammogram appointments. In March 2020, shortly after
the midpoint of our data capture, mammogram appointments
were suspended temporarily. It was unclear how much this
disruption of scheduling affected self-scheduling activity and
whether it increased the use of staff schedulers. To quantify
this, we analyzed separately the 6 pre-COVID months and the
6 post-COVID months (September 2019 through February 2020
and March 2020 through August 2020, respectively) for
self-scheduling and staff-scheduling activity. We also performed
additional data analysis to evaluate the self-scheduling uptake
for all patients scheduling mammograms, including those
without portal registration.

Statistical Analysis
We used JMP 14.3 (SAS Institute Inc) for the statistical analysis.
The chi-square test was used for categorical analysis. We used
logistic regression analysis in a model to explain the differences
in the no-shows adjusted by patient age to control for age as a
known confounder in radiology no-shows [16]. A logistic
regression analysis model using age, race, and ethnicity was
also used to adjust for additional differences in demographics
for the no-shows analysis.

Ethics
This was a retrospective study examining quality measures and
uptake of a self-scheduling process. Self-scheduling was a
voluntary additional option offered to all primary care patients
with patient online services; all individuals could continue to
schedule their mammograms with staff schedulers if that was
their preference (see patient decision point in Figure 1). This
study met the institutional review board criteria for exemption
(IRB-2020-006809).
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Results

Uptake of Self-scheduling Mammograms
Figure 3 shows the patient counts of those who had
mammograms scheduled for the 12 months of the study.
Approximately 16.4% (18,466/112,367) of the patients did not
have access to either self-scheduling or self-cancelling (not

registered with patient online services). In this study, we focused
on 93,901 individuals who had access to self-scheduling. Of
those individuals, 15.3% (14,387/93,901) used self-scheduling
or self-cancelling. Of those with patient online services, 9.3%
(8736/93,901) exclusively used self-scheduling and thus did
not use any staff-scheduler resources. Another 6% (5651/93,901)
used some self-scheduling/self-cancelling processes to arrange
their screening mammogram.

Figure 3. Patients who had scheduling actions for bilateral screening mammograms for the 12 months of the study. Patient counts show those who
exclusively used self-scheduling, those exclusively staff-scheduled, and those who had both self-scheduling and staff-scheduling appointment actions.

Figure 4 shows the longitudinal percentage uptake of
self-scheduling for those who had self-scheduling access. In the
initial month of widespread implementation, 7.6% (678/8898)
of all individuals involved in scheduling mammograms were
doing some self-scheduling actions. Eleven months later (July
2020), this had increased by 276%, so that 21.1% (1991/9442)
of the patients scheduling mammograms were doing some
self-scheduling. At 12 months (August 2020), 21.8%
(1091/5005) of the patients were doing some self-scheduling,

but since many patients who started scheduling in August had
not reached the scheduled date of their appointment (finalized
their appointment) by the end of data collection (August 31,
2020), the counts were lower. The drop in scheduling in March
and April 2020 was associated with access limitations imposed
during the initial months of the COVID-19 pandemic. As part
of those restrictions, self-scheduling was not available for
scheduling mammograms during part of March 2020 and all of
April 2020, but self-cancelling was still available.
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Figure 4. Longitudinal uptake of self-scheduling paired with automatically generated invitations to schedule mammograms (September 2019 to August
2020). The graph shows the percentage of patients with patient online services–enabled who either exclusively used self-scheduling or used some
self-scheduling. Self-cancelling activity took place in April 2020 when patients could not self-schedule.

Demographics of the Patients
Table 1 compares the demographics of the individuals who had
patient online services and performed any self-scheduling
activity with those of individuals who had staff-scheduled
appointments. There were notable differences in the age
distributions, which was consistent with younger individuals

being more comfortable with web and mobile technology.
Although statistically there were some racial differences, the
absolute percentages were similar. The percentage of White
females in the self-scheduled was 93.7% (13,474/14,382)
compared to 93.7% (74,436/79,476) in the staff scheduled,
thereby showing a nonsignificant difference (P=.90).
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Table 1. Demographics of individuals who used self-scheduling compared to those of individuals who used staff-scheduling for making appointments
for their screening mammograms.

P valueaExclusively staff-scheduled (n=79,514), n (%)Any self-scheduled, (n=14,387), n (%)Demographic characteristic

<.001Age (years)

40 (0.05)2 (0.01)20-29

606 (0.76)91 (0.63)30-39

15,113 (19.01)4311 (29.96)40-49

21,322 (26.82)4468 (31.06)50-59

24,977 (31.41)3954 (27.48)60-69

14,675 (18.46)1408 (9.79)70-79

2674 (3.36)148 (1.03)80-89

107 (0.13)5 (0.03)90-99

.5079,476 (99.95)14,382 (99.97)Self-described gender (female)

.002Race

74,436 (93.61)13,474 (93.65)White

1357 (1.71)186 (1.29)Black

1577 (1.98)316 (2.20)Asian

1420 (1.79)269 (1.87)Other

724 (0.91)142 (0.99)Not disclosed

<.001Ethnicity

2339 (2.94)336 (2.34)Hispanic

75,745 (95.26)13,772 (95.73)Not Hispanic

1430 (1.80)279 (1.94)Undisclosed/unknown

aNull hypothesis (H0) tested: percentage of each demographic characteristic is equal between those who performed any self-scheduled activity and
those who had staff-scheduled appointments exclusively.

Appointment Actions Completed by Self-schedulers
As mentioned in Methods, before an appointment is finalized,
it can be cancelled and rescheduled many times. Table 2 shows
the counts of all the scheduling and cancelling appointment
actions done by self-scheduled patients and those done by staff

schedulers. Out of 175,256 appointment actions completed,
10% (17,475/175,256) were done by patients. All the
appointment actions resulted in a total of 86,964 finalized
appointments, with 10.8% (9433/86,964) at least partially
finalized by the patient.
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Table 2. Appointment metric comparison between self-scheduled and staff-scheduled appointments for those with access to self-scheduling (patient
online services–enabled).

P valueaStaff-scheduled but patients
could still self-cancel

Self-scheduled but
staff could cancel

Appointment metric

Appointment actions, n (%)

<.0010 (0)13,454 (100)Self-scheduled

<.001117,656 (100)0 (0)Staff-scheduled

<.0013847 (3.27)2166 (16.10)Self-cancelled

<.00136,278 (30.83)1855 (13.79)Staff-cancelled

<.00140,125 (34.10)4021 (29.89)Total cancelled

Appointment outcomes, n (%)

N/Ab77,531 (100)9433 (100)Finalized appointments (scheduled minus cancelled)

<.00173,941 (95.37)8897 (94.32)Arrived to appointment

<.0013590 (4.63)536 (5.68)No-show

Appointment action efficiency

N/A2.0351.852Total appointment actions per finalized appointment (total count of the above
4 rows of self-scheduling and staff-scheduling and cancelling appointment
actions divided by the total count of finalized appointments)

N/A0.0501.656Self-generated appointment actions per finalized appointment (total count of
the above 2 rows of self-scheduled and self-cancelled appointment actions
divided by the total count of finalized appointments)

N/A1.9850.197Staff-generated appointment actions per finalized appointment (total count
of the above 2 rows of Mayo staff-scheduled and staff-cancelled appointment
actions divided by the total count of finalized appointments)

Appointment actions outside of standard appointment scheduler hours, n (%)

<.0011659 (1.41)3285 (24.42)Scheduling actions completed outside of normal business hours of Monday
to Friday, 7 AM to 5 PM

<.001769 (0.65)1149 (8.54)Scheduling actions completed on Saturday or Sunday

<.001890 (0.76)2136 (15.88)Scheduling actions completed on Monday to Friday outside of 7 AM to 5
PM

Appointment lead time

N/A2115Median lead time (days)

<.0015778 (4.91)0 (0)Lead time over 84 days, n (%)

aNull hypothesis (H0) tested: proportion of self-scheduled appointments equals staff-scheduled appointments.
bN/A: not applicable.

Convenience of Scheduling
Approximately 24.4% (3285/13,454) of the mammogram
self-scheduling activity was accomplished either on the weekend
or on weekdays after usual staff scheduler hours (Table 2). This
after-hours scheduling was done during the weekday for 15.9%
(2136/13,454) of the appointment actions and on the weekend
for 8.5% (1149/13,454) of the appointment actions.
Approximately 75.5% (10,163/13,454) of the self-scheduling
appointment actions were done via web and 24.5%
(3291/13,454) of the appointment actions were done via mobile
app.

Scheduling Efficiency
The average scheduling actions per finalized visit were similar
between self-schedulers and staff schedulers (1.85 average
self-scheduled appointment actions per finalized visit vs 2.04

for staff schedulers). There was not a major increase in scheduler
work owing to self-scheduling. In fact, staff schedulers averaged
only 0.197 appointment actions per finalized visit that had any
self-scheduling. Thus, staff rework for patients attempting
self-scheduling did not appear to be a major issue. Table 2 also
shows that there was a smaller percentage of self-scheduled
visits that were cancelled, and many of those were
self-cancelled. For the exclusively self-scheduled visit, the
appointment process was extremely efficient. Figure 5 shows
that 93.5% (7553/8079) of the exclusively self-scheduled
patients with a single finalized appointment were able to finalize
that appointment in just 1 step (one and done). Thus, only 6.5%
(526/8079) of the exclusively self-scheduled patients needed
multiple appointment steps for a finalized appointment.
However, 25.5% (18,035/70,839) of the staff-scheduled finalized
appointments had multiple appointment steps; staff-scheduled
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finalized appointments took a single step in 74.5%
(52,804/70,839) of the appointment cases. This resulted in an
odds ratio of 4.90 (95% CI 4.48-5.37; P<.001) for multiple steps

in scheduling when comparing staff scheduling to
self-scheduling.

Figure 5. Comparison of accumulated percentage of exclusively self-scheduled finalized appointments to that of staff-scheduled finalized appointments
by number of appointment steps completed. The graph shows that for each appointment step, the cumulative percentage of self-schedulers successfully
completing the appointment process at that step was greater than that of those who used staff schedulers.

Appointment Outcomes: No-shows
For the 12 months studied, there were bilateral screening
mammograms scheduled for 93,901unique patients with patient
online service access. Of the 131,110 mammograms scheduled,
there were 44,146 cancellations, leaving 86,964 scheduled
mammograms that were expected to be completed on the
scheduled date. Of those appointments expecting to be
completed, 95.3% (82,838/86,964) arrived for the visit for an
overall no-show rate of 4.7% (4126/86,964) for those with
patient online service access. Table 2 shows that the no-show
rate for self-scheduled patients was 5.7% (536/9433) compared
to 4.6% (3590/77,531) for the staff-scheduled patients. The
unadjusted odds ratio of self-scheduled to staff-scheduled
no-shows was 1.24 (95% CI 1.13-1.36; P<.001). Rosenbaum
et al [16] found that patient age was a significant confounder
in mammogram no-shows; therefore, we used a multivariable
logistic regression model to adjust for age when examining
differences in no-shows. In the age-adjusted model, the no-show
rates were not significantly different; the age-adjusted odds ratio
for self-scheduled to staff-scheduled no-shows was 1.09 (95%
CI 0.99-1.20; P=.07). However, in a multivariable logistic
regression model adjusting for race and ethnicity as well as age,

we found a significant no-show odds ratio of self-scheduled to
staff-scheduled of 1.12 (95% CI 1.02-1.23; P=.02).

Appointment Outcomes: Lead Times
Self-scheduled patients were unable to make their mammogram
appointment more than 12 weeks in advance. We found that
4.9% (5778/117,656) of staff-scheduled appointments were
scheduled out further than 12 weeks.

Sensitivity Analysis
The percentage of self-scheduled appointment actions is
sensitive to the denominator used. Since self-scheduling requires
patient online services, we used patients with patient online
services as the denominator for our analysis. Portal engagement
is not static in many practices. Mayo Clinic patient online
services engagement increased from 33% to 62% during 2013
to 2018 [17], and 83.6% (93,901/112,367) of patients scheduling
mammograms in our study had patient online services (Figure
3). When including all patients scheduling mammograms
(patient online services–enabled or not), there were 151,165
mammograms scheduled over 12 months with a total of 208,521
scheduling and cancelling actions. For the entire cohort of
patients with a scheduled mammogram, self-scheduling and
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self-cancelling patients performed 9.3% (19,467/208,521) of
these actions with staff performing 90.7% (189,054/208,521)
of these actions. As shown in Figure 4, the uptake of
self-scheduling had increased substantially; therefore, the
proportion of self-scheduled actions was also sensitive to the
time frame examined. For the last 3 months of the study, the
proportion of all self-scheduled mammogram actions (entire
cohort of those patient online services–enabled or not) had
increased to 12.6% (6109/48,447). The COVID-19 pandemic
in spring 2020 resulted in an increase in mammogram
cancellations both for self-scheduled and staff-scheduled
mammograms. We separately analyzed the 6 pre- and
post-COVID months (September 2019 through February 2020
and March 2020 through August 2020, respectively) for the
average appointment actions per finalized visit. For
self-scheduling, the 6 pre-COVID months had 0.186
staff-scheduling actions per finalized visit compared to 0.209
for the 6 post-COVID months. Thus, even with the
COVID-19–associated cancellations, for appointments with any
self-scheduling activity, there was only about 1 staff
appointment action involved per 5 finalized appointments.

Discussion

Principal Findings
By 11 months, 21.1% (1991/9442) of the patients with
self-scheduling access were engaged in self-scheduling their
screening mammogram and 24.4% (3285/13,454) of the
self-scheduling actions were outside of normal business hours
for appointment scheduling. For 93.5% (7553/8079) of those
who exclusively self-scheduled their screening mammograms,
only 1 appointment step was used—that of a single step of
choosing the date and time of the mammogram.

Scheduler Work Implications
Patients performed a large number of scheduling actions, which
otherwise would have been done by staff schedulers. There was
very little staff-scheduler activity required for each finalized
appointment in the self-scheduled group. Thus, there was not
an unintended consequence of extra staff-scheduler work
required to redo or “clean up” a self-scheduled appointment.
We showed that the average self-scheduled finalized
appointment involved only 0.197 staff actions compared to 2.04
staff actions on average required for a staff-scheduled finalized
appointment. We did not measure the actual staff labor cost for
each finalized appointment associated with self-scheduling and
staff scheduling. However, with the average self-scheduled
finalized visit using only 9.7% (0.197/2.04) of the staff
appointment actions compared to a staff-scheduled appointment,
there is likely a significant savings. Our findings suggest that
the mammogram order generation and self-scheduling features
will fit into the cost-effective multicomponent intervention
framework for cancer screening identified by Mohan et al [18].

Practice Implications
We did not identify major unintended consequences to the
practice. No-shows were significantly greater for those in the
self-scheduled group but were reduced to an odds ratio of 1.12
when adjusted for the patient age, race, and ethnicity differences

noted in Table 1. Because automated bulk ordering of
mammograms was part of the self-scheduling process, providers
were freed up to do other activities besides ordering routine
mammograms. As preventive services and other chronic care
services take up an increasing amount of provider time,
decreasing provider time for this activity is very important [8,9].

Patient Implications
Patient self-scheduling is likely a benefit for many patients. We
showed that many patients took advantage of the ability to
self-schedule 24/7. With 24.5% (3285/13,454) of the
self-scheduling occurring after business hours or on weekends
and 24.5% (3291/13,454) of the self-scheduling occurring via
mobile app, patients were using the anytime and anywhere
capability of self-scheduling. Those who self-scheduled also
were extremely efficient at doing so, with 93.5% (7553/8079)
of their finalized appointments occurring after just 1 scheduling
step. Mathioudakis et al [19] noted that women highly value
time-efficient screening processes, and our data show the
self-scheduling process to be efficient and convenient.

Comparison With Other Studies
There appear to be few comparable studies for self-scheduled
imaging. A review of web-based appointment scheduling by
Zhao et al [20] focused on medical appointments rather than
imaging appointments. Vendors such as Zocdoc or Lybrate offer
web-based scheduling of medical appointments but not for
imaging [13,21]. Compared to self-scheduled medical
appointments, our first year uptake was similar. With a small
sample size of 125, Zhang et al [22] found that 11% of patients
had used a web-based appointment service for a primary health
care center in Australia. We could not find a study like ours
comparing no-show mammography appointment outcomes of
self-scheduling to staff-scheduling. However, a study by
Rosenbaum et al [16] showed a 6.99% no-show for
mammography, which is somewhat higher than what we found
with either self-scheduled or staff-scheduled mammogram
appointments. In Rosenbaum et al’s study, it was noted that
younger patients were more likely to no-show their imaging
appointments. Given the lower ages in our self-scheduled group,
perhaps age was a confounding factor that might explain the
higher no-shows in the self-scheduled group. Consistent with
Rosenbaum et al’s findings, when we adjusted for age in a
multivariable logistic model, there was a nonstatistical difference
in no-shows between self-scheduled and staff-scheduled
mammogram appointments. However, further adjustment of
our no-shows for race and ethnicity as well as age revealed a
significant but small association of no-shows with
self-scheduling.

The outcomes for self-scheduled mammograms show some
interesting contrasts and similarities to outcomes for Mayo
Clinic’s self-scheduled well-child visits [15]. Despite differences
in patient populations (adult vs pediatric) and appointments
scheduled (radiology procedure vs provider visits), there were
similar scheduling efficiencies with 93.1% (712/765) of
exclusively self-scheduled well-child visits being finalized with
1 appointment step compared to 1 appointment step needed for
93.5% (7553/8079) of the exclusively self-scheduled
mammograms. A major difference was in the uptake of
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self-scheduling mammograms, which contrasted sharply with
that of self-scheduled well-child visits. For the first year of
implementation, the percentage of portal-registered unique
patients using self-scheduling for mammograms was 15.3%
(14,387/93,901) compared to 6.8% (1099/16,161) using
well-child visit self-scheduling. An important difference from
the well-child appointment process was that self-scheduling a
mammogram was paired with a communication process that
proactively alerted patients that a mammogram was due. From
the user perspective, the electronic mammogram invitation not
only notified them that the mammogram was due but also that
they could self-schedule their mammogram from their mobile
device or online and would not need to phone a scheduler.
Although well-child appointments could be self-scheduled, they
were not linked to an order that determined eligibility; no
proactive well-child appointment due notices (scheduling
invitations) were sent out. The pairing of alerting patients to
schedule their mammogram appointment and allowing them to
self-schedule in a “one stop” process may explain at least some
of the two-fold differences in uptake between the mammogram
self-scheduling and well-child self-scheduling. Since there were
significant differences in population demographics, appointment
types, and self-scheduling processes between the mammogram
and well-child self-scheduled appointments, more work needs
to be done to understand the differences and similarities in the
outcomes.

Limitations
Patients self-scheduling mammograms were 93.7%
(13,474/14,382) White, and 83.6% (93,901/112,367) of all
patients scheduling mammograms were registered with patient
online services. Other populations could have different results.
Even with our comparison limited to the 83.6%
(93,901/112,367) of patients who had patient online service
access, there were still significant differences in the ages of
patients self-scheduling versus those using staff schedulers. The
COVID-19 pandemic occurring in the last 6 months of this
study limits some of our findings. However, our subgroup
analysis into pre- and post-COVID time frames shows that the
extra staff scheduler cancellations due to COVID was associated
with only a small increase in average staff-scheduling activity
in the self-scheduled group. No-show outcomes in imaging
examinations are known to be influenced by a number of factors
that we did not take into consideration. For example, in their
review of over 3 million outpatient radiology visits, Mieloszyk
et al [23] found significant associations of no-shows with patient
income, commute distance, and daily snowfall. There is no
uniform standard for mammogram screening; there are several
somewhat differing recommendations from different specialty
organizations and stakeholder groups [2,24,25]. Bitencourt et
al [26] discuss some of the differences between breast cancer
screening guidelines. Clinics that use different criteria for
screening mammography may have different results.

We limited the mammogram self-scheduling feature to a
12-week window as mentioned above. This limits the
conclusions about some of the scheduling efficiency. It is
possible that the 12-week appointment window resulted in

patients having more clarity on their future availability and
some reschedules were avoided. Further, the inability to
self-schedule more than 12 weeks in the future likely had an
impact on the uptake of this feature. Since 4.9% (5778/117,656)
of the staff-scheduled appointments were scheduled greater than
12 weeks out, there are likely patients who may have
self-scheduled had they had the opportunity to schedule past
the 12-week limit. We only examined mammograms that were
scheduled. We did not look at the potential issues involved in
the identification of individuals who met the criteria for
generating a mammogram order. For example, if a mammogram
had been recently done elsewhere, the patient might have been
misidentified as being due for a mammogram. Further, patients
who had changed their email or postal address and had not
changed their address in their EHR might not have received
their invitation for ordering a mammogram that was due. Our
data only reflected those who had acted on screening
mammogram orders. In this study, we did not evaluate the
accuracy of the mammogram orders or if the patients had
received their invitations.

Future Research and Enhancements
Additional research will be needed to evaluate whether web and
mobile mammogram self-scheduling will lead to a higher
percentage of women receiving timely screening mammograms.
A study by Gann et al [27] had an unexpected finding of a
greater than 8% increase in mammogram utilization in practices
with “active scheduling” compared to “passive scheduling.”
“Active scheduling” was defined as patients engaged in
scheduling their own mammogram, whereas “passive
scheduling” was when the clinic actually made the appointment
for the patient. Perhaps self-scheduling via web and mobile
self-scheduling will be the internet equivalent of “active
scheduling” and associated with increased mammogram
utilization. Since there are patients who are having
mammograms ordered and scheduled greater than 12 weeks in
the future, a possible enhancement would be to expand that
window of opportunity to self-schedule. A message to the patient
noting that a mammogram would be due in 4-6 months and
offering a wider window of future times to self-schedule could
be an enhancement to evaluate.

Conclusion
A large number of patients successfully self-scheduled their
screening mammogram by using the web or mobile without
staff-scheduler assistance. Self-scheduling actions were
accomplished outside of normal staff-scheduling hours in 24.4%
(3285/13,454) of the cases, and 93.5% (7553/8079) of exclusive
self-scheduled mammogram appointments were done with just
1 appointment step (one and done). Self-scheduled screening
mammograms were associated with more no-shows than
staff-scheduled mammograms, with a small but significant odds
ratio of 1.12 in a model adjusted for age, race, and ethnicity.
There was no unintended consequence of an increase in
staff-scheduler work because, on average, each finalized
self-scheduled mammogram used less than one-tenth the
staff-scheduler appointment actions compared to those
completely staff-scheduled.
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Abstract

Background: Linking different sources of medical data is a promising approach to analyze care trajectories. The aim of the
INSHARE (Integrating and Sharing Health Big Data for Research) project was to provide the blueprint for a technological platform
that facilitates integration, sharing, and reuse of data from 2 sources: the clinical data warehouse (CDW) of the Rennes academic
hospital, called eHOP (entrepôt Hôpital), and a data set extracted from the French national claim data warehouse (Système
National des Données de Santé [SNDS]).

Objective: This study aims to demonstrate how the INSHARE platform can support big data analytic tasks in the health field
using a pharmacovigilance use case based on statin consumption and statin-drug interactions.

Methods: A Spark distributed cluster-computing framework was used for the record linkage procedure and all analyses. A
semideterministic record linkage method based on the common variables between the chosen data sources was developed to
identify all patients discharged after at least one hospital stay at the Rennes academic hospital between 2015 and 2017. The
use-case study focused on a cohort of patients treated with statins prescribed by their general practitioner or during their hospital
stay.

Results: The whole process (record linkage procedure and use-case analyses) required 88 minutes. Of the 161,532 and 164,316
patients from the SNDS and eHOP CDW data sets, respectively, 159,495 patients were successfully linked (98.74% and 97.07%
of patients from SNDS and eHOP CDW, respectively). Of the 16,806 patients with at least one statin delivery, 8293 patients
started the consumption before and continued during the hospital stay, 6382 patients stopped statin consumption at hospital
admission, and 2131 patients initiated statins in hospital. Statin-drug interactions occurred more frequently during hospitalization
than in the community (3800/10,424, 36.45% and 3253/14,675, 22.17%, respectively; P<.001). Only 121 patients had the most
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severe level of statin-drug interaction. Hospital stay burden (length of stay and in-hospital mortality) was more severe in patients
with statin-drug interactions during hospitalization.

Conclusions: This study demonstrates the added value of combining and reusing clinical and claim data to provide large-scale
measures of drug-drug interaction prevalence and care pathways outside hospitals. It builds a path to move the current health
care system toward a Learning Health System using knowledge generated from research on real-world health data.

(JMIR Med Inform 2021;9(12):e29286)   doi:10.2196/29286

KEYWORDS

drug interactions; statins; administrative claims; health care; big data; data linking; data warehousing

Introduction

The secondary use of health care data offers the opportunity to
conduct observational studies in real life [1-3]. Indeed, hospital
clinical data warehouses (CDWs) supply fine-grained
information from electronic health records (EHRs), such as
laboratory test results and drug administration, but are restricted
to hospitalized patients. Conversely, National claim databases
offer limited information (eg, drug reimbursement and health
care consumption data), but on a large part of the population.
Therefore, matching the data from these 2 different databases
could be informative, but it is also challenging. Patients existing
in the 2 databases should be correctly identified using
appropriate record linkage methods. The first option is
deterministic record linkage that relies on the presence of a
unique common identifier or a combination of different variables
used as a key to join tables [4]. More complex rules to link
records can also be added, such as an acceptable distance
between string variables or between dates. The second option
is probabilistic record linkage that is based on a model to assess
the discriminative power of each variable used in the record
linkage strategy. The result is the probability that an entity in
the first database is the same entity in the second database [5,6].
Several studies have demonstrated that in most cases,
probabilistic approaches give better results than deterministic
methods [7-10]. However, the choice of record linkage also
heavily depends on the characteristics of the 2 databases to be
linked. The quality of the data used in the record linkage is an
especially important factor. Indeed, if high quality data (eg, few
missing values) are available, deterministic methods can achieve
good results and are easier to develop [11].

In France, the national health database, Système National des
Données de Santé (SNDS), [12] links the nationwide outpatient
claim database (Système national d’information inter-régimes
de l’Assurance maladie), the national discharge database
(Programme de Médicalisation des Systèmes d’Information
[PMSI]), and the Epidemiology Centre of Medical Causes of
Death (CepiDC; vital status data) database. Rennes academic
hospital (Centre Hospitalier Universitaire de Rennes) uses eHOP
(entrepôt Hôpital) [13], a CDW that includes EHR and discharge
data on all stays in this hospital. Linking SNDS and eHOP is a
promising strategy to analyze patient care trajectories. However,
legal, methodological, and technical barriers still remain. Health
data are sensitive, and in France, their use is regulated by the
European General Data Protection Regulation [14]. Therefore,
studies based on the use of health data entail various regulatory
steps, such as the scientific evaluation of the project and the

patient information material and the assessment of the impact
on data protection. In France, the use of SNDS data for external
research requires the development of a data repository that
complies with the strict security specifications to host the SNDS
sample for the study.

In this context, the aim of the INSHARE (Integrating and
Sharing Health Big Data for Research) project was to provide
the blueprint for a technological platform (INSHARE platform)
that facilitates data integration, sharing and reuse by following
the FAIR (findability, accessibility, interoperability, and
reusability) Guiding Principles [15]. This work demonstrates
through a use case in pharmacovigilance how the INSHARE
platform can support health big data analysis.

Our use case focused on statin consumption and statin-related
drug–drug interactions (DDIs). Indeed, 36.9% [16] of French
people aged 34 to 65 years have hypercholesterolemia, and
statins are the most prescribed lipid-lowering treatment drugs
in France [17]. The current European treatment guidelines [18]
recommend statins as the first-choice drug for
hypercholesterolemia management. However, 10% to 25% of
patients treated with statins experience muscle side effects [19],
including rhabdomyolysis (incidence: 1-3 in 100,000 persons
per year) [20]. Statin-induced rhabdomyolysis is related to DDIs
in 60% of cases [20], which suggests that avoiding DDIs has
an important role in reducing statin adverse events. Because of
their wide use and DDI potential, statins are an interesting study
topic to assess the value of our technological platform for
clinical data reuse. Moreover, literature data indicate that DDIs
are preventable, but this is hindered by the clinicians’ lack of
easy access to comprehensive information. Indeed, health care
delivery is fragmented across the system and this creates an
environment susceptible to medication-related issues [21].
Polypharmacy has been associated with higher risk of DDIs
and adverse drug events [22], and subsequently, with
drug-related deaths in hospitals [23]. Therefore, it is important
to precisely characterize the individual care pathways within
the health care system using aggregated medical data.

Here, we present the technical aspects of the INSHARE platform
and the methods and results of the care pathway analysis in
patients with statin-drug interactions.
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Methods

Data Sources

Drug Database: Thériaque
Thériaque is a comprehensive dynamic knowledge database
that provides exhaustive information on approved and marketed
drugs [24]. It contains highly structured information on each
drug, such as indications, contraindications, and DDIs and their
severity level. Each drug is referenced according to 3 mapped
classifications: Unité Commune de Dispensation, the
medication-dispensing unit used by the French hospital
information system; Code Identifiant de la Présentation, the
drug package identifier used by French community pharmacies;
and Anatomical Therapeutic Codification, which is based on
the active component or components of each drug.

French Claim Database: SNDS
In France, the SNDS is a national claim data warehouse that
covers 98.8% of the entire French population [25]. It contains
data from outpatient care, such as medical consultations and
drug deliveries by community pharmacies, and data from
inpatient care, such as diagnosis and procedures performed
during a stay in a private- or public-sector hospital. Each
reimbursement of outpatient care is recorded at the individual
level in a specific data mart called Datamart de Consommation
InterRégime [12]. Data on inpatient care also are recorded at
the individual level in an annual national discharge database
called PMSI that is similar to the diagnosis-related groups.
Individual data are deidentified and pseudonymized allowing
the linkage, thanks to a unique identifier, between inpatient data
(PMSI database) and outpatient data (Datamart de
Consommation Inter Régime). This claim data warehouse has
been previously described [12].

We used a data set extracted from the SNDS database that
included all patients discharged after at least one hospital stay
at Rennes academic hospital between 2015 and 2017. Owing
to the redundancy of information contained in the PMSI
database, hospital stays following the primary diagnosis were
excluded (eg, stays for chemotherapy, radiotherapy, dialysis,
apheresis, blood transfusion and hyperbaric oxygen therapy).
All inpatient and outpatient data in the 12 months before each
hospital stay were extracted.

Data were extracted from the national SNDS database by a
French national health insurance manager outside of this study
workflow.

CDW: eHOP
eHOP is the CDW developed and deployed at Rennes academic
hospital [13]. It collects administrative and clinical data from
EHRs, both unstructured (eg, clinical notes) and structured (eg,
drugs, laboratory results). Data are deidentified and a unique

anonymous identifier allows the linkage among hospital stays
of a given patient. The eHOP CDW currently allows for
searching from 80 million unstructured data and 430 million
structured elements. All these data are collected from EHRs
and cover more than 1.4 million patients.

The data set from the eHOP database included patients according
to the same criteria used for the SNDS data: all data on hospital
stays at Rennes academic hospital between 2015 and 2017. For
this study, we used the following structured data:

1. Demographic data
2. Drug administered (Common Unit of Dispensation, UCD

and date of administration)
3. PMSI data: International Classification of Diseases, Tenth

Revision (ICD-10) codes, procedure codes, mortality, length
of stay, etc.

4. Laboratory results described with a local terminology.

Record Linkage Procedure
As no unique patient identifier is available to link SNDS and
eHOP data because of regulatory issues, we developed a
semideterministic record linkage method based on PMSI
variables that are common between the SNDS data source and
the eHOP CDW data source (Figure 1). PMSI data are available
from all French hospitals and are produced in a standardized
way by each hospital. Once deidentified, PMSI data feed the
nationwide PMSI database. This database is then integrated in
the SNDS database to link PMSI data with claim data. In theory,
PMSI data from the SNDS and hospitals should be exactly the
same. However, during the preliminary work, we identified
some discrepancies concerning ICD-10 and procedure codes
between these data sources. Therefore, we incorporated some
fuzzy logic in the record linkage algorithm to solve
inconsistencies. The algorithm is illustrated in Figure 2.
Specifically, ICD-10 codes comprise between 3 and 6 characters,
but we kept only the first 4 characters. Procedure codes comprise
7 characters, and we kept all 7. We merged ICD-10 and
procedure codes in alphabetical order in a unique string for each
stay. We then tested different Levenshtein distance thresholds
to consider a match between sets of codes (the distribution of
the Levenshtein distances for the ICD-10 codes and procedure
codes is provided in Multimedia Appendix 1, Table S1). We
identified a threshold of 5 as the best choice for both ICD-10
and procedure codes. For the final matching, first we assessed
whether a patient had at least one exact match. This was
considered as the exact match if the other patients were fuzzy
matches. If we did not find any exact match, we kept the fuzzy
match first looking at procedure codes. If a patient had several
exact matches or several fuzzy matches, we kept the one with
the most fuzzy matches on ICD-10 codes. The remaining
patients with several matches were considered as duplicates and
were excluded from the linkage results.
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Figure 1. SNDS data mart tables (in blue), including PMSI tables, and eHOP data mart tables (in purple) with the different variables from the 2 data
sources used for the linkage procedure. eHOP: entrepôt Hôpital; PMSI: Programme de Médicalisation des Systèmes d’Information; SNDS: Système
National des Données de Santé.

We also had to solve specific cases concerning twins who do
not have an individual identifier (NUM_ENQ) in the PMSI.
Indeed, the same identifier (NUM_ENQ) is shared by twins of
the same sex [12]. Thus, it was impossible to link their SNDS
records with their records in eHOP. We chose to exclude twin
patients from the record linkage results. The complete algorithm
is available in Multimedia Appendix 1, Figure S1.

We assessed the linkage effectiveness by calculating the rate
of SNDS and eHOP patients who could be matched in the other
data set. We also describe some characteristics of the following
groups: patients who were matched between data sources, and
patients from the SNDS and eHOP data sets who could not be
matched.
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Figure 2. Decision tree for the record linkage procedure. eHOP: entrepôt Hôpital; SNDS: Système National des Données de Santé.

INSHARE Platform
The INSHARE platform comprises 2 parts: a data repository
to gather all kinds of data sources, and a computing
infrastructure to perform data preparation, record linkage and
analyses. The platform is available through Apache Mesos, a
resource manager, to allow concurrent access to the computing
server.

The data repository was the Apache Hadoop Distributed File
System (HDFS) repository, and data were stored in parquet
format files, with an appropriate stratification key. SNDS data
sets were made available to us in CSV files that were stored in
a specific folder in the server. We extracted the data needed
from the eHOP CDW and the Thériaque databases with Spark
SQL. This extraction step avoided repeating long queries in the

CDW and overloading the production CDW used for other
purposes.

We used the Spark distributed computing framework, version
2.3.4, for the data preparation, the record linkage procedure,
and all use-case analyses.

We then accessed these data with Spark SQL that allowed us
to merge data from the different sources in an efficient way and
to perform all analyses. We used the R language as the script
language, particularly the sparklyr package. The overall data
processing is depicted in Figure 3.

We used a single node cluster: a CentOS 7 Unix server with 2
Intel Xeon 5122@3.6 GHz and 192 GB of RAM. Thus, we did
not replicate the HDFS repository, and we executed the Spark
master and slave nodes on the same machine.
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Figure 3. INSHARE platform and data processing workflow. CDW: clinical data warehouse; eHOP: entrepôt Hôpital; HDFS: Hadoop Distributed File
System; INSHARE: Integrating and Sharing Health Big Data for Research; SNDS: Système National des Données de Santé.

Use Case Study Design
We performed a cohort study on patients treated with statins
prescribed by their general practitioners or during the hospital
stay. We collected information on statins (Anatomical
Therapeutic Codification classes C10AA, C10BA, and C10BX)
and the statin-drug interactions from the Thériaque database.
We classified statin intake as (1) community consumption if
we found at least one statin delivery by a community pharmacy
less than 1 month before hospitalization, and (2) hospital
consumption if we found at least one statine administered during

the hospital stay. Only the first hospital stay for each patient
was retained for the use-case.

For each patient, we extracted the following features: sex, age
at admission, the international nonproprietary name of the used
statin, consumption of drugs potentially interacting with the
used statin, DDI severity, admission via the emergency
department, length of hospital stay, in-hospital death, laboratory
results: creatine phosphokinase (CPK), creatinineaemia,
glycemia, hemoglobin, kalemia, natremia, aspartate
aminotransferase, alanine aminotransferase, hospital care burden
(ie, diagnosis-related group severity).
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We classified patients into 3 subgroups according to their statin
consumption status: (1) patients treated with statins before and
during their hospital stay, (2) patients treated with statins before
admission, but not during the hospital stay, (3) patient who
started taking statins in hospital without any statin treatment in
the previous 12 months. We defined a statin-related DDI on the
basis of the intake of a drug that reacts with the statin taken by
that patient. All hospital drug administrations were considered
during the index hospital stay, and all community deliveries
were considered within 8 days before or after the statin delivery.
According to the Thériaque database, we classified all
statin-drug interactions into 3 levels of severity (level 1:
contraindication, level 2: relative contraindication, level 3:
precaution of use).

Statistical Analyses
We described categorical variables as numbers and percentages,
and quantitative variables as mean and SD for symmetrical
distribution, and median with first and third quartiles (Q1–Q3),
otherwise. We explored the association between patient
characteristics or hospital stays and the occurrence of a

statin-drug interaction with the Chi-square test (categorical
variables) and one-way analysis of variance (quantitative
variables). We built a logistic regression model to identify
factors independently related to the occurrence of a statin
interaction.

Ethical Consideration
The record linkage and the use-case study were approved by
the Commission nationale de l’informatique et des libertés
(French Data Protection Agency or CNIL; N 2,206,739).
According to French regulations, patients were informed about
the use of their data, and no signed consent was required.

Results

Technological Results

INSHARE Overall Computing Performance
The time needed for the record linkage procedure and statin
use-case analysis was 88 minutes. The most time-consuming
step was the detection of DDIs in the data of patients taking a
statin. The time needed for each step is indicated in Figure 4.

Figure 4. Time duration from data loading to the end of the use case-study analysis. DDI: drug–drug interaction; eHOP: entrepôt Hôpital; SNDS:
Système National des Données de Santé.

Assessment of the Record Linkage Procedure
The SNDS and eHOP data sets included 161,532 subjects
(278,341 stays) and 164,316 subjects (265,089 stays),
respectively, who had at least one hospital stay at Rennes
academic hospital between 2015 and 2017.

We successfully linked 159,495 patients (159,495/161,532,
98.74% and 159,495/164,316, 97.07% patients from the SNDS
and eHOP data sets, respectively). We excluded from the linkage
results 199 patients from the SNDS data set and 162 patients
from the eHOP data set because their records were linked with
more than one patient in the other data set. Patients who could

not be linked were younger (median age of the unmatched
patients from the eHOP and SNDS data sets: 22.3 and 27.6
years, respectively, compared with 48.4 years for matched
patients). Moreover, women represented 51.35%
(81,900/159,495) of all matched patients and 57.20%
(2758/4821) and 18.52% (377/2037) of unmatched patients in
the eHOP and SNDS data sets, respectively.

Use Case Results

Statin-Taking Population
Of the 159,495 matched patients, we retained 16,806 patients
with at least one statine delivery. Specifically, 8293 patients
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started statin treatment before admission and continued it during
the hospital stay (community and hospital consumption), 6382
patients started statin treatment before admission but stopped
at hospital admission (only community consumption), and 2131
patients started statins in the hospital (hospital initiation). The
characteristics of the 3 subgroups are summarized in Table 1.
Age (4651/6382, 72.88% and 6255/8293, 75.43% of patients
aged ≥65 years) and unplanned hospitalization rate (2416/6382,
37.86% and 2434/8293, 29.35%) were similar in patients with
only community consumption and patients with community and
hospital consumption, respectively. Type of hospital care was

similar in patients with community and hospital consumption
and in patients with hospital initiation (4729/8293, 57.02% and
1072/2131, 50.31% of surgery, respectively). The percentage
of patients aged ≥65 years and the rate of planned
hospitalizations were lower in patients with hospital initiation
than in the other 2 subgroups.

The most dispensed statin in all 3 subgroups was atorvastatin.
Simvastatin, rosuvastatin and pravastatin each represented
approximately 1 out of 5 prescriptions in patients with only
community consumption. In the hospital, only 2 statins were
available (atorvastatin and pravastatin).

Table 1. Patients’ characteristics according to their statin consumption.

P value
Hospital initiation (n=2131),
n (%)

Community and hospital con-
sumption (n=8293), n (%)

Only community consump-
tion (n=6382), n (%)

<.0011437 (67.43)5431 (65.49)3790 (59.39)Sex (male)

<.0011192 (55.94)6255 (75.43)4651 (72.88)Age (≥65 years)

<.0011155 (54.2)2434 (29.35)2416 (37.86)Unscheduled admission

<.001Type of care

1059 (49.69)3564 (42.98)4576 (71.7)Medical care

1072 (50.31)4729 (57.02)1806 (28.29)Surgery

<.001—a7660 (92.37)6075 (95.19)Chronic statin consumption (>3 months)

<.001Statin type

1909 (89.58)4632 (55.85)2380 (37.29)Atorvastatin

3 (0.14)190 (2.29)194 (3.04)Fluvastatin

183 (8.58)2004 (24.16)1374 (21.53)Pravastatin

24 (1.13)1473 (17.76)1145 (17.94)Rosuvastatin

24 (1.13)1540 (18.57)1301 (20.39)Simvastatin

Patients with statin-drug interactions

<.001—1815 (21.89)1438 (22.53)During community consumption

.07DDIb severity

—20 (1.10)30 (2.09)1

—29 (1.60)20 (1.39)2

—1784 (98.29)1404 (97.64)3

<.001585 (27.45)3215 (38.77)—During hospital consumption

<.001DDI severity

10 (1.71)72 (2.24)—1

58 (9.91)143 (4.45)—2

552 (94.36)3154 (98.10)—3

aNot available.
bDDI: drug–drug interaction.

Statin-Drug Interaction Detection
We identified 5579 patients with potential statin-related DDIs.
Overall, statin-drug interactions occurred more frequently during
hospitalization than in the community (3800/10,424, 36.45%
and 3253/14,675, 22.17%, respectively). The most severe DDIs
(level 1) concerned 0.78% (82/10,424) of hospitalized patients.

Table 2 presents the hospital outcomes in patients with and
without statin-drug interactions. Patients with statin-drug
interactions were divided into 3 subgroups according to the
place of DDI occurrence: (1) during community consumption
(regardless of their hospital consumption), (2) during hospital
consumption (regardless of their community consumption), or
(3) during both community and hospital consumption.
Statin-drug interactions occurring in hospital were associated
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with longer hospital stay, more severe pathology, and higher
in-hospital mortality. The logistic regression model identified
characteristics that were significantly related to the occurrence
of statin-drug interactions: men older than 64 years of age,
admitted for medical care for severe pathology, and longer
length of hospital stay (Table 3).

Tables 4 and 5 present the frequency of patients according to
their DDI severity and to the place of DDI occurrence and the
details of the 5 most frequent drugs that interacted with statins
according to the place of DDI occurrence.

Table 2. Characteristics of patients and hospital stays according to the place of the statin-drug interaction occurrence.

P value
No interaction
(n=11,227)

Interaction during community
and also hospital consumption
(n=1474)

Interaction only during
hospital consumption
(n=2326)

Interaction only during
community consump-
tion (n=1779)

<.0016997 (62.32)1008 (68.39)1521 (65.39)1132 (63.63)Sex (men), n (%)

<.0017739 (68.93)1215 (82.43)1750 (75.24)1394 (78.36)Age (≥65 years), n (%)

<.0013837 (34.18)544 (36.91)926 (39.81)698 (39.24)Unscheduled admission, n (%)

<.001Type of care, n (%)

6030 (53.71)787 (53.39)1149 (49.39)1233 (69.31)Medical care

5197 (46.29)687 (46.61)1177 (50.6)546 (30.69)Surgery

<.0017.6 (8.2)8.4 (10.1)11.9 (15.8)8.3 (10.4)Length of stay (days), mean (SD)

<.0012156 (19.2)260 (17.64)742 (31.9)94 (5.28)Intensive care unit admission, n
(%)

<.001Diagnosis-related group severity, n (%)

7070 (62.97)565 (38.33)692 (29.75)1314 (73.86)1 (least severe)

2015 (17.95)388 (26.32)673 (28.93)177 (9.95)2

1692 (15.07)396 (26.87)729 (31.34)197 (11.07)3

450 (4)125 (8.48)232 (9.97)91 (5.12)4 (most severe)

<.00187 (0.77)31 (2.1)24 (1.03)12 (0.67)In-hospital mortality, n (%)

Table 3. Factors related to the occurrence of a statin interaction.

Odds ratio (95% CI)

1.14 (1.04-1.25)Sex (male)

1.48 (1.34-1.62)Age (≥65 years)

1.08 (0.97-1.19)Unscheduled admission

1.56 (1.43-1.71)Medical care

1.03 (1.03-1.04)Length of stay (days)

Diagnosis-related group severity

11 (least severe)

1.18 (1.06-1.31)2

1.27 (1.13-1.43)3

1.51 (1.22-1.86)4 (most severe)
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Table 4. Top 5 drugs interacting with statins during community consumption, along with the overall total for each security level.

Fluvastatin, n
(%)

Pravastatin, n
(%)

Atorvastatin, n
(%)

Simvastatin, n
(%)

Rosuvastatin, n
(%)

Drug or statin

Severity level: 1 (most severe)

0 (0)0 (0)0 (0)12 (63.2)17 (68)Cyclosporin (n=29)

0 (0)2 (100)2 (50)3 (15.8)1 (4)Sodium fusidate (n=8)

0 (0)0 (0)0 (0)0 (0)6 (24)Fenofibrate (n=6)

0 (0)0 (0)2 (50)1 (5.3)0 (0)Telithromycin (n=3)

0 (0)0 (0)0 (0)3 (15.8)0 (0)Clarithromycin (n=3)

0 (0)2 (100)4 (100)19 (100)25 (100)Total

Severity level: 2

5 (83.3)3 (100)6 (54.5)3 (13)6 (85.7)Fenofibrate (n=23)

0 (0)0 (0)0 (0)15 (65.2)0 (0)Carbamazepine (n=15)

0 (0)0 (0)2 (18.2)4 (17.4)0 (0)Cyclosporin (n=6)

0 (0)0 (0)1 (9.1)1 (4.3)0 (0)Rifampicin (n=2)

1 (16.7)0 (0)0 (0)0 (0)1 (14.3)Bezafibrate (n=2)

6 (100)3 (100)11 (100)23 (100)7 (100)Total

Severity level: 3 (least severe)

19 (22.9)194 (25.7)365 (22.2)164 (13.1)156 (26.5)Fluindione (n=898)

20 (24.1)152 (20.1)287 (17.5)101 (8)114 (19.4)Warfarin sodium (n=674)

0 (0)0 (0)0 (0)322 (25.6)0 (0)Amlodipine besylate (n=322)

9 (10.8)57 (7.5)110 (6.7)58 (4.6)51 (8.7)Sodium bicarbonate or sodium alginatea (n=285)

0 (0)52 (6.9)102 (6.2)0 (0)38 (6.5)Sodium polystyrene sulfonate (n=225)

83 (100)755 (100)1643 (100)1256 (100)588 (100)Total

aSodium bicarbonate-containing antacid.
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Table 5. Top 5 drugs interacting with statins during hospital consumption, along with the overall total for each security level.

Fluvastatin, n
(%)

Pravastatin, n
(%)

Atorvastatin, n
(%)

Simvastatin, n
(%)

Rosuvastatin, n
(%)

Drug or statin

Severity level: 1 (most severe)

0 (0)4 (80)14 (41.2)0 (0)3 (18.7)Sodium fusidate (n=21)

0 (0)0 (0)17 (50)2 (6.9)0 (0)Itraconazole (n=19)

0 (0)0 (0)0 (0)9 (31)6 (37.5)Cyclosporin (n=15)

0 (0)0 (0)0 (0)12 (41.4)0 (0)Erythromycin (n=12)

0 (0)0 (0)0 (0)0 (0)7 (43.8)Fenofibrate (n=7)

0 (0)5 (100)34 (100)29 (100)16 (100)Total

Severity level: 2

0 (0)0 (0)107 (56.9)11 (40.7)0 (0)Rifampicin (n=118)

2 (100)8 (61.5)36 (19.1)3 (11.1)7 (58.3)Fenofibrate (n=56)

0 (0)3 (23.1)19 (10.1)3 (11.1)5 (41.7)Daptomycin (n=30)

0 (0)0 (0)9 (4.8)0 (0)0 (0)Isoniazid (n=9)

0 (0)0 (0)3 (1.6)5 (18.5)0 (0)Cyclosporin (n=8)

2 (100)13 (100)188 (100)27 (100)12 (100)Total

Severity level: 3 (least severe)

13 (16.5)243 (20.2)660 (18.7)98 (9.4)100 (19.7)Sodium polystyrene sulfonate (n=1142)

11 (13.9)206 (17.1)529 (14.9)65 (6.2)83 (16.3)Warfarin sodium (n=894)

14 (17.7)196 (16.3)504 (14.3)88 (8.5)92 (18.1)Fluindione (n=894)

6 (7.6)93 (7.7)259 (7.3)31 (2.9)42 (8.3)Diosmectite (n=431)

8 (10.1)93 (7.7)242 (6.8)39 (3.7)39 (7.7)Sodium bicarbonate or sodium alginatea (n=421)

79 (100)1204 (100)3531 (100)1040 (100)508 (100)Total

aSodium bicarbonate-containing antacid.

Link Between Statin-Drug Interaction and Laboratory
Results
Figure 5 illustrates the link between the 5 most frequent drug
interactions of each statin and the laboratory results. Overall,
we observed little variations in laboratory values between
patients with level 3 statin-drug interactions and patients without
statins or taking statins but without DDI. However, glycemia
was higher in patients in whom a potential statin interaction

(level 1) with sodium fusidate, itraconazole, or erythromycin
was detected. Similarly, kalemia and liver enzymes (alanine
aminotransferase, aspartate aminotransferase) were altered in
patients with a potential statin interaction (level 1) with
itraconazole, or sodium fusidate, and with itraconazole,
respectively. However, the sample sizes were too small (fewer
than 20 patients for most laboratory data, particularly for CPK)
to detect any significant variation.
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Figure 5. Boxplots of laboratory results for the top 5 DDIs of each statin. The 3 control groups are depicted in purple, blue and green. Boxplots in
yellow, orange and red indicate the laboratory results of patients exposed to statin-related DDI with a level of severity of 3, 2 and 1 (the most severe).
Patients can have more than one DDI, and they can be of different severity. Fenofibrate and cyclosporin have 2 boxplots because some of their DDIs
are classified as level 2 and others as level 1. ALT: alanine aminotransferase; AST: aspartate aminotransferase; CPK: creatine phosphokinase; DDI:
drug–drug interaction.

Discussion

Strengths

Technical Work
To the best of our knowledge, this is the first study that
successfully linked EHR data, through a CDW and claim data.
However, there are some initiatives that integrate the 2 data
types at the source into a common database [26,27].

The linkage process was efficient and generic enough to be
applied to any data source that contains PMSI data. Our goal
was to demonstrate that for data reuse purposes, it is possible
to link fine-grained EHR data and claim data without a common

patient identifier. Today, most hospitals have a CDW dedicated
to research and fed with EHR data. Specifically, we used the
eHOP CDW architecture that is currently the most widespread
CDW type in France [13].

These 2 data sources can be bulky. For instance, the statin
use-cases required to read and filter all drug administrations
(n=13,125,574) and all drug dispensations (n=6,019,432) to
identify patients to be included in the study were large. To
ensure fast computation, we developed a computing framework
based on Spark and HDFS that showed good performances even
on our small single node cluster. These tools are widespread in
the big data field, but they are still rarely used for data reuse in
hospitals. According to Dolezel et al [28], their underuse, despite
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the massive amount of hospital data available, is explained by
the lack of personnel with specific technological skills.

DDI Use Case
Our use-case study found a statin-drug interaction prevalence
of 22.17% (3253/14,675) and 36.45% (3800/10,424), during
community consumption and hospital consumption, respectively.
Few studies have provided statin-drug interaction rates during
primary care and hospital care for the same population. A
Bulgarian study [29] reported statin-drug interaction prevalence
rates of 26.1% at hospital admission (used as a proxy for primary
care prescription) and 24.4% at discharge. Regarding primary
care, this rate ranges from 6.9% [30] to 33% in a systematic
review [31] on elderly patients. However, the definition of
interaction varies among studies. This could be explained not
only by the choice of drug database, as reported in the literature
[32,33], but also by the focus on the most severe interactions.
Our study took into account different severity levels, from
precaution of use to contraindication, using the Thériaque
database.

By comparing the places where interactions occurred
(community or hospital), our study showed that the most severe
interactions in the hospital led to more specialized and longer
care, as previously reported [34]. This should be put in
perspective with the larger number and types of drugs
administered during hospital stays. Finally, we attempted to
link DDIs and laboratory results and showed their potential
impact on some laboratory parameters. Previous works reported
the biological effects of some statin-drug interactions, such as
(1) liver toxicity (elevated alanine aminotransferase or aspartate
aminotransferase) by interaction with cyclosporin, (2)
hyperkalemia [34] with itraconazole or erythromycin [35], and
(3) hyperglycemia with fusidic acid [36]. These findings should
be interpreted with caution because some of them could be
because of the adverse effects of statins [37] or of the other
drug, such as itraconazole.

Limitations

Technical Work
The pairing procedure showed that the data life cycle introduced
quality defects that explained the incomplete record linkage.
We are still investigating the reasons for the match failures and
how to explain quality data defects. The record linkage
procedure could be improved using more sophisticated linkage
strategies, such as probabilistic methods. However, our study
concerned a specific case where data variables used for the
record linkage procedure originated from the same source (ie,
PMSI data produced by hospitals). Most of the unmatched
patients were twins who could not be distinguished in the SNDS
data, even by using more complex methods. We think that the
deterministic approach is simpler to maintain and is more
understandable for people who would like to use or adapt our
algorithm for their own purpose.

DDI Use Case
DDI prevalence remains dependent on the chosen definition.
In our study, these interactions were based only on the simple

presence of a drug that could interact with statins and did not
capture dose-dependency or patient-specific factors that might
influence DDI definitions. Moreover, only information on
dispensation was available for primary care (community
consumption), whereas administrations were considered for
hospital stay.

Despite the large cohort of patients over a 3-year period, our
use case study found only 121 patients with a severity level 1
DDI, and among them only 5 had CPK data. This highlights
the importance of the large sample size needed in
pharmacoepidemiology and pharmacovigilance studies to detect
rare adverse effects.

Conclusions
This study demonstrates the added value of combining and
reusing clinical and claim data to provide large-scale measures
of DDI prevalence and care pathways outside hospitals. In a
complex health care system that involves multiple care
providers, transitions of care are often the source of medication
discrepancies and DDIs [38]. Linking CDW and community
data is a promising approach to identify gaps in the system.

Our approach also allows performing big data–driven analyses
to generate new hypotheses. For instance, by linking laboratory
data with DDIs, we demonstrated that our strategy allowed
exploring potential biological variations associated with DDI
exposure. However, because of the small patient samples with
laboratory results and the exploratory design of the study, we
did not want to infer any causal effect or clinical impact at this
step. In this context, data reuse should be complementary to
hypothesis-driven pharmacoepidemiological research, which is
the appropriate way to confirm the plausibility of a given
hypothesis generated using health data.

This builds the path to progress toward a Learning Health
System, in which patient care is continuously improved using
knowledge generated from research on real-world health data
and clinical research [39].

Since the INSHARE project, we have extended this approach
in the HUGOSHARE project in which we plan to analyze, using
the Health Data Hub platform [40], the DDIs for a larger number
of drug classes in a much bigger data set from SNDS and from
the CDWs of 6 academic hospitals of the French western area.
This may overcome the limitations of this study concerning the
limited sample sizes for rare events with the aim to generate
high quality hypotheses and to consider building predictive
models.

Future medical technological developments may also consider
enriching community pharmacy reimbursement data with other
community data, such as community laboratory results or
ambulatory visits. This might enable researchers to identify
system vulnerabilities that result in medication errors slipping
through the holes of the Swiss Cheese Model of System Errors
[41,42].
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Abstract

Background: The identification of an appropriate rhythm management strategy for patients diagnosed with atrial fibrillation
(AF) remains a major challenge for providers. Although clinical trials have identified subgroups of patients in whom a rate- or
rhythm-control strategy might be indicated to improve outcomes, the wide range of presentations and risk factors among patients
presenting with AF makes such approaches challenging. The strength of electronic health records is the ability to build in logic
to guide management decisions, such that the system can automatically identify patients in whom a rhythm-control strategy is
more likely and can promote efficient referrals to specialists. However, like any clinical decision support tool, there is a balance
between interpretability and accurate prediction.

Objective: This study aims to create an electronic health record–based prediction tool to guide patient referral to specialists for
rhythm-control management by comparing different machine learning algorithms.

Methods: We compared machine learning models of increasing complexity and used up to 50,845 variables to predict the
rhythm-control strategy in 42,022 patients within the University of Colorado Health system at the time of AF diagnosis. Models
were evaluated on the basis of their classification accuracy, defined by the F1 score and other metrics, and interpretability, captured
by inspection of the relative importance of each predictor.

Results: We found that age was by far the strongest single predictor of a rhythm-control strategy but that greater accuracy could
be achieved with more complex models incorporating neural networks and more predictors for each participant. We determined
that the impact of better prediction models was notable primarily in the rate of inappropriate referrals for rhythm-control, in which
more complex models provided an average of 20% fewer inappropriate referrals than simpler, more interpretable models.

Conclusions: We conclude that any health care system seeking to incorporate algorithms to guide rhythm management for
patients with AF will need to address this trade-off between prediction accuracy and model interpretability.

(JMIR Med Inform 2021;9(12):e29225)   doi:10.2196/29225
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Introduction

Atrial Fibrillation
Atrial fibrillation (AF) affects an estimated 2.3 million
Americans, with projections to over 10 million by the year 2050
[1,2], at current estimated costs of over US $26 billion each
year in total [3] or US $18,000-US $20,000 per patient [4].
According to an analysis of the MarketScan database, patients
diagnosed with AF underwent a mean 11.25 (SD 7.51) outpatient
office visits, mean 4.74 (SD 5.24) outpatient hospital visits, and
mean 0.71 (SD 1.28) emergency department visits, and were
hospitalized for a mean 1.59 (SD 3.39) days on average over a
given 6-month period [5]. Although the only treatment that has
consistently reduced mortality from AF is the use of oral
anticoagulation agents to prevent thromboembolic stroke [6-19],
patients with AF can still have acute coronary syndromes, heart
failure, and cardiovascular death at a rate of approximately 5%
per year [20-23], including 35%-50% with hospital admissions
or death within 5 years, even in the presence of oral
anticoagulation [24,25]. Furthermore, the use of anticoagulation
has no direct impact on the symptoms a patient may experience
from AF, on the effect AF may have on underlying
cardiovascular physiology, or on the long-term outcomes of
being in AF rather than sinus rhythm. As such, the treatment of
AF beyond identification of individuals needing anticoagulation
is generally directed toward one of two strategies: (1) a
rate-control strategy, focused solely on reducing the rate of
ventricular excitation without attempting to restore sinus rhythm,
or (2) a rhythm-control strategy, in which the focus is on
restoring sinus rhythm using direct electrical energy
(cardioversion), antiarrhythmic medications [26,27], catheter
ablation, or a combination of two or more of these approaches
[6,26,28-30]. Although a rate-control strategy can typically be
performed under the care of a primary care physician,
application of a rhythm-control strategy generally requires input
from a specialist in cardiology or cardiac electrophysiology.
Given the complexity of the decision about when to pursue a
rhythm- or rate-control strategy, patients in whom a
rhythm-control strategy is unlikely may be reflexively referred
to cardiology or cardiac electrophysiology; in contrast, patients
in whom a rhythm strategy would be beneficial may not be
referred to a specialist who could provide this service. A method
to identify patients who are more or less likely to undergo a
rhythm-control strategy upstream could thus provide an
attractive resource to improve care efficiency.

Use of Electronic Health Records
The expansion of electronic health records (EHRs) has created
the opportunity to develop automated methods of prediction
using machine learning. Although machine learning methods
can provide superior predictability over standard methods in
some cases, this improved accuracy often comes at the expense
of using black box methods for prediction, in which it is not
clear what specific information is being used by a given model
to make predictions [31]. Within the space of clinical
decision-making, such opacity can be a problem as it not only
prevents users from gaining trust in the model but also provides
little feedback in terms of how potential factors might be
modified to change a decision. Our group has previously

described the application of machine learning methods to EHRs
for the prediction of incident AF and other outcomes [32,33].

In this study, we applied a step-by-step process to develop
prediction models of increasing complexity using EHR data to
predict whether a given patient is likely to have a rate- or
rhythm-control strategy at the time of diagnosis of AF. We
structured our analysis to examine and compare methods that
offer a range of levels of model interpretability as well as
prediction accuracy. In conclusion, we have provided a set of
models that can be applied using EHR data at the point of care
to guide referrals for AF management broadly within a health
care system.

Methods

Study Population
The University of Colorado (UC) Health hospital system
includes 3 large regional centers (north, central, and south) over
the front range of Colorado. All UC Health hospitals share a
single Epic instance, with backups and storage within Epic’s
Cogito Suite of databases, including Chronicles (operational
database), Clarity (relational database), and Caboodle
(dimensional database). In 2016, the UC entered into a unique
partnership with Google to allow data from Caboodle to be
loaded and stored in a research-focused data warehouse called
the Health Data Compass, located entirely on the Google Cloud
Platform, which was used by our team for this study. The data
set was obtained using Google Big Query applied to the EHR
system to return patients who were seen for outpatient
encounters between October 11, 2010, and October 26, 2020,
and were between the age group of 18 and 100 years at the index
encounter, defined as the first time that a diagnosis of AF was
entered for an outpatient seen at a UC Health clinic (see
Multimedia Appendix 1, Table S1, for AF diagnosis definitions).
The full data set contained 42,022 participants and was split
into a training set (31,517/42,022, 75%) and a testing set
(10,505/42,022, 25%), with model development performed
using the training set and model comparisons using the testing
set. This protocol was approved by the UC Multiple Institutional
Review Board (#20-2192) using deidentified and uniquely
encoded data sets, with a waiver of informed consent.

Clinical Predictors
Clinical predictors were grouped into two broad categories,
which were defined as big data predictors and known predictors.
Big data predictors included any diagnosis (International
Classification of Disease [ICD]-9 or ICD-10) or procedure event
for each patient before the index encounter, as well as race,
ethnicity, and financial class. Any medication that was active
and administered via the oral route at the index encounter was
also included as a big data predictor. For each participant, an
array was created for active medications, procedures, and
diagnoses, followed by the use of a tokenizer (Keras Tokenizer)
to create a one-hot encoded data set with each unique
medication, procedure, and diagnosis assigned its own variable,
resulting in a data set containing 50,845 variables. Known
predictors were defined as any cardiac or metabolic diagnoses
that have been identified as having a potential association with
the risk of AF, including hypertension (ICD-9 401.X; ICD-10
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I10.X) [6,21,34], obesity (ICD-9 278.X; ICD-10 E66.X) [34-37],
diabetes mellitus (ICD-9 250.X; ICD-10 E11.X), coronary artery
disease (ICD-9 414.X; ICD-10 I25.X), and heart failure (ICD-9
428.X; ICD-10 I50.X) [21,24,34,38,39], and mitral valve disease
(ICD-9 424.X or 394.X, ICD-10 I34.X), as well as age and sex.
Age was normalized (mean subtracted and divided by SD) for
all analyses except for logistic regression models and decision
trees (not including random forests [RFs]), which used the
unnormalized age. This allowed for improved optimization of
the models that used the normalized age and greater
interpretability of the models that used the unnormalized age.
Missing values were imputed using the median value
(continuous variables) or mode (discrete variables). No
participants were missing age or sex, and diagnoses were
assumed to be absent if the value was unavailable.

Outcome: AF Treatment Strategy
AF treatments were defined as any medication, including
antiarrhythmic medications, external cardioversion, or AF
ablation procedure that was ordered within 6 months after the
index encounter (Multimedia Appendix 1, Table S2). We
defined the order for any antiarrhythmic medication, ablation,
or cardioversion procedure as a rhythm-control strategy and
any nodal agent or absence of a treatment order as a rate-control
strategy. Treatments were only assessed following the index
encounter (ie, the first outpatient visit at which the diagnosis of
AF was entered); we did not examine subsequent treatments or
study visits beyond the first 6 months after the index encounter.
In one subanalysis, we examined the first selected
rhythm-control strategy after the AF diagnosis, grouped into
one of the following categories: antiarrhythmic medication,
external cardioversion, and ablation.

Modeling Strategy

Model Development
As the total number of participants to whom a rhythm-control
strategy was applied was relatively low (imbalanced data), we
first compared four methods of resampling: synthetic minority
oversampling technique (SMOTE) [40,41], random
oversampling, random undersampling, and Tomek links
undersampling [42], as well as the use of raw features.
Resampling was performed only in the training set.

Model development proceeded from the most interpretable
(logistic regression) to the most complex and opaque (combined
methods incorporating neural networks in ensemble format).
Originally, we planned to run all models on both groups of
inputs, known and big data predictors. However, we found that
only deep learning models provided predictive accuracy for big
data predictors. Thus, we ran the non–deep learning models on
the known predictors only (Multimedia Appendix 1, Table S7).
For logistic regression, we used the training data set to develop
binary logistic regression classifiers for models of rate- versus
rhythm-control and multinomial logistic regression for models
of the first AF treatment strategy among those identified as
having a rhythm-control strategy. For RFs, extreme gradient
boosting, K-nearest neighbors, and naïve Bayes classification,
grid search for hyperparameter optimization was performed
using five-fold cross-validation on the training set, with manual

grid optimization to ensure that the grid contained the optimal
hyperparameters (ie, if a hyperparameter value was identified
on the upper end of the grid range, the grid was expanded to
ensure that the overall optimal hyperparameter was not beyond
the bounds of the grid space).

The approach to fitting neural networks was to first increase
the complexity (lower learning rate and increased numbers of
layers and neurons) to improve fit on the training data and then
to include regularization methods (eg, decrease the learning rate
and add dropout) as the out-of-sample loss began to increase,
as noted in the examination of learning curves (Multimedia
Appendix 1, Figure S1). We used feed-forward neural networks
for deep learning architecture. Unless described otherwise,
neural networks used fully connected layers with Elu activation
(except the final layer, sigmoid), He initialization, L2
regularization (Penalty=0.01), dropout (20%), batch
normalization, binary cross-entropy loss, Root Mean Square
Propagation optimizer with learning rate=1e-4, ρ=0.9, and 50
training epochs with early stopping. Formal comparisons of
predictive accuracy are presented; any model structure or
hyperparameters that are not presented can be assumed to have
provided inferior predictive accuracy compared with the
presented models.

We also examined several ensemble methods by integrating the
optimal model on the basis of big data predictors (from neural
networks) with known predictors to allow interpretability of the
impact of each component on the overall prediction accuracy.
We first included the predicted probability of a rhythm-control
strategy for each participant on the basis of the neural network
as an input into either a RF or logistic regression, with SMOTE
resampling for the training set. We also examined the weights
and structure of the neural network with big data inputs
combined with auxiliary input from known predictors
concatenated at the final layer, followed by the addition of a
fully connected layer (called neural network combined) with
sigmoid output to predict rhythm-control strategy. Weights from
pretrained layers of the former models were frozen, with training
only on additional layers after the addition of known predictors.

Model Interpretation
Our main goal was to identify an optimal model to predict the
probability of providers applying a rhythm-control strategy on
the basis of classification accuracy and interpretability.
Classification accuracy was defined primarily by the F1 score,
with supportive metrics including the area under the receiver
operator characteristic curve (AUC), precision (positive
predictive value), recall (sensitivity), accuracy (% correct
predictions), and inspection of the 2 × 2 contingency table.
Interpretability was examined by inspecting the relative
importance of each predictor according to the metrics available
for each modeling approach. For logistic regression, importance
was defined by the chi-square statistic from a nested likelihood
ratio test, with and without inclusion of the predictor in the
model. For RFs, importance was defined by the Gini index,
which describes the mean decrease in impurity across all nodes,
averaged over all decision trees [43]. We also examined
individual decision trees manually for the interpretability and
relevance of decision cut-points.
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Model calibration was assessed using calibration curves created
by binning the predicted probability from each model over the
deciles of prediction and examining the actual proportion of
rhythm-control strategies within each decile. Receiver operator
characteristic and precision-recall curves were plotted using
standard methods (sklearn). To allow inspection of these models
within the context of triggering referrals for evaluation of the
rhythm-control strategy, we also plotted the proportion of
appropriate, inappropriate, and missed appropriate referrals
according to varying probability thresholds from each prediction
model. These classifications were assigned by comparing
whether a rhythm-control strategy was predicted by the model
and whether it was actually used for each participant. Thus,
appropriate referrals indicated the participants for whom a
rhythm-control strategy was predicted and used, inappropriate
referrals indicated those for whom a rhythm-control strategy
was predicted but not used (false positives), and missed
appropriate referrals indicated those for whom a rhythm-control
strategy was not predicted but was used (false negatives).

Computing Resources
Analyses and marginal estimation using logistic regression
applied to the known predictors were conducted using Stata, IC
(version 16, StataCorp, Inc). Analyses using both known and
big data predictors were performed using scripts written in
Python 3.7.4, with dependencies (software packages) including
the following: imblearn 0.0, Keras 2.2.4, numpy 1.19.4, pandas
0.25.1, scikit-learn 0.23.2, and tensorflow 2.4.0. Scripts were
developed and tested using Jupyter Notebook and deployed
using command line programming at the UC’s Health Data
Compass Eureka virtual environment, hosted on Google Cloud
Platform, using 64 central processing units and approximately
8-10 GB RAM, depending on the modeling requirements.

Results

Known Predictors
The overall study population demographics are provided in
Table 1, split according to the strategy deployed (rate vs
rhythm-control) and the training or testing set. A rhythm-control
strategy was ordered within 6 months of AF diagnosis in 7.51%
(3155/42,022) of patients. On average, patients undergoing a
rhythm-control strategy were younger and male, with lower
rates of existing cardiac conditions other than obesity. Among
patients ordered for a rhythm-control strategy (and for whom
this information was available), 20.88% (495/2370) were first
ordered for ablation, 9.7% (230/2370) were ordered for an
antiarrhythmic medication, and 69.41% (1645/2370) were
ordered for external cardioversion. All known predictors (Table
1), except for obesity and hypertension, were significantly
associated with a rhythm-control strategy at P<.005 (after
Bonferroni adjustment for multiple comparisons). Nonlinearity
of the interaction with age and sex was notable (Figure 1);
younger men were more likely to have a rhythm-control strategy,
with normalization of the sex-dependent effect by older age.
Among the individuals in whom a rhythm-control strategy was
ordered, the age-sex interaction remained significant, although
the relationship between age and probability of rhythm-control
strategy was no longer nonlinear (Figure 1). In addition,
hypertension diagnosis was the strongest predictor of the type
of rhythm-control strategy used. Individuals with a previous
diagnosis of hypertension were less likely to have an ablation
or antiarrhythmic medication and more likely to have a
cardioversion ordered (Figure 1).

Table 1. Population demographics.

Testing set (n=10,505)Training set (n=31,517)Demographics

Rate control
(n=9720)

Rhythm control
(n=785)

Rate control
(n=29,147)

Rhythm control
(n=2370)

72.3 (12.7)67.1 (11.6)72.1 (12.9)66.4 (12.0)Age (years), mean (SD)

4115 (42.3)265 (33.8)12,588 (43.2)779 (32.9)Sex (female), n (%)

4870 (50.1)372 (47.4)14,577 (50)1036 (43.7)HTNa, n (%)b

1243 (12.8)156 (19.9)3877 (13.3)366 (15.4)Obesity, n (%)c

1768 (18.2)115 (14.7)5305 (18.2)343 (14.5)Diabetes, n (%)d

2497 (25.7)164 (20.9)7433 (24.5)475 (20)CADe, n (%)f

1874 (19.3)142 (18.1)5625 (19.3)488 (20.6)Heart failure, n (%)g

1687 (17.4)124 (15.8)4841 (16.6)394 (16.6)Mitral valve disease, n (%)h

aHTN: hypertension diagnosis.
bInternational Classification of Disease-9 401.X; International Classification of Disease-10 I10.X.
cObesity diagnosis (International Classification of Disease-9 278.X; International Classification of Disease-10 E66.X).
dDiabetes mellitus (International Classification of Disease-9 250.X; International Classification of Disease-10 E11.X).
eCAD: coronary artery disease.
fInternational Classification of Disease-9 414.X; International Classification of Disease-10 I25.X.
gHeart failure (International Classification of Disease-9 428.X; International Classification of Disease-10 I50.X).
hMitral valve disease (International Classification of Disease-9 424.X or 394.X; International Classification of Disease-10 I34.X).
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Figure 1. (A) Predictive margins for rhythm-control strategy. Based on logistic regression with age and age-squared and age-sex interactions. Error
bars represent the 95% CIs applied to each age-sex combination. (B) Predictive margins for the type of rhythm-control strategy: ablation, antiarrhythmic
drug, and external cardioversion. Based on multinomial logistic regression for the first rhythm-control treatment applied, with age and age-squared and
age-sex interactions. Error bars represent the 95% CI applied to each age-sex combination. (C) Predictive margins for the effect of hypertension diagnosis
on the rhythm-control strategy. Based on multinomial logistic regression for the first rhythm-control treatment applied, with age and age-squared and
age-sex interactions. Error bars represent the 95% CI applied to each age-sex combination.

Among the supervised learning algorithms to predict a
rhythm-control strategy based only on known predictors
(Multimedia Appendix 1, Table S3), we found that all methods
had a similar magnitude of F1 score and that some resampling
method (SMOTE being most common) was needed for optimal
prediction (Table 2). Feature importance applied to the highest
performing RF model demonstrated that age was by far the
strongest predictor (Table 3). Inspection of the decision tree
(Figure 2) indicated that age <70 years was strongly associated
with a rhythm-control strategy, and age >89 years was strongly

associated with the rate-control strategy. When the models were
tested on age-stratified data, there was a slight improvement in
the average AUC associated with increased age, but this was
not statistically significant (Multimedia Appendix 1, Figure
S3). The logistic regression results showed similar relative
importance for the features, although RF favored coronary artery
disease slightly more than sex as a predictor compared with the
logistic regression, and mitral valve disease was relatively less
important for regression than RF (Table 3).
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Table 2. Best supervised learning models.

PrecisionRecallAccuracyAUCbF1 scoreResamplingModela

0.1160.4760.6890.5910.186SMOTEdRandom forestc

0.1060.5630.6140.5910.179Random oversamplingExtreme gradient boostinge

0.1050.6820.5410.6050.181Random undersamplingK-nearest neighborsf

0.1080.6090.5960.6020.184SMOTENaïve Bayesg

0.1080.6540.5700.6080.185SMOTELogistic regression

aAll models except neural network applied to known predictors only.
bAUC: area under the receiver operator characteristic curve.
cRandom forest hyperparameters: estimators=200, maximum features=8, maximum leaf nodes=300.
dSMOTE: synthetic minority oversampling technique.
eExtreme gradient boosting hyperparameters: booster=gbtree, η=0.9, γ=0, α=1, λ=0.
fK-nearest neighbors: N=500.
gNaïve Bayes: α=0.

Table 3. Feature importance.

P valueLogistic chi-square (df)Random forest impurity reductiona (%)Predictor

<.001462.11 (4)81.74Age (years)

<.00121.28 (1)3.25CADb

<.00160.61 (3)3.01Sex

.018.04 (1)2.82Mitral valve disease

<.00118.46 (1)2.78Diabetes mellitus

<.00117.59 (1)2.43Heart failure

.044.03 (1)2.36Hypertension

.112.61 (1)1.62Obesity

aFor random forest (synthetic minority oversampling technique resampling).
bCAD: coronary artery disease.

Figure 2. Decision tree for rhythm-control strategy. Based on known predictors to classify rate- versus rhythm-control strategy using the training data.
Maximum depth=2, minimum samples to split nodes=50.
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Big Data Predictors
For big data predictors, only neural networks provided an F1
score over 0.0, so we focused on identifying the optimal neural
network to predict a rhythm-control strategy. Across all neural
networks using raw features, SMOTE, or random
undersampling, we found that a 2-layer neural network with
SMOTE provided superior prediction accuracy on the basis of
the F1 score (Multimedia Appendix 1, Table S4). When
examined within the context of logistic regression, decision
tree, and RF, predictions from the big data neural network were

by far the most predictive (Multimedia Appendix 1, Table S5).
When combined as an ensemble with RF (RF combined) and
neural network (neural network combined), the predictive
accuracy remained high, with comparable F1 scores across
models (Table 4) and clear improvement in prediction compared
with RF or logistic regression based only on known predictors
(Figure 3). Examination of calibration (Figure 3) indicated that
all models were poorly calibrated and tended to overfit the data
(predict rhythm-control strategy more often than this strategy
was ordered).

Table 4. Combined big data (BD) and known predictor models.

PrecisionRecallAccuracyAUCaF1 scoreModel

0.1810.4510.8070.6430.258Random forests combined

0.1940.3500.8430.6170.250Neural network combined

0.1950.3870.8350.6290.260Neural network (BD predictors)

aAUC: area under the receiver operator characteristic curve.
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Figure 3. (A) Receiver operator characteristic curves for prediction models. Shown are top five models, including random forest combined and neural
network combined (use big data and known inputs), random forest and logistic regression (use only known inputs), and neural network (only big data
inputs). (B) Calibration curves (top) and histograms (bottom) for prediction models. Shown are top five models, including random forest combined and
neural network combined (use big data and known inputs), random forest and logistic regression (use only known inputs), and neural network (only big
data inputs). ROC: Receiver operator characteristic.

On the basis of precision-recall analysis (Multimedia Appendix
1, Figure S2), we examined the rate of appropriate,
inappropriate, and missed appropriate referrals that would result
from implementing an automated algorithm using these models
at the time of AF diagnosis (Figure 4; Multimedia Appendix 1,
Table S6). As expected, we found that the proportion of

appropriate referrals (referral when rhythm-control strategy is
likely) increased and missed appropriate referrals decreased
with an increase in the sensitivity (recall) threshold used to
guide the decision. However, it was also found that more
complex models, such as those using combined known and big
data predictors within a black box context, had a lower rate of
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inappropriate referrals for thresholds between 0.3 and 0.8. To
put this in context, if the model was applied to 10,000 patients
at the time of AF diagnosis, increasing the sensitivity (recall)
threshold from 0.5 to 0.7 would decrease the number of missed
appropriate referrals by 150 patients for both models, at the
expense of an increase in the number of inappropriate referrals

of 1690 (logistic regression) to 1850 (RF combined). The use
of models based solely on known predictors would increase the
proportion of inappropriate referrals by approximately 20%
compared with those that included big data predictors (Figure
4; Multimedia Appendix 1, Table S6).

Figure 4. Decision curves for prediction models based on proportion of appropriate and inappropriate referrals that would result from applying the
model at different levels of sensitivity (thresholds): (A) random forest combined, (B) neural network combined, (C) random forest, (D) logistic regression,
and (E) neural network.
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Discussion

Principal Findings
In this EHR-based observational study of automated algorithms
for the prediction of a rhythm-control strategy, we made several
observations about the modeling process and the impact of using
greater amounts of data to guide referrals. First, we found that
nearly all methods were significantly improved by integration
of some form of resampling during training (SMOTE being the
most effective generally), which has been described previously
by our group and others for the prediction of imbalanced
outcomes. Although these approaches tended to improve the
prediction accuracy as assessed by the F1 score and other
measures of classification, they resulted in models that tended
to predict a rhythm-control strategy more often than one was
actually used, suggesting that they were overfitting the data.
This result is consistent with previous work using machine
learning to predict rare outcomes from EHR data by our team,
including the prediction of AF itself [33] and myocardial
infarction [32].

Second, we found that only neural networks could provide the
computational power to produce accurate prediction models
with big data inputs; none of the other approaches provided an
AUC over 0.5 (F1 score>0.0) when applied to big data inputs.
This result is also similar to previous findings with the
application of machine learning to EHR data [32,33] and
suggests the power of deep learning over standard methods,
which has been demonstrated widely across a range of
applications [44-46].

Finally, and most interestingly, we found that although no
method was clearly superior to the others, there appeared to be
a trade-off in which more interpretable models on the basis of
known predictors alone provided inferior predictive accuracy
compared with the use of more opaque, black box approaches
incorporating deep neural networks. Specifically, we found that
a model based solely on age could be reasonably effective for
identifying patients in whom a rhythm-control strategy could
be applied, but that greater levels of predictive accuracy required
incorporation of much larger amounts of information, at the
expense of not knowing which specific predictors (diagnoses,
medications, or prior procedures) among the over 50,000 were
needed. The benefit of using these more complex models was
evident in a lower rate of inappropriate referrals within a wider
range of thresholds, in which increasing the sensitivity of the
predictions to decrease the number of missed appropriate
referrals resulted in approximately 20% more inappropriate
referrals for all but the lowest and highest thresholds. The
bottom line is that a health system seeking to implement a
clinical decision support algorithm could find a substantial
increase in the costs due to inappropriate referrals in order to
apply a more interpretable approach to guiding clinical
decisions.

This study offers several comments, and the broader implications
applied to both decisions about rhythm-control strategies and
the role of machine learning and statistical modeling in
EHR-based clinical decision support. In terms of rhythm- versus
rate-control strategies, there are little data about the best

approach for a given patient at the time of AF diagnosis. Early
clinical trials limited to antiarrhythmic medications for
rhythm-control showed no difference in outcomes for
rhythm-control compared with a rate-control strategy [47-50],
although more recent trials that include AF ablation for
rhythm-control have noted improvements in ventricular function
[21,38] and lower rates of stroke and death among patients with
heart failure treated using a rhythm-control strategy that included
AF ablation [24,51-53]. The recently published Early Treatment
of Atrial Fibrillation for Stroke Prevention Trial 4 [54] examined
early application of a rhythm-control strategy (within a year)
and noted a reduction in the combined outcome of
cardiovascular death, stroke, or cardiac hospitalizations
[48,50,55], although the study did not directly measure costs
[55]. Within the context of an automated referral algorithm,
increasing the number of referrals blindly across the population
is unlikely to be cost-effective, as we found that there was
overall a relatively low rate (3155/42,022, 7.51%) of patients
who had a rhythm-control strategy ordered within a 6-month
period. In contrast, a program that avoids referrals for
rhythm-control due to the overall low rate is likely to result in
many patients being denied the opportunity to undergo treatment
that could improve morbidity and mortality. We did not
specifically examine long-term outcomes in this investigation,
although we anticipate that like many models of automated
decision-making, the procedure must start by mimicking expert
decisions before moving on to models that incorporate outcomes.
For example, the AlphaGo computer algorithm for playing Go
began with modeling expert moves in the first version [56]
before using automated game simulation to identify a model
that could achieve suprahuman performance [57].

With regard to the use of deep learning models to make
predictions about clinical decisions, there is an important issue
of out-of-sample predictive accuracy, which includes model
overfitting—fitting noise in the training data set that results in
reduced predictive accuracy in the testing and validation data
set—as well as sampling bias related to the population used to
derive the prediction model being different from that in which
it is applied. One of the remarkable features of modern deep
learning methods is that through regularization techniques, such
as dropout, these models are capable of fitting data in which
the number of trainable parameters is greater than the number
of samples or participants. However, due to the curse of
dimensionality, the use of such a large number of predictors
results in a large space of extrapolation (few data points nearby
one another), in such a manner that only through trial and error,
and use of strictly held-out testing data sets, can one increase
the probability of fitting signal rather than noise. Even with
careful attention to learning curves, one still cannot be certain
of a model’s predictive robustness without continued validation
in external data sets. Such work is planned for these models, in
which the trade-off between the use of a simple model with
highly mappable inputs but lower predictive accuracy is
balanced against the use of a complex deep learning model with
greater accuracy; however, this requires a method to directly
map approximately 50,000 features to the model input for
application. Ultimately, more work will be needed to understand
both the conceptual challenges of deep learning for clinical
decision-making related to bias and overfitting, as well as the
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practical issues of how one applies a model developed in one
EHR to another.

Limitations
As expected from the examination of clinical decision-making
using EHR data alone, there are several limitations to our study.
First, as a result of the sheer number of encounters analyzed,
we were unable to provide a manual chart or clinical validation
of the decisions made in terms of rate or rhythm-control. As we
defined the first diagnosis of AF as the first time it was entered
into the EHR, it is highly likely that participants may have had
undocumented AF before the index encounter and that a rate-
or rhythm-control strategy may have been addressed at that
point in time or by providers outside of our health care system.
In addition, it is possible that many AF diagnoses were made
in error and that patients may have had atrial flutter or
supraventricular tachycardia rather than AF, in which case rate
versus rhythm-control decisions would be irrelevant. Although
we have an ongoing project to examine decisions at a
patient-by-patient level, such an approach would not scale for
the purposes of this analysis. Second, we selected an arbitrary
6-month window over which to assign a patient to a given
strategy on the basis of whether a known rhythm-control
approach was ordered. We were thus blind to patients who might
have undergone a rhythm-control strategy outside the 6-month
window or patients who started out with a rhythm-control
strategy but then changed to rate-control going forward. Finally,
although we were able to collect EHR-based data to apply
predictive models, we were unable to obtain perhaps more
relevant data pertaining to the decision about rate or rhythm
control as it is applied clinically, such as symptoms or patterns
of AF presentation. Clinically, symptoms are among the
strongest reasons for referral for evaluation of AF by experts,
and the inability to measure the symptoms with which a patient
presents and how they progress is a limitation of our approach.
Additional work using natural language processing of clinical
notes or integration of other types of data related to patient

activity or symptoms could provide a solution, although such
data were not available at the time of this analysis. Importantly,
the combined methodology we have described could be easily
expanded to include this information without the need to retrain
models entirely and could be directly analyzed in the same
manner in which we integrated known predictors of AF
alongside 50,000 big data inputs for prediction.

Conclusions
Historically, the direct application of clinical decision models
was limited by data input capacity, integration of analytics with
data storage, and the inability to deliver results directly at the
point of care. However, advances in computer technology over
the past 30 years have provided solutions to these problems
toward the goal of incorporating artificial intelligence into
clinical decision-making. The recent expansion of EHR use
now provides vast amounts of data that can be collected, stored,
and applied for clinical prediction at the point of care, without
the need for manual data entry. These advances have created
the opportunity for fully integrated artificial intelligence–based
decision analysis at a scale previously unseen in clinical
investigations, as well as allowing for dynamic updating of
prediction models over time as greater amounts of data are
collected and technologies and treatment options expand. This
study is among the first to apply machine learning within the
clinical decision context using this massive amount of data in
a manner that could be directly applied within a health care
system. The trade-off between model interpretability and
predictive accuracy that we found is likely to be repeated across
many future applications in which understanding the role of
predictors is balanced against thousands, and potentially
millions, of dollars in unnecessary referrals if such a system
were automated. Clearly, more work is required before these
systems can be implemented without oversight from a clinician;
however, as we have noted, administrators and health care
decision-makers should be aware that there is likely to arise a
situation in which interpretability comes with a cost.
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Abstract

Background: Pulse transit time and pulse wave velocity (PWV) are related to blood pressure (BP), and there were continuous
attempts to use these to predict BP through wearable devices. However, previous studies were conducted on a small scale and
could not confirm the relative importance of each variable in predicting BP.

Objective: This study aims to predict systolic blood pressure and diastolic blood pressure based on PWV and to evaluate the
relative importance of each clinical variable used in BP prediction models.

Methods: This study was conducted on 1362 healthy men older than 18 years who visited the Samsung Medical Center. The
systolic blood pressure and diastolic blood pressure were estimated using the multiple linear regression method. Models were
divided into two groups based on age: younger than 60 years and 60 years or older; 200 seeds were repeated in consideration of
partition bias. Mean of error, absolute error, and root mean square error were used as performance metrics.

Results: The model divided into two age groups (younger than 60 years and 60 years and older) performed better than the model
without division. The performance difference between the model using only three variables (PWV, BMI, age) and the model
using 17 variables was not significant. Our final model using PWV, BMI, and age met the criteria presented by the American
Association for the Advancement of Medical Instrumentation. The prediction errors were within the range of about 9 to 12 mmHg
that can occur with a gold standard mercury sphygmomanometer.
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Conclusions: Dividing age based on the age of 60 years showed better BP prediction performance, and it could show good
performance even if only PWV, BMI, and age variables were included. Our final model with the minimal number of variables
(PWB, BMI, age) would be efficient and feasible for predicting BP.

(JMIR Med Inform 2021;9(12):e29212)   doi:10.2196/29212

KEYWORDS

blood pressure; pulse transit time; pulse wave velocity; prediction model; algorithms; medical informatics; wearable devices

Introduction

High blood pressure (BP) is the leading cause of cardiovascular
disease (CVD) such as coronary artery disease, stroke, heart
failure, peripheral artery disease, and many kinds of
microvascular disease. Furthermore, hypertension accounts for
more CVD deaths than any other modifiable CVD risk factors.
Most countries have published their own definition of
hypertension and treatment guidelines. Those guidelines
emphasize controlling BP in patients with hypertension because
it can prevent CVD and reduce mortality according to a large
amount of evidence [1-3]. For diagnosis and management of
hypertension, accurate measurement of BP is crucial.

We can measure BP with many kinds of devices in an office
setting and an out-of-office setting. However, BP varies with
many factors such as cuff size and patient’s position.
Ambulatory BP monitoring with automated and programmable
inflating cuff for 24 hours is considered as the reference standard
BP since this method can rule out whitecoat hypertension or
masked hypertension and measure nocturnal BP [4]. However,
the aim of ambulatory BP is commonly diagnostic rather than
real-time monitoring because the BP is measured in a fixed
interval every 15 to 30 minutes over a 24-hour period. Several
investigators tried to measure continuous BP using wearable
devices with pulse transit time (PTT) and pulse wave velocity
(PWV) to overcome disadvantages of ambulatory BP monitoring
[5-10]. Although previous studies found a significant correlation
between the PTT and the BP, they were conducted among a
limited population of young and healthy male participants or
among a small-sized population [11,12]. Therefore, they had
limitations for generalization. To our knowledge, there was no
investigation to evaluate the importance of each variable for
prediction models as well.

The aim of this study is to develop BP prediction models with
PWV in a large sample size of 1362 patients and to evaluate
the relative importance of each clinical variable used in BP
prediction models.

Methods

Study Population and Data Collection
This study was conducted on men older than 18 years who had
a health medical examination at the Samsung Medical Center
from January 2014 to December 2015 and conducted a test of
the brachial-ankle PWV calculated by PTT. Among them, 1362
patients who were not taking antihypertensive medications or
alpha-blockers for treating benign prostate hypertrophy were
recruited for data analysis since these medications can affect
PWV. Data was extracted from the Clinical Data Warehouse

Darwin-C of Samsung Medical Center for this study. This study
was approved by the Institutional Review Board (IRB) of the
Samsung Medical Center (IRB number 2016-02-142). Each
participant prepared a self-assessment questionnaire that
included a past medical history, medication history, and smoking
status. Smoking status was divided into three groups:
nonsmokers, ex-smokers, and current smokers. Anthropometric
measurements including body weight and height were performed
with light clothing, and the BMI was calculated as weight (kg)

divided by height (m2) squared. Venous blood samples for
high-density lipoprotein (HDL) cholesterol, low-density
lipoprotein (LDL) cholesterol, triglycerides, glucose,
hemoglobin A1c (HbA1c), creatinine, and C-reactive protein
(CRP) were collected after 12-hour overnight fasting. Diabetes
mellitus was defined as treated with diabetes medication,
HbA1c≥6.5%, or fasting glucose ≥126 mg/dL.

Pulse Wave Velocity and Blood Pressure
Brachial-ankle PWV was obtained using VP-1000 (Colin,
Komaki, Japan) in the supine position with cuffs placed on both
arms and ankles. They measure bilateral brachial and posterior
tibial artery pressure waveform using an oscillometric method.
PWV was calculated automatically with the distance from the
heart to the ankle and the distance from the heart to the upper
arm (L) divided by the pulse wave propagation time (PTT).

BP was obtained simultaneously with PWV measurement.
Systolic BP (SBP) and diastolic BP (DBP) were defined as the
average of pressures in both arms. Normotension was defined
as SBP<140 mmHg and DBP<90 mmHg. Hypertension was
defined as SBP≥140 mmHg or DBP≥90 mmHg.

Statistical Analysis
Continuous variables were presented as means and SDs, and
categorical variables were reported as percentages. Continuous
variables were compared means between two groups using the
Student t test, and categorical variables were compared
frequencies through chi-square tests.

A total of 1362 participants were recruited in the model
development cohort, and they were split up into the train and
validation sets in a ratio of 7:3. The model development cohort
repeated 200 different random seeds considering the effect of
partition bias. The validation cohort was chosen randomly by
selecting 100 patients each from the age group younger than 60
years and 60 years and older by stratifying age and BMI. Since
BP and prostate medications can affect PWV, these patients
were excluded. After Spearman correlation was conducted for
33 variables, including PWV, age, questionnaires, physical
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information, and chemistry electrolyte tests, 17 variables with
absolute values of correlation numbers of 0.5 or less were
selected to exclude multicollinearity. The BP prediction model
used multilinear regression analysis, and this study compared

the performance of the model based on the total age (algorithm
1) and the model made by dividing it into two age groups based
on the age of 60 years (algorithm 2; Figure 1).

Figure 1. Algorithms based on subgroups by age.

Model 1 was done by only using PWV. Model 2 was made by
adding BMI and age to model 1. Model 3 is a nested model that
includes heart rate (HR), smoke status, white blood cell count
(WBC), hemoglobin, uric acid, sodium, potassium, LDL, HDL,
triglyceride, testosterone, creatinine, CRP, and diabetes into
model 2. Two sample t tests were used for the comparison
between the two groups, and differences from zero were
compared through one sample t test. Analysis of variance was
used to compare the performance between the three models.
For the post hoc test, the most conservative Bonferroni test was
used. We used Johnson relative weights to quantify the relative
importance of correlated predictor variables in multiple linear
regression analysis [13]. For the evaluation of the performance
of the BP prediction model, error was used to indicate the
difference between the predicted value and the actual value,
and root mean squared error (RMSE) to indicate the predicted
error of the continuous variable. The RMSE is defined as the
square root of the mean of the difference between the predicted
and the real value. The final model was evaluated for the
performance of the model compared to the BP medical device

grading criteria suggested by the British Hypertension Society
(BHS) and the American Association for the Advancement of
Medical Instrumentation (AAMI) [14,15]. All analyses
determined statistical significance based on the significance
level of .05. For statistical analysis, R 4.02 version (R
Foundation for Statistical Computing) was used.

Results

Baseline Characteristics
Based on the data of 1362 adult males older than 18 years in
this study, the baseline clinical characteristics of study
participants are shown in Table 1. Participants were aged
between 18 and 90 years, with an average of 62.1 (SD 7.7)
years. Of the 1362 people, 303 were younger than 60 years,
while 1059 were older than 60 years. The normal BP was 1117,
and the high pressure was 245. People with hypertension had
higher PWV, BMI, HR, WBC, HDL, triglyceride, uric acid,
and testosterone than normal people.
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Table 1. Baseline clinical characteristics of study participants.

All (N=1362)BPb groupsAge groupsCharacteristica

P valueHypertension
(n=245)

Normal BP
(n=1117)

P valueAge≥60 years
(n=1059)

Age <60 years
(n=303)

62.1 (7.7).3961.7 (8.6)62.2 (7.5)<.00165.3 (4.9)50.9 (4.9)Age (years)

124.9 (13.1)<.001143.9 (10.5)120.7 (9.4).36125.1 (13.2)124.3 (12.8)SBPc (mmHg)

79.6 (8.3)<.00190.6 (6.0)77.2 (6.6)<.00179.1 (7.9)81.5 (9.3)DBPd (mmHg)

1507.4 (248.6)< .0011692.8 (293.9)1466.7 (217.4)<.0011544.4 (257.4)1378.2 (157.6)PWVe average (cm/s)

24.1 (2.5)<.00124.9 (2.8)23.9 (2.4)<.00124.0 (2.5)24.6 (2.6)BMI (kg/m2)

63.1 (9.8)<.00165.3 (10.5)62.6 (9.6).7363.1 (9.9)63.3 (9.5)Heart rate (BPM)

5.7 (1.6)<.0016.0 (1.6)5.6 (1.5).825.7 (1.6)5.7 (1.6)White blood cell count (103/μL )

15.2 (1.1).1215.3 (1.2)15.1 (1.1)<.00115.1 (1.1)15.4 (1.0)Hemoglobin (g/dL)

5.7 (1.2).0015.9 (1.3)5.6 (1.2)<.0015.6 (1.2)5.9 (1.3)Uric acid (mg/dL)

142.1 (1.8).62142.1 (1.9)142.1 (1.8).30142.1 (1.8)142.0 (1.7)Sodium (mEq/L)

4.4 (0.3).324.4 (0.4)4.4 (0.3).584.4 (0.3)4.4 (0.3)Potassium (mEq/L)

119.3 (30.7).56120.4 (30.0)119.1 (30.9)<.001117.2 (31.0)126.7 (28.5)Low-density lipoprotein (mg/dL)

55.1 (14.4).00753.0 (12.9)55.6 (14.6).7455.1 (14.3)55.4 (14.5)High-density lipoprotein (mg/dL)

116.0 (67.1).004129.8 (85.1)113.0 (62.1).02113.6 (64.8)124.6 (74.0)Triglyceride (mg/dL)

5.2 (1.6)<.0014.9 (1.7)5.3 (1.6).775.2 (1.7)5.3 (1.5)Testosterone (ng/mL)

.55<.001Smoking status, n (%)

353 (25.9)63 (25.7)290 (26.0)280 (26.4)73 (24.1)Never smoker

732 (53.7)138 (56.3)594 (53.2)589 (55.6)143 (47.2)Ex-smoker

277 (20.3)44 (18.0)233 (29.0)190 (17.9)87 (28.7)Current smoker

1.0 (0.2).141.0 (0.5)1.0 (0.1).781.0 (0.3)1.0 (0.1)Creatinine (mg/dL)

0.1 (0.3).250.1 (0.3)0.1 (0.3).460.1 (0.3)0.1 (0.3)C-reactive protein (mg/dL)

.06<.001Diabetes, n (%)

1127 (82.7)192 (78.4)192 (78.4)853 (80.5)274 (90.4)No

235 (17.3)53 (21.6)53 (21.6)206 (19.5)29 (9.6)Yes

aValues are reported as mean (SD).
bBP: blood pressure.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
ePWV: pulse wave velocity.

Figure 2 shows the distribution for the mean of error obtained
from repeated analysis of 200 random seeds. When estimating
SBP with algorithm 1, underestimation occurred in the younger
than 60 years age group, and overestimation occurred in the 60
years and older group (P<.001, one-sample t test). When
estimating DBP with algorithm 1, underestimation occurred in
the younger than 60 years group, and overestimation was only

performed on model 1 for those 60 years and older. In algorithm
1, model 1 had the worst performance. The average of the mean
of error was significantly smaller when algorithm 2 was applied
in SBP forecasts compared to algorithm 1. In the case of DBP
prediction, the average of the mean of error was significantly
lower when algorithm 2 was applied in comparison to algorithm
1 in the younger than 60 years age group.
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Figure 2. Blood pressure prediction model: mean of error of blood pressure based on 200 repetitive partitions.

From the view of RMSE, the performance of model 2 with the
condition of age <60 years was better in algorithm 2 than in
algorithm 1. The performance of model 2 with the condition of
age ≥60 years was not significantly different between algorithms

1 and 2 (Figure 3). When comparing between models in
algorithm 2, model 1 was the worst, and there was no significant
difference in performance between model 2 and model 3 (Table
2).
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Figure 3. The distribution of RMSE in model 2 obtained from repeating the analysis by 200 random seeds. RMSE: root mean square error.

Table 2. RMSEa of the models in algorithm 2.

Diastolic blood pressureSystolic blood pressureModels

RMSE of A2 (≥60 years; SD)RMSE of A2 (<60 years; SD)RMSE of A2 (≥60 years; SD)RMSE of A2 (<60 years; SD)

7.21 (0.2)7.74 (0.45)10.88 (0.4)10.31 (0.67)Model 1

6.88 (0.21)7.43 (0.43)10.67 (0.38)9.78 (0.63)Model 2

6.76 (0.22)7. 33 (0.44)10.61 (0.39)9.99 (0.66)Model 3

aRMSE: root mean square error.

After considering all the aforementioned, we selected model 2
based on algorithm 2 as the best prediction model. Table 3
shows the final prediction equation of the multiple linear
regression model. SBP and DBP are in direct proportion to
PWV and BMI. The influence of PWV on SBP and DBP was

more apparent in those aged <60 years than in those aged ≥60
years, so was BMI (Table 3). PWV contributed the most to BP
prediction, followed by BMI and age (Figure 4). Model 3, which
used 17 variables, also had the greatest influence of PWV
(Multimedia Appendix 1).
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Table 3. Final prediction equation from model 2 built in algorithm 2.

Age ≥60 yearsAge <60 yearsBlood pressure and variables

P valueNonstandardized regression coefficientP valueNonstandardized regression coefficient

Systolic blood pressure

<.00168.3969.00229.9756Constant

<.0010.0304<.0010.0487PWVa average (cm/s)

.02–0.1669.46–0.0882Age (years)

<.0010.8606<.0011.2876BMI (kg/m2)

Diastolic blood pressure

<.00169.9290.1211.4629Constant

<.0010.0149<.0010.0322PWV average (cm/s)

<.001–0.3990.470.0653Age (years)

<.0010.5076<.0010.9057BMI (kg/m2)

aPWV: pulse wave velocity.

Figure 4. Relative explanatory power (R2) between the variables of the final model in the model development cohort. PWV: pulse wave velocity;
RMSE: root mean square error.

Assessment for the Performance of BP Prediction
To evaluate the performance of the final prediction model,
criteria provided by the AAMI and the BHS were applied. All
of AAMI’s criteria were satisfied, and BHS’s criteria were only

met by the 60 years or older DBP with class A. Although our
prediction model did not meet the BHS criteria, it is still within
acceptable range for clinical use according to AAMI’s protocol
(Table 4).
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Table 4. AAMIa and BHSb grading of models with the data divided into three pressure categories.

BHSd absolute difference between standard and
test device (mmHg)

GradeAAMIc mean difference between stan-
dard and test device (mmHg), absolute
mean difference (SD)

Category and grade

≤15≤10≤5

Grading criteria

95%85%60%A≤5 (≤8)Passed

90%75%50%B≤5 (>8)Passed

85%65%40%C>5 (≤8)Passed

———eD>5 (>8)Failed

Age <60 years

93%83%43%C2.25 (7.69)SBPf (passed)

99%85%49%C3.05 (6.07)DBPg (passed)

Age ≥60 years

87%66%41%C1.33 (9.73)SBP (passed)

98%89%60%A0.09 (6.63)DBP (passed)

aAAMI: Association for the Advancement of Medical Instrumentation.
bBHS: British Hypertension Society.
cTo meet AAMI criteria, the mean difference between the device and the mercury standard must be ≤5 mmHg or the SD must be ≤8 mmHg.
dTo meet BHS criteria, devices must achieve a grade of at least B for both systolic and diastolic measurements. Grade A denotes greatest agreement
with mercury standard and D denotes least agreement.
eWorse than a C.
fSBP: systolic blood pressure.
gDBP: diastolic blood pressure.

Discussion

Principal Findings
About 30% of the world’s deaths are caused by CVD [16].
Among the risk factors for CVD, high BP is one of the most
common causes of premature cardiovascular death, but it is
modifiable [17]. Every 10 mmHg reduction of SBP can reduce
the risk of major CVD events: 17% reduction in coronary heart
disease, 27% reduction in stroke, 28% reduction in heart failure,
and 13% reduction in all-cause mortality [18]. All global
guidelines recommend strict control of BP, and the accurate
measurement of BP is the first step in BP management.

Most people measure BP in the office, but the office BP is
relatively inaccurate compared to other measurement methods
due to many factors such as cuff size, patient’s position, and
emotional state. Therefore, recent guidelines recommend other
methods of BP measurement such as ambulatory or home BP
monitoring [19,20]. However, ambulatory BP monitoring is not
easy to obtain since not all clinics have special devices. In
addition, it is not comfortable for patients to cover their upper
arms for a 24-hour duration with programmed inflating cuff in
daily life. Home BP monitoring can obtain more accurate values
than office BP because it is measured in stable states in most
cases. However, there is still a limitation in getting continuous
BP.

Recently, continuous BP monitoring with PTT and PWV was
developed to compensate for the weaknesses of conventional
BP measurement methods. Many attempts have been made
using wearable devices attached to chest, ear, or wrist for
continuous monitoring. However, previous studies were small
in a sample size of less than 500 patients, and there was no study
to evaluate the relative importance of clinical variables in
predicting BP. We made BP predicting models using PWV and
clinical data based on a large-scale population of over a thousand
and evaluated the relative importance of the clinical variables.

After creating various types of BP predicting models, we
concluded that the performance of the models was better in
age-based stratification since the cardiovascular system changes
as the age increases. The prevalence of hypertension is 30% to
45% in adults, and hypertension becomes progressively more
common with age. Over 60% of people aged older than 60 years
are diagnosed with hypertension [1]. Moreover, with or without
hypertension, SBP and DBP tend to change differently with
aging. DBP tends to increase until the age of 60 years and
decrease after this age, but SBP increases continuously even
after the age of 60 years [21]. This phenomenon is attributed to
increasing stiffness of aortic wall caused by changing inert
elastic fibers. Increased stiffness of aortic wall results in increase
in PWV. Increase in PWV causes early reflection of pulse from
peripheral arterioles and augments pressure in late systole rather
than early diastole. This explains the constant increase in SBP
and decrease in DBP in those aged around 60 years [22]. One
of the previous SBP prediction models showed better
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performance when it was divided into age groups of younger
than 60 years and older than 60 years [23]. We created models
for both SBP and DBP separately in consideration of natural
vascular aging. Our prediction model for both SBP and DBP
had better performance when using algorithm 2, which was
stratified by the age of 60 years.

Although the exact etiology of primary hypertension remains
unclear, a number of risk factors are strongly and independently
associated with its development, including not only age but also
race, family history, obesity, diet, and physical activity [24,25].
In addition, many studies showed modifiable risk factors for
CVD such as smoking, diabetes mellitus, dyslipidemia, and
obesity, which are common in adults with hypertension because
these risk factors and hypertension share the mechanism of
pathophysiology. They found these risk factors affect BP
through overactivation of the renin angiotensin aldosterone
system and sympathetic nervous system, inhibition of the cardiac
natriuretic peptide system, and endothelial dysfunction.
Therefore, modification of cardiovascular risk factors may affect
BP [3]. We made model 3 using 17 variables including clinical
information. At the beginning, we expected model 3 would be
more accurate than model 2, as model 2 was nested from model
3. However, there was no significant difference in performance
between model 2 and model 3. For that reason, we adopted
model 2 for convenience because BMI and age are easy to obtain
in daily life.

Our final model, model 2 in algorithm 2, satisfied the criteria
of the AAMI by the mean of error, although it did not meet the
criteria of the BHS in absolute pressure difference. The
prediction errors were within the range of about 9 to 12 mmHg
that can occur with a gold standard mercury

sphygmomanometer. According to a previous validation survey
by O’Brian et al [26], only a few BP measuring devices met the
standards in both criteria. This study validated 21 commercially
available devices for the self-measurement of BP. Some BP
measuring devices were in grade D in the BHS standard, and
only five devices satisfied both standards [26]. Therefore, our
prediction model can be useful in practice.

In conclusion, stratification of age is important in developing
a BP prediction model with better accuracy. In addition, BP is
influenced predominantly by PWV, BMI, and age out of other
clinical factors. Our final model with minimal number of
variables would be efficient and feasible for predicting BP.

Limitation
This analysis was conducted among healthy male participants.
The study population included patients that were hypotensive
and hypertensive but excluded those taking antihypertensive
drugs. Further studies should be warranted on a diverse
population, including patients on antihypertensive medications
and female participants, and on the performance of PWV in
wider range of BPs.

The Health Promotion Center at Samsung Medical Center does
not request detailed medication information except for
hypertensive medication on the personal questionnaire for health
checkup. Receiving additional information on medication is
impossible, as this is a retrospective study. Accordingly, there
is some limitation in analyzing the effects of different types of
medication such as alpha-blockers or calcium channel blockers.
Further studies are needed including drug information.

Our prediction model was internally validated; however, this
model should be validated externally.
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Abstract

Background: Missing data in electronic health records is inevitable and considered to be nonrandom. Several studies have
found that features indicating missing patterns (missingness) encode useful information about a patient’s health and advocate for
their inclusion in clinical prediction models. But their effectiveness has not been comprehensively evaluated.

Objective: The goal of the research is to study the effect of including informative missingness features in machine learning
models for various clinically relevant outcomes and explore robustness of these features across patient subgroups and task settings.

Methods: A total of 48,336 electronic health records from the 2012 and 2019 PhysioNet Challenges were used, and mortality,
length of stay, and sepsis outcomes were chosen. The latter dataset was multicenter, allowing external validation. Gated recurrent
units were used to learn sequential patterns in the data and classify or predict labels of interest. Models were evaluated on various
criteria and across population subgroups evaluating discriminative ability and calibration.

Results: Generally improved model performance in retrospective tasks was observed on including missingness features. Extent
of improvement depended on the outcome of interest (area under the curve of the receiver operating characteristic [AUROC]
improved from 1.2% to 7.7%) and even patient subgroup. However, missingness features did not display utility in a simulated
prospective setting, being outperformed (0.9% difference in AUROC) by the model relying only on pathological features. This
was despite leading to earlier detection of disease (true positives), since including these features led to a concomitant rise in false
positive detections.

Conclusions: This study comprehensively evaluated effectiveness of missingness features on machine learning models. A
detailed understanding of how these features affect model performance may lead to their informed use in clinical settings especially
for administrative tasks like length of stay prediction where they present the greatest benefit. While missingness features,
representative of health care processes, vary greatly due to intra- and interhospital factors, they may still be used in prediction
models for clinically relevant outcomes. However, their use in prospective models producing frequent predictions needs to be
explored further.

(JMIR Med Inform 2021;9(12):e25022)   doi:10.2196/25022

KEYWORDS

electronic health records; informative missingness; machine learning; missing data; hospital mortality; sepsis

Introduction

Background
The increasing availability of electronic health record (EHR)
data collected from hospitals, especially from their intensive
care units (ICU), has encouraged the development of various

models for disease diagnosis [1-4]. Machine learning and
specifically deep learning models, given their ability to
adequately learn nonlinear representations and temporal patterns
from large amounts of data, have been widely applied to capture
complex physiological processes, and several works have
demonstrated their usefulness [5]. Most works use retrospective
observational data to train supervised models for a variety of
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clinically important outcomes like mortality or sepsis. Some
more recent works have also developed models more suited to
actual clinical needs by evaluating models prospectively and
using early warning scores as baselines [6]. Models used to
learn human physiological processes from EHRs tackle intrinsic
problems in health care data, particularly that of irregular
sampling and large amount of missing information [7].

Several methods have been developed to handle the inevitably
large amount of missing data in EHRs. Simpler methods like
incomplete record deletion (also called complete case analysis)
propose to simply delete those records where any value is
missing. Various imputation techniques ranging from simple
mean imputation to sophisticated methods like multiple
imputation with chained equations are also commonly used [8].
More recently, deep learning models have been proposed to
learn the underlying process generating the data as a method
for better inferring missing values [9]. A consensus regarding
a best universal model to handle missing data does not exist in
literature, and it is generally understood to depend heavily on
the task and the nature of the data itself. However, a returning
consideration in all studies on missing data is the nature of
missingness. In Rubin [10], missing data were classified into 3
categories: missing completely at random, missing at random,
and missing not at random. The nature of missingness in EHRs
has been generally understood to belong to the last category,
missing not at random [11]. This means that missing values
cannot be inferred using observed values, subjecting all methods
to problems of bias.

Considering the inevitability of bias, methods seek to minimize
it by considering imputed value uncertainty or developing more
sophisticated processes to learn underlying distributions [8,12].
A returning simple yet effective motif in deep learning models
for EHRs is to use informative missingness (IM) features. First
introduced in Lin and Haug [11], the method has repeatedly
been shown to improve performance of health care models for
a variety of outcomes [13-16]. A particularly efficient use was
demonstrated in Lipton et al [13], where simply augmenting
zero-imputed data with corresponding binary missingness
indicators greatly improved over the baseline model. The basic
assumption underlying the use of IM features is that the
inclusion of health care process variables like laboratory tests
conducted or drugs prescribed provides important information
about the state and evolution of a patient’s health. These
variables are usually inputted to the model as binary indicators
of observation/missingness, but some studies have also
propounded modifying or augmenting this representation to
include additional information such as time since last
observation [17,18]. We use the term health care process
variables interchangeably with IM features.

This use of health care process variables as feasible features to
model patient health is supported by studies spanning several
decades and countries, indicating that test ordering behavior
and drug prescriptions are associated with the underlying
pathology. For example, Kristiansen et al [19] established that
the medical condition at hand was the strongest determinant of
test ordering behavior, and Weiskopf et al [20] and Rusanov et
al [21] found a statistically significant relationship between data
completeness and patient health status, finding that those

susceptible to adverse outcomes have more information
collected. A recent study also highlighted that EHR data are
observational and display a patient’s interactions with the health
care system and thus any information from there can only serve
as a proxy measure of the patient’s true state [22]. They further
found that the presence of laboratory test orders, regardless of
other information like numerical test values, had a significant
association with odds of 3-year survival. This suggests that
laboratory test orders encode information separately from
laboratory test results, as corroborated by Pivovarov et al [23].

Despite improvements in model performance on including IM
features, their use is considered to have limited applicability.
Missing information may occur due to several factors, not all
which pertain to patient pathology or a physician’s mental model
of the diagnosis process. Within a hospital, some tests may be
conducted following general guidelines or as standard practice
for all patients regardless of underlying condition [23].
Physicians also vary by years of experience and attitudes in
coping with uncertainty, which has been shown to affect test
ordering behavior [24]. In addition, variations between hospitals
as test ordering may depend on resource constraints and
variations due to geographic separation as ICU case-mix changes
are further exacerbated when making international comparisons
[25,26]. And while machine learning models rely on improved
performance on chosen metrics as a justification for continued
use of IM features, evaluation has mostly been on single-center
data under retrospective task settings. Even where multicenter
data are used, hospitals are often not geographically distinct,
preventing the assessment of model generalization to different
demographic mixes and practices. Also, only recently have
some works evaluated their models prospectively, better
reflecting real-world clinical utility, but evaluation metrics differ
across studies, some choosing to use the concordance index
(also called the area under receiver operating curve [AUROC])
while others prefer the area under precision recall curve [27,28].

The ways in which use of IM features is supported and
challenged creates an apparent disjunction and casts doubts on
their true usefulness. This was perhaps exemplified in the
PhysioNet 2019 Challenge [29] for early prediction of sepsis,
which saw many submissions using some modification of IM
features [16-18,30,31]. The challenge was designed to evaluate
models on prospective prediction performance and used datasets
from 3 geographically distinct hospital systems, one of which
was never provided to the participants. While several models
had reasonable performance on hospitals they had at least partial
access to, scores dropped substantially on the third, unseen
hospital. Models using more sophisticated modifications of IM
features saw a larger drop than those using simple binary
variables or no representation of health care processes.

Objectives
In this study we seek to empirically verify and understand the
effect that including IM features has on health care machine
learning models. We selected 3 common outcomes of interest,
mortality, length-of-stay, and sepsis, and trained models for 2
task settings. The first, shared by all outcomes, is entire record
classification where the model provides a prediction at the end

JMIR Med Inform 2021 | vol. 9 | iss. 12 |e25022 | p.212https://medinform.jmir.org/2021/12/e25022
(page number not for citation purposes)

Singh et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of a patient’s ICU stay. The second is hourly prediction of label,
and only the sepsis label is used for this task.

We verify the effect of IM feature inclusion on performance,
generalizability, and clinical utility of models in 3 steps. First,
to get a comprehensive understanding of model performance,
binary classification models for each of the outcomes were
trained and evaluated using multiple metrics. Since class
imbalance varies between outcomes, we could also evaluate
model robustness. Second, for the sepsis outcome, since data
from 2 distinct hospital systems were available, we could
evaluate model generalizability and test whether that is affected
by IM features. Third, again for the sepsis outcome, since labels
for every hour of patient data were available, we trained a model
for temporal prediction of sepsis. We evaluated this model on
the hidden hospital system’s data in a simulated prospective
manner, in the process understanding how the models would
behave in an actual clinical setting and what differences in
performance can be expected by including IM features.

Finally, we hypothesized that health care processes vary across
patient demographics and ICU types, which may result in
varying missingness rates and patterns across subgroups.
Previous works have shown how laboratory variation (and thus
test ordering behavior) may vary based on these criteria; this
was also seen in our data analysis [32,33]. Thus, we were
motivated to see model performances for different subgroups,
as well as to study the different extent to which IM features
improve model performance within a subgroup. Based on our
data analysis, age and ICU type subgroups were chosen. Since
testing was also done on the hidden hospital, we could see how
generalization on subgroups is affected by including IM. We
could also verify whether models can use IM features to capture
the relationship between test ordering and patient
pathophysiology despite intra- and interhospital variations.

Methods

In this section we describe the datasets used for this study and
the preprocessing pipeline. We also describe how outcomes of
interest were defined. This is followed by an overview of the
task settings and experiments with model implementation
details.

Datasets
Data from the PhysioNet 2012 and 2019 Challenges were used
for this study. From the PhysioNet 2012 [34] dataset (P12), we
used patient records from training set A and open test set B,
each consisting of data from 4000 patients collected from 4
types of ICUs. Several patient outcomes are provided of which
we selected in-hospital death (mortality) and length of stay
(number of days between patient’s admission to the ICU and
end of hospitalization, LOS). We binarized the LOS outcome
setting as 3 days as a heuristic decision threshold, similar to
previous studies [14]. The data consist of static patient
descriptors as well as temporal variables representing patient
vitals (low missingness) and values from laboratory tests
conducted (high missingness). Imbalance ratios of mortality
and LOS were different, at 13.9% and 6.5%, respectively, for
set A and 14.2% and 7.0%, respectively, for set B. Since P12

was extracted from the MIMIC II (Multiparameter Intelligent
Monitoring in Intensive Care) Clinical Database [35], the data
were from one hospital system only.

The PhysioNet 2019 [29] dataset (P19) comprised patient
records from 3 geographically distinct US hospital systems. A
total of 40,336 patient records, 20,336 from hospital A (set A)
and 20,000 from hospital B (set B), from 2 ICU types were
used. Data from hospital C were not available for download.
Since the challenge was aimed at model development for early
prediction of sepsis, a corresponding binary label is provided
for every hour of the patient’s record. Labeling was done in
accordance with the Third International Consensus Definitions
for Sepsis and Septic Shock (Sepsis-3) criteria [36]. It is
important to note that to facilitate training models for early
prediction, patients who eventually developed sepsis were
labeled as such starting 6 hours before a confirmed diagnosis.
More details about the definition of the sepsis label may be
found in Multimedia Appendix 1. Available variables in the
dataset are similar to that in P12, describing static as well as
temporal patient features with varying missingness. The cohort
from hospital A consisted of 8.8% of patients who developed
sepsis while it was 5.7% for hospital B. Due to the cohort
selection procedure followed by Reyna et al [29], few patients
have sepsis from the start of ICU admission. Only 2.2% of
hourly records for hospital A and 1.4% for hospital B are labeled
as corresponding to sepsis. For analysis of the extent of
missingness in the various datasets, please see Figures S1-S5
in Multimedia Appendix 2.

Preprocessing
Data preprocessing was done using a similar pipeline as
described in multiple previous studies [13,14,37]. Data from
P12 were resampled on an hourly basis, while P19 data were
already resampled. While resampling, some patient records
were found to have static descriptors only and others had
missing outcome labels in both sets of P12. These were
removed, leaving 3997 patient records in set A and 3993 in set
B. Invasive and noninvasive measurements of the same variable
present in P12 were averaged to form aggregate measurements.
In P19, end tidal carbon dioxide was a variable observed in only
hospital B, so it was removed from consideration. Static patient
features describing age, gender, or ICU type identifiers were
not used as inputs. This left us with 33 features in P12 and 34
in P19, which were used for model training. To deal with
missing data, zero imputation was performed in both datasets,
since Lipton et al [13] showed that this simple strategy proved
quite effective when used to train deep learning models.

For model training and evaluation, training and testing sets were
identified. Set A from both datasets was used for training while
set B was shown to the model only for final evaluation. It is
worth noting again that set B in P19 belonged to a distinct
hospital system. Data were standardized before inputting to the
model. Mean and variance from training data were used to
standardize corresponding test data.

Finally, we describe the derivation of features to represent
missingness. We selected the simplest representation using
binary indicator variables, with a 1 used to denote variable
observation and a 0 otherwise. Every feature described earlier
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had a corresponding missingness indicator that was appended
to the feature vector as in Lipton et al [13]. This resulted in 66
features for P12 and 68 for P19.

Modeling Methodology
Since patient pathophysiology evolves nonlinearly over time,
sequential models like recurrent neural networks (RNN) are
considered suitable and have often been used in previous works
[38]. We used a gated RNN variant, specifically a gated
recurrent unit (GRU) to model long EHR sequences [39]. A
multilayer perceptron followed by a sigmoid layer were used
after the GRU to output binary label probabilities.

The model was implemented in Pytorch [40] and trained using
minibatch gradient descent to minimize binary cross entropy
loss with Adam [41] as the optimizer. Models trained with IM
augmented features are denoted by masking while those trained
with patient physiological features only are denoted by no
masking.

We performed 5-fold stratified cross validation for
hyperparameter tuning and to prevent model overfitting. To
tune hyperparameters, we performed an iterative ranging
investigation to determine a suitable grid followed by a grid
search [42]. Maximum averaged AUROC and utility score
across all folds were chosen as the criteria for hyperparameter
set selection for the retrospective and simulated prospective
tasks, respectively [29]. No attempt was made to tune model
architecture as our focus was not to propose a new model but
to evaluate IM feature effectiveness.

Task Settings
We analyzed the effectiveness of including IM features by
defining 2 tasks, (1) retrospective classification where we verify
IM usefulness on model performance, calibration, and
generalizability and (2) simulated prospective classification to
study IM effect on model prediction trends in a temporal
manner.

Retrospective Classification
In this setting, the model is trained to predict the appropriate
label at the end of a patient’s hospital stay. For this purpose,
mortality and LOS labels were used directly from the outcomes
provided in P12. For P19, a sepsis-overall label was derived
from the hourly labels provided. If a patient developed sepsis
at any time, their entire record was marked as positive for sepsis.
The task for all 3 labels was binary classification after using
the entire patient record as input. We studied the effect of IM
in 2 steps, overall classification and subgroup analysis:

• To verify changes in performance on IM inclusion, the
models were evaluated on all of the testing data for all
datasets and labels. Multiple evaluation metrics were used
to understand how IM features change performance and
calibration while data from a distinct hospital were used to
evaluate changes in model generalizability.

• To study extent of improvement on different patient
subgroups, models were trained on all of the training data
(representative of a general ICU population) and evaluated
on identified subgroups made from the test set. Both
datasets provided 3 general patient descriptors: age, gender,

and ICU type. Visual comparison of variable observation
differences between these strata was performed. Gender
showed no substantial difference in variable observation.
Different ICU types displayed clear differences as did age
after binning into suitable intervals (Figures S6-S11 in
Multimedia Appendix 2). These strata were chosen for
subgroup analysis.

Simulated Prospective Classification
Only P19 was used for this task since P12 did not have hourly
labels. The model was trained to predict patient probability of
sepsis at every hour using the shifted labels provided in the
dataset. At time t, information from the beginning of the patient
record to t was used to make a prediction. This ensured
prospective usefulness of the model. Since the model was trained
on labels shifted by 6 hours (for septic patients), we expected
the model to learn early signs of sepsis onset. The sepsis-overall
label described earlier was used for cross-validation and
hyperparameter tuning.

Performance Evaluation
Model discriminative ability was judged by the concordance
index or AUROC. Since this is known to be an over optimistic
measure for imbalanced datasets [43], we also use the
precision-recall curve and average precision to evaluate
predictive value [44,45]. Finally, 2 measures were used to assess
model calibration: reliability plots and Brier score. The former
was useful to visualize calibration changes against different
levels of model uncertainty. The latter was used to quantify an
averaged deviation from true probabilities and as a convenient
summary of uncertainty, resolution, and reliability [46]. We
also visualized the number of samples in each bin of the
reliability plots by varying marker area proportional to the
squared root of the bin size scaled by a constant factor. Finally,
AUROC and Brier score were reported with 95% confidence
intervals computed with 10,000 bootstrap replications to obtain
a good estimation of model performance up to the second
significant digit [47].

Results

Retrospective Classification

Overall Classification
The first 3 rows of Table 1 summarize results for the overall
classification tasks. Including IM resulted in considerable
improvements over using patient physiological features only
for both tasks on P12 and the sepsis-overall task on P19. The
extent of improvement in average precision mimicked trends
of improvements in AUROC. The no masking model had an
average precision of 0.493 on the P12 mortality task, and
including IM features improved this to 0.511. The performance
gain was more marked for the P12 LOS task, as average
precision was 0.173 without and 0.368 with masking. It is worth
noting that the derived LOS label in P12 had higher class
imbalance than the mortality label for the same dataset. The
P19 sepsis-overall task also saw an improvement in average
precision where the no masking model achieved 0.537 and this
was 0.547 for the masking model. Panels A and B of Figures
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1-3 graphically show the receiver operating characteristic and
PR curves for these tasks.

Including IM features also improved model calibration scores
in all 3 cases, as seen by the Brier score (lower is better). The
improved Brier scores (0.039 with IM features vs 0.045 without)
for the P19 sepsis-overall task where evaluation was on a distinct
hospital suggests that the model does not overfit to

hospital-specific health care process variables. Examining panel
C of Figures 1-3 shows the calibration plots for each task setting.
The 2 models had very similar plots for the P12 mortality task.
The difference was again most pronounced for the P12 LOS
task, where the masking model had better calibration at higher
model certainties (predicted probabilities). The masking model
also showed improved calibration for the P19 sepsis-overall
task seen in Figure 3C.

Table 1. Results of model discrimination and calibration for all task settings on the test data. These correspond to internal validation for PhysioNet
2012 Challenge and external for PhysioNet 2019 Challenge.

No masking (Brier), mean
(SD)

No masking (AUROC), mean
(SD)

Masking (Brier), mean (SD)Masking (AUROCa), mean
(SD)

0.095 (0.088-0.101)0.830 (0.81-0.85)0.093 (0.087-0.100)0.842 (0.82-0.86)P12b mortality

0.064 (0.058-0.070)0.737 (0.71-0.77)0.054 (0.049-0.060)0.814 (0.79-0.84)P12 LOSc

0.045 (0.043-0.048)0.889 (0.88-0.90)0.039 (0.036-0.041)0.907 (0.90-0.92)P19d sepsis-overall

0.014 (0.013-0.015)0.766 (0.75-0.78)0.014 (0.013-0.014)0.757 (0.74-0.77)P19 sepsis-frequent

aAUROC: area under the curve of the receiver operating characteristic.
bP12: PhysioNet 2012 Challenge.
cLOS: length of stay.
dP19: PhysioNet 2019 Challenge.

Figure 1. Receiver operating characteristic (ROC) curve, precision-recall (PR) curve, and calibration plot for the PhysioNet 2012 Challenge mortality
classification task.
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Figure 2. Receiver operating characteristic (ROC) curve, precision-recall (PR) curve, and calibration plot for the PhysioNet 2012 Challenge length of
stay classification task.

Figure 3. Receiver operating characteristic (ROC) curve, precision-recall (PR) curve, and calibration plot for the PhysioNet 2019 Challenge sepsis-overall
classification task.

Subgroup Analysis
Tables 2-4 summarize model performances on the identified
subgroups for the 3 overall classification task settings. For
variance estimation in results, the subgroup data were
bootstrapped keeping the sample size equal to subgroup size.
These results have also been visualized as bar plots in Figures
S12-S14 in Multimedia Appendix 2.

For the P12 mortality task in Table 2, the no masking model
outperformed the masking model for the age bins 35 years and
younger and 45 to 55 years, while the masking model had better
performance for all other age groups. The best AUROC over
all ages was achieved by the masking model on the 35- to
45-year group, which also saw the largest improvement on
including IM features (2.6%). While younger and middle-aged
groups saw inconsistent performance changes on IM inclusion,
older patients (older than 55 years) showed consistent
improvements from 0.8% to 1.5% in all-cause mortality
classification. When considering performances in different
ICUs, the masking model generally had better performance
except for the coronary care unit (CCU), but the difference was
not substantial. The cardiac surgery recovery unit saw the
highest AUROC and also the greatest improvement of 1.7% on
IM inclusion.

Similar to the prominent improvements in the P12 LOS-overall
classification task, the masking model considerably
outperformed the no masking model for all age and ICU type
subgroups. The youngest age group, 35 years and younger, saw
an improvement of 15.5% in AUROC, becoming the subgroup
with the best performance out of all age groups. Comparatively,
the 55- to 65-year subgroup, which had the best model
performance without IM, saw an improvement only of 0.7%.
The cardiac surgery recovery unit again saw the largest
performance gain on IM inclusion, of 13.1%, followed by the
surgical ICU with 10.2% and the CCU, with a relatively small
gain of 2.8%.

Finally for the P19 sepsis-overall task, the masking model again
outperformed all subgroups except for the 35- to 45-year bin.
Older groups (older than 55 years) generally saw a larger
improvement, with the greatest increase in AUROC seen in the
65- to 75-year group, at 4%. While the surgical and medical
ICUs had the same AUROC without IM, the masking model
performed better on the surgical ICU.

Brier score trends generally showed similar or improved
calibration on including IM features for all outcomes and
subgroups. Particularly for P19 sepsis-overall, calibration
improved despite external validation.
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Table 2. Subgroup analysis results for the PhysioNet 2012 Challenge mortality classification task.

No masking (Brier),
mean (SD)

No masking (AUROC),
mean (SD)

Masking (Brier), mean
(SD)

Masking (AUROCa),
mean (SD)

#Samples

Age strata (years)

0.059 (0.040-0.079)0.852 (0.75-0.94)0.057 (0.037-0.079)0.847 (0.74-0.93)268≤35

0.054 (0.037-0.072)0.880 (0.80-0.95)0.048 (0.031-0.066)0.906 (0.84-0.96)30935-45

0.064 (0.052-0.077)0.885 (0.83-0.93)0.064 (0.050-0.078)0.878 (0.82-0.93)56945-55

0.076 (0.063-0.090)0.848 (0.80-0.89)0.074 (0.060-0.090)0.859 (0.82-0.90)70855-65

0.094 (0.080-0.108)0.822 (0.78-0.86)0.094 (0.079-0.109)0.830 (0.79-0.87)84565-75

0.135 (0.123-0.149)0.786 (0.75-0.82)0.135 (0.121-0.149)0.801 (0.77-0.83)1294>75

ICUb types

0.086 (0.070-0.104)0.807 (0.74-0.86)0.087 (0.069-0.106)0.806 (0.75-0.86)587Coronary care unit

0.037 (0.028-0.048)0.845 (0.76-0.92)0.035 (0.025-0.046)0.862 (0.79-0.92)780Cardiac surgery unit

0.095 (0.083-0.106)0.843 (0.81-0.87)0.094 (0.082-0.107)0.852 (0.82-0.88)1192Surgical ICU

0.129 (0.117-0.141)0.787 (0.76-0.82)0.128 (0.115-0.140)0.801 (0.77-0.83)1434Medical ICU

aAUROC: area under the curve of the receiver operating characteristic.
bICU: intensive care unit.

Table 3. Subgroup analysis results for the PhysioNet 2012 Challenge length of stay classification task.

No masking (Brier),
mean (SD)

No masking (AUROC),
mean (SD)

Masking (Brier), mean
(SD)

Masking (AUROCa),
mean (SD)

#Samples

Age strata (years)

0.108 (0.079-0.138)0.707 (0.61-0.80)0.081 (0.055-0.109)0.862 (0.80-0.92)268≤35

0.079 (0.057-0.104)0.721 (0.62-0.82)0.060 (0.040-0.081)0.820 (0.71-0.91)30935-45

0.064 (0.048-0.081)0.712 (0.63-0.79)0.057 (0.042-0.073)0.800 (0.72-0.88)56945-55

0.054 (0.042-0.068)0.790 (0.72-0.86)0.045 (0.033-0.059)0.797 (0.71-0.87)70855-65

0.053 (0.042-0.065)0.712 (0.64-0.78)0.047 (0.035-0.060)0.803 (0.72-0.87)84565-75

0.062 (0.052-0.073)0.747 (0.69-0.80)0.056 (0.046-0.067)0.814 (0.77-0.86)1294>75

ICUb types

0.095 (0.078-0.112)0.763 (0.71-0.82)0.086 (0.068-0.105)0.791 (0.73-0.85)587Coronary care unit

0.018 (0.011-0.025)0.759 (0.60-0.90)0.013 (0.006-0.020)0.890 (0.77-0.98)780Cardiac surgery unit

0.056 (0.036-0.056)0.710 (0.64-0.77)0.046 (0.036-0.056)0.812 (0.75-0.87)1192Surgical ICU

0.082 (0.071-0.094)0.682 (0.63-0.73)0.071 (0.060-0.083)0.776 (0.73-0.82)1434Medical ICU

aAUROC: area under the curve of the receiver operating characteristic.
bICU: intensive care unit.
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Table 4. Subgroup analysis results for the PhysioNet 2019 Challenge sepsis-overall classification task. A total of 6095 patients did not have intensive
care unit type specified, and thus, they were not considered for the corresponding analysis.

No masking (Brier),
mean (SD)

No masking (AUROC),
mean (SD)

Masking (Brier), mean
(SD)

Masking (AUROCa),
mean (SD)

#Samples

Age strata (years)

0.044 (0.035-0.052)0.893 (0.85-0.93)0.037 (0.029-0.045)0.904 (0.86-0.94)1742≤35

0.046 (0.038-0.055)0.910 (0.88-0.94)0.041 (0.033-0.049)0.911 (0.88-0.94)194935-45

0.037 (0.032-0.043)0.900 (0.87-0.93)0.032 (0.026-0.037)0.920 (0.90-0.94)333445-55

0.048 (0.042-0.053)0.886 (0.86-0.91)0.042 (0.037-0.048)0.897 (0.87-0.92)458155-65

0.049 (0.043-0.054)0.877 (0.85-0.90)0.039 (0.034-0.043)0.917 (0.90-0.94)476865-75

0.045 (0.039-0.051)0.888 (0.86-0.91)0.040 (0.034-0.046)0.896 (0.87-0.92)3626>75

ICUb types

0.049 (0.045-0.053)0.882 (0.86-0.90)0.044 (0.040-0.048)0.895 (0.88-0.91)6923Medical ICU

0.050 (0.046-0.055)0.882 (0.86-0.90)0.041 (0.037-0.045)0.903 (0.89-0.92)6982Surgical ICU

aAUROC: area under the curve of the receiver operating characteristic.
bICU: intensive care unit.

Simulated Prospective Classification
The last row of Table 1 summarizes the nontemporal evaluation
for this task setting. Unlike overall classification, the no masking
model outperforms the masking model while keeping almost
the same calibration.

Before discussing temporal performances, it is necessary to
understand the LOS distribution for each patient category. LOS
averaged over the entire cohort was very similar for both P19
hospitals, at 39.77 (SD 22.55) hours and 38.23 (SD 23.27) hours
for A and B, respectively. Separating the cohort into patients
who eventually develop sepsis and those who don’t shows that
patients who develop sepsis spend a longer time in the ICU.
For hospital A, septic patients spent 59.54 (SD 57.81) hours on
average while nonseptic patients spent 37.87 (SD 13.92) hours.
Similarly, for hospital B this was 59.22 (SD 61.90) hours for

septic patients and 36.96 (SD 17.72) hours for nonseptic
patients. The cohort for both hospitals consisted almost entirely
of patients with sepsis after 3 days.

Temporal evaluation shown in Figure 4B displays almost equal
predictive value at each hour over the first 100 hours of ICU
admission, with peak predictive value achieved a little over 90
hours. This is likely due to the LOS characteristics of the
datasets. Figure 4A shows how model predictions change over
time for patients who eventually develop sepsis and those who
don’t. We observe a considerable divergence between the curves
of masking and no masking models (regardless of sepsis
category) a little after 2 days of ICU admission. The same plot
also shows trends in the proportion of septic patients at each
hour, giving an insight into the expected amount of false alarms
or missed diagnoses by each model.
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Figure 4. Temporal evaluation for the PhysioNet 2019 Challenge sepsis-frequent task; records corresponding to sepsis are labeled as S=1 while the
remainder are S=0: (A) drop in probability of false-positive prediction (S=0) is because after 90 hours, only patients with sepsis remain in the data; (B)
this cohort characteristic is learned by the model resulting in perfect predictive value after 90 hours. ICU: intensive care unit.

Discussion

Principal Findings
Results from the retrospective-overall classification shown in
Table 1 were consistent with previous studies [11,13,14],
confirming that including even simple representations of health
care processes like binary IM features improves performance.
This was further reinforced by evaluating the models on a
variety of metrics summarizing predictive value and calibration.
Model discrimination and predictive value were improved in
all cases while keeping the same or better calibration. Results
of the P19 sepsis-overall task also confirmed that model
generalization in such retrospective tasks is not affected by
including IM features, despite interhospital variations.
Calibration plots in panel C of Figures 1-3 showed that model
reliability was improved for nearly all levels of model certainty,
especially for higher predicted probabilities, making the masking
model more trustworthy.

Subgroup analysis helped us verify the IM inclusion effect on
population subgroups and whether health care process variables
encoded information about pathophysiology despite intra- and
interhospital variations, justifying their use as proxy biomarkers
of patient health. In the P12 mortality subgroup task (Table 2),
while the masking model performed better on average in the
entire test set, it failed to improve upon the no masking model
for certain age groups suggesting that for younger patients,
trends in physiological features alone are better predictors of
in-hospital death. The masking model was also slightly
outperformed by the no masking model in the CCU subgroup,
which may be because CCU patients have a very specific set
of complications, rendering several laboratory tests unnecessary
[48]. For subgroups in P12 LOS (Table 3), however,
considerable improvements in AUROC for younger age groups
were observed, suggesting laboratory tests conducted were
important indicators to estimate whether a patient will spend
more or less than 3 days in the ICU. The CCU again saw only
a slight improvement, probably due to a generally earlier
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diagnosis relative to other ICUs. Overall, for both P12 outcomes,
younger age groups and the cardiac surgery recovery unit had
the highest AUROCs achieved by masking models.

For subgroups in the P19 sepsis-overall task (Table 4), older
age groups generally saw greater benefit on IM inclusion. Sepsis
is known to be associated with age, which may in turn prompt
physicians to order relevant tests earlier in the patient’s ICU
stay [49]. The surgical ICU again saw a greater improvement
in AUROC over the medical ICU, while the model had almost
equal performance for both ICUs using only physiological
features. This task also evaluated model performance and effect
of IM features on model generalization, since the subgroups
were made using data from a distinct hospital. These results
suggest that, at least in retrospective task settings, health care
process variables do not hinder model generalization and models
trained using these variables can adequately learn the relation
of IM features to the underlying condition without being affected
by interhospital variations.

Calibration indicated by the Brier score showed that the model
actually learns to output better probabilities on including health
care process variables.

Relationship With Prior Work
Perhaps the study most similar to this work was by Sharafoddini
et al [50], which examined whether missing indicator features
are informative. The study performed extensive data analysis
and evaluated logistic regression and tree-based models trained
with and without missing indicators to assess any difference in
discriminative ability. Their results demonstrated improved
model performance upon IM inclusion, and feature selection
methods reinforced the importance of IM variables. While this
work is similarly motivated in its goal to objectively assess IM
features, there are some essential differences. We focused on
several outcomes of interest as opposed to mortality only, as
discussed earlier. We also provided comprehensive evaluation
through multiple metrics, assessing not only overall
discrimination but also hourly discrimination and model
calibration. Subgroup analysis and evaluation of model
generalization on a distinct patient population further contribute
to the novelty of this work. Previous studies did not evaluate
their model’s performance on ICU population subgroups, instead
assuming similar performances across patients [9,13,14]. We
showed that discrimination varies between strata as does the
extent of improvement brought by including IM features.
Finally, we used a sequential deep learning model (GRU) as
opposed to the models used in Sharafoddini et al [50], since
RNN variants have been popular choices to model EHR data
and often use IM features to improve performances [13,14].

Temporal trends in probability of predicting sepsis shown in
Figure 4A confirm previous findings by Sharafoddini et al [50]
that indicators become increasingly important from the second
day onward in the ICU. But this is arguably too late, since
patients who eventually developed sepsis had a higher variance
in LOS, many becoming septic early on in their ICU stay. While
including IM features results in better model performance
overall, it also falsely identifies nonsepsis patients as susceptible
(false positives) in the near future, leading to several false
alarms. In the PhysioNet 2019 Challenge, the utility score metric

applied a minimal penalty for false positive predictions, while
also leading to earlier and greater true positives, perhaps
explaining the extensive use of IM features in proposed models.
But alarm fatigue is a known issue in ICU early warning scores,
and false positives cannot be ignored [51]. When performance
on predicting the absence of sepsis (true negatives) is not
considered, the net predictive value gets balanced out, as shown
in Figure 4B. Also, unlike previous studies, which relied on
end-of-day outcome prediction or thresholded decision outputs
for evaluation, we relied exclusively on hourly probabilities
and visualized its trends with time, which may be used to
understand a model’s clinical utility more comprehensively
[27,42].

It is important to understand that IM feature effectiveness varies
based on the outcome of interest, whether they are applied for
retrospective or prospective tasks and even on population
subgroups. With IM features now being used for a variety of
tasks including classification, prediction, and even imputation,
models relying on these may further propagate preexisting biases
in health care processes.

Limitations
A limitation of this study was using data from the same country,
in this case the United States. Practices and case-mix vary by
country. Physician attitudes to uncertainty (which may influence
test ordering and drug prescription) may also be affected by
resource limitations and even by cultural factors [24]. This
requires verifying masking model generalizability on data from
different parts of the world. Efforts have been made to
standardize test ordering behavior but guidelines are followed
to varying extents depending on patient histories, comorbidities,
and the physician in charge [26,52].

The datasets we used were observational, with no information
regarding the context in which laboratory tests were ordered or
which patients were transfers from other ICUs. The latter leads
to the problem of lead-time bias, which may be reflected in the
data as unexpected adverse outcomes for certain patients [53].
We also evaluated IM feature effectiveness on only one model
type, GRU (an RNN variant). While we selected this because
of its common use in prior work, different models may learn
IM representations differently [38].

Critical care EHRs are also a specific subtype of general EHRs,
since they consists only of inpatients with serious conditions.
A more general EHR dataset that includes outpatients may result
in different health care process observation patterns and reveal
interesting effects on predictive models [23]. Finally, clinical
best practices change over time, in turn affecting which tests
are performed and how often. This is part of the larger problem
of dataset shift in machine learning, and it remains to be seen
how this would affect clinical models relying on health care
process features.

Conclusion and Future Work
With increasing use of observational EHR data for machine
learning model development, there has been an increase in the
number of studies claiming clinical utility of proposed models,
many relying on variables representative of health care
processes. In this study, we addressed questions regarding the
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effect of using health care process features on machine learning
model performance and generalizability. By separating
commonly used task settings into 2 subtypes, retrospective and
(simulated) prospective, we made an important distinction
concerning possible clinical utility of models. We framed all
our results using multiple evaluation metrics while also
analyzing external validation performances for all tasks by using
data from a geographically distinct hospital.

This study demonstrated the usefulness of IM features in
retrospective task settings on various outcome labels. Notably,
we found that machine learning model generalization and
calibration are not adversely affected on using health care
process variables even when externally evaluated. However,
the extent of improvement may depend on different patient and
in-hospital factors such as age or ICU type. Our research
indicated that these features provide better information for
certain subgroups than others, and IM variables are better
predictors of administrative outcomes like length of stay than
mortality or sepsis. Results also showed that, at least for a
sequential deep learning model, using simple binary missingness
indicators for simulated prospective sepsis classification did
not add any benefit over a model relying on patient pathological
features only.

Our findings suggest that the suitability of using IM features in
machine learning models may vary based on the outcome of

interest, subgroup of application, task setting (retrospective or
prospective), and differences in clinical practice between
training data and test data. Class imbalances and nature of
outcome have an intense impact on expected performance
improvements on IM feature inclusion. In application, the
subgroup of a patient and deviation in model performance from
its expectation also need to be considered while estimating the
uncertainty of a prediction. Also, while ultimately machine
learning models aim to lend themselves to use as continuous
monitoring bedside tools, using IM features does not seem to
add any prominent improvement over not using them in that
setting. Finally, using IM means using clinical practice variables
in a model, so different missingness rates and missingness
patterns need to be properly contextualized to understand model
performance differences between train and test environments.
Biased observations in one dataset (due to practice or even
hospital resource variations) may have a substantial effect on
model discriminations and calibration in another dataset.

There are several ways to extend this study. Future work may
(1) focus on verifying model performance and generalization
changes by using data from multiple countries, (2) focus on
using different types of models and analyze how differently
learned representations of missingness affect performance, or
(3) study how health care process features may be used for
multilabel classification.
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Abstract

Background: Semantic textual similarity (STS) measures the degree of relatedness between sentence pairs. The Open Health
Natural Language Processing (OHNLP) Consortium released an expertly annotated STS data set and called for the National
Natural Language Processing Clinical Challenges. This work describes our entry, an ensemble model that leverages a range of
deep learning (DL) models. Our team from the National Library of Medicine obtained a Pearson correlation of 0.8967 in an
official test set during 2019 National Natural Language Processing Clinical Challenges/Open Health Natural Language Processing
shared task and achieved a second rank.

Objective: Although our models strongly correlate with manual annotations, annotator-level correlation was only moderate
(weighted Cohen κ=0.60). We are cautious of the potential use of DL models in production systems and argue that it is more
critical to evaluate the models in-depth, especially those with extremely high correlations. In this study, we benchmark the
effectiveness and efficiency of top-ranked DL models. We quantify their robustness and inference times to validate their usefulness
in real-time applications.

Methods: We benchmarked five DL models, which are the top-ranked systems for STS tasks: Convolutional Neural Network,
BioSentVec, BioBERT, BlueBERT, and ClinicalBERT. We evaluated a random forest model as an additional baseline. For each
model, we repeated the experiment 10 times, using the official training and testing sets. We reported 95% CI of the Wilcoxon
rank-sum test on the average Pearson correlation (official evaluation metric) and running time. We further evaluated Spearman
correlation, R², and mean squared error as additional measures.

Results: Using only the official training set, all models obtained highly effective results. BioSentVec and BioBERT achieved
the highest average Pearson correlations (0.8497 and 0.8481, respectively). BioSentVec also had the highest results in 3 of 4
effectiveness measures, followed by BioBERT. However, their robustness to sentence pairs of different similarity levels varies
significantly. A particular observation is that BERT models made the most errors (a mean squared error of over 2.5) on highly
similar sentence pairs. They cannot capture highly similar sentence pairs effectively when they have different negation terms or
word orders. In addition, time efficiency is dramatically different from the effectiveness results. On average, the BERT models
were approximately 20 times and 50 times slower than the Convolutional Neural Network and BioSentVec models, respectively.
This results in challenges for real-time applications.

Conclusions: Despite the excitement of further improving Pearson correlations in this data set, our results highlight that
evaluations of the effectiveness and efficiency of STS models are critical. In future, we suggest more evaluations on the
generalization capability and user-level testing of the models. We call for community efforts to create more biomedical and
clinical STS data sets from different perspectives to reflect the multifaceted notion of sentence-relatedness.
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Introduction

Background
Semantic textual similarity (STS), a measure of the degree of
relatedness between sentence pairs, is an important text-mining
research topic [1]. STS has been widely used in biomedical and
clinical domains, including information retrieval (finding
relevant sentences or passages [2]), biocuration (finding key
sentences for evidence attribution [3]), and question answering
(finding answer-snippet candidates [4]). Despite its importance,
expertly annotated STS data sets are lacking in the biomedical
and clinical domains. For example, STS-related data sets in the
general domain have been developed for nearly a decade, with
almost 30,000 annotated sentence pairs in total [5], whereas
similar data sets in the biomedical and clinical domains had
only hundreds of pairs in total before 2018 [6]. The organizers
of the Open Health Natural Language Processing (OHNLP)
Consortium have dedicated efforts to expanding such data sets
and establishing STS open challenges in the clinical domain
since 2018. MEDSTS [7], consisting of 1068 curated sentence
pairs, was used in the BioCreative/OHNLP challenge task in
2018 [8]. In 2019, over 1000 curated sentence pairs were added
to the MEDSTS, renamed ClinicalSTS [9], which was used in
the National Natural Language Processing Clinical Challenges
(n2c2)/OHNLP. This work is a poststudy of the n2c2/OHNLP
challenge.

Overall, 33 teams submitted 87 models to the n2c2/OHNLP
challenge task; Pearson correlation was used as the evaluation
measure, ranging from −1 (strong negative relationship) to 1
(strong positive relationship). Our National Library of Medicine
and National Center for Biotechnology Information team
developed an ensemble model by leveraging a range of deep
learning models from 3 categories: word embedding based,
sentence embedding based, and transformer based (which is
described in the following sections). This model achieved a
Pearson correlation of 0.8967 in the official test set, ranking
second among all of the teams (P=.88 compared with the first
rank, with a Pearson correlation of 0.9010). The top 10 best
team submissions demonstrated relatively close performances
with Pearson correlations of 0.85 to 0.90. According to the
organizer’s overview, most of the top systems used deep
learning models [9].

A Pearson correlation of approximately 0.9 suggests that the
model’s predictions have a very strong correlation with gold
standard annotations [10]. Such results might give the
impression that deep learning models have already solved STS
in the clinical domain. Nevertheless, the human-level correlation
in this data set is significantly lower; for example, the agreement
between 2 annotators in ClinicalSTS had a weighted Cohen κ
of 0.6 [9], suggesting that only a moderate level of correlation
was achieved by human experts [10]. Therefore, we urge caution
with regard to the extremely high correlation achieved by the
models (which might be potentially due to overfitting) and argue

that it is critical to understand how these models perform in
reality rather than further improve the performance in this data
set. Therefore, in this postchallenge study, we aim to analyze
the effectiveness and efficiency of 5 deep learning models in
depth:

• For effectiveness, we investigate how a single deep learning
model performs in this specific data set and further analyze
the robustness of models in sentence pairs of different
degrees of similarity.

• For efficiency, we measure the inference time taken by the
deep learning models in the testing set. This is an important
indicator of whether these models can be used in real-time
applications, such as sentence search engines. To the best
of our knowledge, few studies on STS in the biomedical
and clinical domains have considered model efficiency.
However, given that models have already achieved a
Pearson correlation of approximately 0.90, measuring
efficiency is arguably more important, as it quantifies
whether these models could be used in production.

The principal findings are 2-fold. First, a single deep learning
model trained directly on the official training set only (ie,
without more advanced techniques, such as multitask learning
and transfer learning) could already achieve a maximum Pearson
correlation of 0.87; however, the training set’s robustness to
sentence pairs of different similarity levels differs significantly.
A particular observation is that BERT models made the most
errors (a mean squared error of over 2.5) on highly similar
sentence pairs (similarity no less than 4). BERT models cannot
capture highly similar sentence pairs effectively when they have
different negation terms or word orders. Second, although the
deep learning models achieved relatively close Pearson
correlations (from 0.82 to 0.87; single models), the time
efficiency differed dramatically. For example, the difference in
Pearson correlations of BERT and sentence embedding models
was within 0.002, but the inference time of BERT models was
approximately 50 times greater than that of sentence embedding
models. This brings practical challenges to using BERT models
in real-time applications, especially without the availability of
graphics processing units (GPUs). Furthermore, although there
has been a tremendous effort to make ClinicalSTS available to
the community, their source corpora inevitably limit the diversity
of sentence pairs and annotation inconsistencies. Thus, we call
for community efforts to create more STS data sets from
different perspectives to reflect the multifaceted notion of
sentence relatedness; this, in turn, will further improve the
generalization performance of deep learning models.

Here, we introduce popular deep learning STS methods that
have been used in the biomedical and clinical domains. The
methods are broadly categorized in terms of the language models
applied: word embeddings, sentence embeddings, and
transformers.
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Word Embedding–Based Models
Word embeddings are relatively early language models that
significantly change how text is modeled. The semantic of each
word is represented in a high-dimensional vector trained on
large-scale corpora in an unsupervised manner. Primary word
embedding methods include (1) word2vec, based on local
contexts, such as using a word as input to predict its nearby
words [11]; (2) Glove, based on global co-occurrence statistics
[12]; and (3) fastText, which extends word2vec by adding word
n-grams [13]. Many word embedding variations (eg, pretrained
in the biomedical or clinical corpora, integrated with entities,
and adopted retrofitting methods) are publicly available [14-16].
First, word embedding–based STS models use these embeddings
to obtain vector representations of the words in sentence pairs
and then use either Convolutional Neural Networks (CNNs) or
recurrent neural networks to process (typically to obtain spatial
or semantic patterns), followed by fully-connected layers to
make predictions [16].

Sentence Embedding–Based Models
Sentence embeddings extend word embeddings by modeling
sentence-level representations. The primary methods include
(1) Doc2vec, similar to word2vec, using a word as input and
predicting the paragraph rather than nearby words [17]; (2)
FastSent, using a sentence as input and predicting the adjacent
sentences [18]; and (3) SentVec, which extends word2vec and
fastText by using both words (and their n-grams) and the
associated sentences as inputs for training [19]. Compared with
word embedding–based models, sentence embedding–based
STS models are simpler: first, they use sentence embeddings

to obtain sentence vectors and then use fully-connected layers
for predictions [20].

Transformer-Based Models
Transformers are recent language models that revolutionize text
representation methods. Using a self-attention mechanism, this
model can capture long-range dependencies [21].
Transformer-based language models, such as BERT [22] and
GPT [23], have replaced recurrent neural networks for many
text-based applications. To date, many transformers pretrained
in the general or biomedical and clinical domains are publicly
available [24-27]. Similar to sentence embedding–based models,
transformer-based STS models directly use transformers to
obtain sentence representations and then use fully-connected
layers for predictions [22].

Methods

Sentence Similarity Models

Overview
Five deep learning STS models from the 3 categories above
were benchmarked: the Convolutional Neural Network (CNN)
model [28] (from the word embedding–based category), the
sentence embedding model, using BioSentVec [29] (from the
sentence embedding–based category), and transformer models
(from the transformer-based category), using BioBERT [24],
BlueBERT [25], and ClinicalBERT [26]. We chose these models
because they achieved top-ranked performance in STS-based
tasks [5,8,9]. The general architecture is shown in Figure 1, and
the descriptions are as follows.

Figure 1. Model architecture overview. (A), (B), and (C) demonstrate the architecture of the Convolutional Neural Network (CNN), BioSentVec, and
Bidirectional Encoder Representations from Transformers models, respectively. Details are provided in the Methods section. BERT: Bidirectional
Encoder Representations from Transformers; CONV: convolutional layer; FC: fully-connected layer.

Word Embedding–Based Model (CNN Model)
We adapted the CNN model from a study by Shao [28] a
top-ranked system in SemEval-2017 Task 1. The CNN model
transforms the input sentence pair into vectors and learns the
similarities between the corresponding vectors. The backbone
is a Siamese neural network, whereby the model weights are
shared when processing the 2 input sentences. The model
consists of 3 layers (shown in Figure 1A). The first embedding
layer consists of word and character embeddings. It is used to

transform the raw text into a 2D semantic vector space. In this
study, we evaluated several word embeddings. We found that
word embeddings pretrained in the biomedical and clinical
domains did not have additional advantages in this specific data
set. This observation is consistent with the previous word
embedding evaluation using the same source data set [15].
Therefore, we used Glove pretrained in the general domain for
the following experiments. The second layer consists of
convolutional and max-pooling layers to extract special
information from the embeddings. Therefore, the 2D semantic
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vector space is transformed into a 1D vector to represent the
semantics of a sentence. The third layer provides a calculation
of the absolute difference and dot product between the vectors
of the 2 sentences. This is followed by the fully-connected layers
to produce the final similarity prediction.

Sentence Embedding Model (BioSentVec Model)
We used the model from [29], which achieved the highest
performance on MEDSTS for the post–BioCreative/OHNLP
challenge task [20]. The model structure is similar to the CNN
model above, as shown in Figure 1B. The primary difference
is that this model uses BioSentVec to directly produce the
sentence vectors. Therefore, there are no convolutional or
pooling layers.

Transformer-Based Model (BioBERT, BlueBERT, and
ClinicalBERT Models)
This model structure is illustrated in Figure 1C. First, the
sentences were concatenated as one input (as recommended by
the authors of BERT [22]), followed by a BERT module and
fully-connected layers. We benchmarked 3 different BERT
modules: (1) BioBERT [24], pretrained on PubMed abstracts
and PubMed Central full-text articles; (2) BlueBERT [25],
pretrained on PubMed abstracts and Medical Information Mart
for Intensive Care-III clinical notes; and (3) ClinicalBERT [26],
pretrained on clinical notes using the weights from BioBERT.

Additional Machine Learning Baseline Model (Random
Forest)
Although the top-performing submissions used deep
learning–based models [30], it is also critical to compare with
traditional machine learning–based models to better understand
the effectiveness and efficiency of deep learning–based models.
Therefore, we evaluated the performance of a classic machine
learning model as an additional baseline. Specifically, we

adapted the random forest model, which achieved the best
performance out of 13 submissions in the 2018
BioCreative/OHNLP challenge task [20,30]. This model uses
manually engineered features in 5 dimensions to capture
sentence similarity: token-based, character-based,
sequence-based, semantic-based, and entity-based. We
performed feature selection based on the performance of the
validation set and ultimately selected 13 features.

Data Set, Evaluation Metric, and Hyperparameter
Tuning
The details of the data set are presented in the data description
studies [7,9]. In short, the data set consists of 2054 sentence
pairs, with the similarity annotated on a scale of 0 to 5: (1) 0,
if the 2 sentences are entirely dissimilar; (2) 1, if the 2 sentences
are dissimilar but have the same topic; (3) 2, if the 2 sentences
are not equivalent but share some details; (4) 3, if the 2 sentences
are roughly equivalent but some important information is
different; (5) 4, if the 2 sentences are mostly equivalent and
only minor details differ; and (6) 5, if the 2 sentences are
semantically equivalent [7]. The data set was annotated by 2
medical experts, with a weighted Cohen κ of 0.60 as the
interannotator agreement measure [9].

The training and testing sets were officially released by the task
organizers and consisted of 1642 and 429 sentence pairs,
respectively. We randomly sampled approximately 20% of the
sentence pairs (329 pairs) from the training set as the validation
set. The Pearson correlation coefficient was used as the official
evaluation metric.

Given that the models have different architectures and
hyperparameters, we performed hyperparameter tuning for the
CNN, BioSentVec, and BERT models separately, rather than
using the same values. The values of the hyperparameters are
listed in Table 1.
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Table 1. Hyperparameters of the sentence similarity models. Common hyperparameters are shared among all of the models. In contrast, model-specific
hyperparameters are only for specific models.

BERTb variationBioSentVecCNNaHyperparameters

Common hyperparameters

128, 32512, 256, 128, 32128FCc layers

0.50.50.5Dropout

AdamWarmupSGDdAdamOptimizer

2e-55e-31e-3Learning rate

321664Batch size

Specific hyperparameters

128N/Ae170Maximum length

N/AN/A1800Convf

MaximumN/AMaximumPooling

aCNN: Convolutional Neural Network.
bBERT: Bidirectional Encoder Representations from Transformers.
cFC: fully-connected.
dSGD: stochastic gradient descent
eN/A: not applicable.
fConv: convolutional layers.

Evaluation Methods
We measured the Pearson correlation (for effectiveness) and
the running time in seconds (for efficiency) on the testing set.
To compare the 5 models quantitatively, we repeated the
experiments 10 times on the same training, validation, and
testing sets and reported the results of Wilcoxon rank-sum test
on the average Pearson correlation and running time at 95% CI.
We chose the same evaluation metric and statistical test as the
task organizers for consistency [9]. We further evaluated the
Spearman correlation, R², and mean square error as additional
metrics for effectiveness.

In practice, the running time can be significantly affected by
the computing environment rather than the model architecture.
For instance, GPUs could significantly boost the inference time;
however, many sentence search servers (especially research
tools) may not have GPUs available. Different multi-processing
methods may have an impact on the running time as well. For
a fair comparison, we used a single processor on the central
processing unit for model inference on the testing set and tracked
the running time accordingly.

Results

Effectiveness and Efficiency Results
Table 2 presents the effectiveness and efficiency results. All 5
deep learning models had reasonable and very close
effectiveness results for this data set. The difference between
the average Pearson correlation was within 3%. The BioSentVec
model achieved the highest Pearson correlation (0.8497),
followed by BioBERT (0.8481; P=.74). The deep learning
models had approximately 15% higher Pearson correlation than
the baseline random forest model. In addition, the results
demonstrate that a single deep learning model can achieve a
maximum Pearson correlation score of 0.87. We further
developed a model by averaging the predictions of the 4 best
models. The ensemble model further improved the score by
close to 0.90. This observation is consistent with our submission
results. Table 3 provides additional effectiveness measures.
BioSentVec consistently showed the highest performance in 3
out of 4 metrics, followed by BioBERT.
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Table 2. Effectiveness and efficiency results for the official test set. The models are ranked by the mean effectiveness results in descending order. The
P value of the Wilcoxon rank-sum test at a 95% CI is shown for each model compared with the model with the highest effectiveness or efficiency
results. The results of the ensemble model also are provided; however, this study focuses on single models in terms of, for example, their robustness to
sentence pairs of different similarity levels and their inference time for production purposes.

Efficiency (seconds)Effectiveness (Pearson correlation)Model

Lowest efficiencyP valueValues, mean (SD)Maximum

effectiveness

P valueValues, mean (SD)

Five benchmarking models

1.96N/A1.48 (0.23)0.8654N/Aa0.8497 (0.0099)BioSentVec

95.66<.00185.05 (4.93)0.8698.740.8481 (0.0122)BioBERT

95.21<.00185.20 (4.74)0.8677.390.8442 (0.0161)ClinicalBERT

88.22<.00184.81 (1.63)0.8613.020.8320 (0.0232)BlueBERT

4.97<.0014.35 (0.27)0.8307<.0010.8224 (0.0043)CNNb

Additional machine learning baseline model

0.03.990.03 (0.00)N/AN/A0.6848 (0.0022)Random forest

Ensembled model

N/AN/AN/A0.8940N/A0.8782Ensemble model

aN/A: not applicable.
bCNN: Convolutional Neural Network.

Table 3. Additional effectiveness results of individual models. The models are ranked by the Pearson correlation coefficient in descending order.

Values, mean (SD)Model

MSEbR²aSpearman correlationPearson correlation

Five benchmarking models

0.8709 (0.0434)0.6705 (0.0325)0.7708 (0.0073)0.8497 (0.0099)BioSentVec

0.8803 (0.0362)0.6636 (0.0275)0.7951 (0.0100)0.8481 (0.0122)BioBERT

0.9155 (0.0502)0.6357 (0.0391)0.8066 (0.0149)0.8442 (0.0161)ClinicalBERT

0.8935 (0.0670)0.6520 (0.0544)0.7701 (0.0244)0.8320 (0.0232)BlueBERT

0.9428 (0.0519)0.6136 (0.0436)0.7674 (0.0087)0.8224 (0.0043)CNNc

Additional machine learning baseline model

1.1614 (0.0025)0.4154 (0.0025)0.6572 (0.0027)0.6848 (0.0022)Random forest

aR2: coefficient of determination.
bMSE: mean square error.
cCNN: Convolutional Neural Network.

In contrast to the effectiveness results, the efficiency results
differed dramatically among the models. As shown in Table 1,
it took about 1.5 seconds, on average, for the BioSentVec model
to predict the similarities of 429 sentence pairs in the testing
set; the counterpart of the CNN model took about 4.5 seconds,
on average. In contrast, all BERT models require more than 80
seconds, on average, for inference.

Error Analysis
We further analyzed the common errors made by the models.
Figure 2 shows the quantitative evaluations. We categorized
the sentences into 5 groups based on the annotation guidelines
and measured the MSE between the gold standard and
predictions. Note that we did not use Pearson correlations as
they are heavily influenced by the limited number of instances
in small categories [20]. MSE is thus used as an alternative
metric, which has also been used as a loss function for many
deep learning models for regression-based applications.

JMIR Med Inform 2021 | vol. 9 | iss. 12 |e27386 | p.230https://medinform.jmir.org/2021/12/e27386
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Mean squared error (MSE) of the models for each similarity range. Each category shows the number of sentence pairs and associated MSE
of the models. The overall MSE (median, SD) are also provided in the legend. CNN: Convolutional Neural Network.

Figure 2 shows 2 primary observations. First, the random forest
model had the highest MSE for the pairs with similarity scores
between 0 and 1; the error rate was almost twice that of the deep
learning models. In contrast, the MSEs of the random forest in
other similarity categories were much smaller. This suggests
that the random forest model may not effectively identify
sentence pairs of low similarity. We manually examined the
sentence pairs of low similarity and provided representative
examples where the random forest model had a larger MSE than
the other models, along with the predictions of BioBERT and
BioSentVec for comparison (Table 4). The errors shared
consistent patterns where (1) the sentence structure was similar
(eg, both started with “The patient...”), (2) the pairs shared many
common or similar words (eg, case 4 shares “examined and

normal”), and (3) the semantics of the pairs were rather different.
In such cases, the random forest model failed to capture the
semantics at the sentence level. In addition, cases 1-3 had the
gold standard annotation score of 0, whereas the similar case 5
had the counterpart of 1. One may argue that the drugs in case
5 are rather different, and the procedure was independent and
could have a score of 0; alternatively, given the score of case
5, cases 1-3 could arguably have the same score as well because
they were all related to patient status (similarly, both
BioSentVec and BioBERT provided consistent scores on these
cases). This is also consistent with the findings of the task
organizers [9], which demonstrated that annotating the sentence
similarity is a challenging task as relatedness is
context-dependent.

Table 4. Qualitative examples with a relatively large mean squared error for the random forest model for sentence pair scores from 0.0 to 1.0.

BioSentVecBioBERTRandom forestGold standardSentence pairsCase

1.20.52.50.01 • The patient tolerated the procedure well and was transferred to the recovery
room in stable condition.

• The patient was transferred to the patient appointment coordinator for an
appointment to be scheduled within the timeframe advised.

1.41.43.40.02 • Patient to call to schedule additional treatment sessions as needed other-
wise patient dismissed from therapy.

• Patient tolerated session without adverse reactions to therapy.

1.71.72.00.03 • Patient was agreeable to speaking with social work.
• Patient was able to teach back concepts discussed.

1.12.12.40.54 • Left upper extremity: Inspection, palpation examined and normal.
• Abdomen: Liver and spleen, bowel sounds examined and normal.

1.51.72.61.05 • glucosamine capsule 1 capsule by mouth one time daily.
• Claritin tablet 1 tablet by mouth one time daily.
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Second, all the deep learning models, except the CNN model,
showed reasonable performance for the pairs with similarity
scores between 1 and 4. The MSE was mainly within 1,
suggesting that the predictions were likely in the same category
as the gold standard. However, the BERT models had a much
higher MSE for the pairs with scores from 4 to 5. For example,
ClinicalBERT had an MSE of over 2.5, whereas the counterparts
of both CNN and BioSentVec were lower than 1. Similarly, the
variance of BERT models on sentence pairs with similarity
scores from 4 to 5 was also larger than that of the other models.
Table 5 shows the representative sentence pairs for which

ClinicalBERT had a larger MSE than the other models, along
with the predictions of BioBERT and BioSentVec for
comparison. The examples indicated that ClinicalBERT could
not capture highly similar sentence pairs when there are different
negation terms (eg, case 1) or when the word order is switched
(eg, case 2) as compared with BioBERT and BioSentVec.
Similarly, interannotator consistency may also have an impact
on MSE. For example, sentence pairs from cases 4 and 5
arguably belong to the same category, as the pairs share the
majority of information, except for minor differences.

Table 5. Qualitative examples with a relatively large mean squared error for Bidirectional Encoder Representations from Transformers models for
sentence pair scores from 4.0 to 5.0.

BioSentVecBioBERTClinicalBERTGold standardSentence pairsCase

3.93.42.55.01 • Heart: S1/S2 regular rate and rhythm, without murmurs, gallops, or rubs
• Heart: S1, S2, regular rate and rhythm, no abnormal heart sounds or

murmur

3.93.32.35.02 • He denies chest pain or shortness of breath
• He denies shortness of breath or chest pain

2.52.22.44.03 • This patient benefits from skilled occupational and/or physical therapy
to improve participation in daily occupations

• Medical necessity: the patient would benefit from skilled physical therapy
interventions to be able to return to work and engage in self-care activities

3.72.62.84.04 • All questions were answered to the parent’s satisfaction
• All questions were answered and consent was given to proceed

3.62.93.05.05 • The patient understands and is happy with the plan
• The patient verbalized understanding and wishes to proceed

Discussion

Principal Findings
This study has 2 primary findings. First, the effectiveness of
deep learning models on this data set is high (all 5 models have
a Pearson correlation of over 0.8, which is approximately 15%
higher than that of the traditional machine learning model) and
relatively close (the Pearson correlation difference is within
0.03 among the models), but their efficiency is significantly
different. BERT models are, on average, 20-50 times slower
than the CNN and BioSentVec models, respectively.

The dramatically different efficiency results lead to the concern
of using STS models in real-world applications in the biomedical
and clinical domains. To demonstrate this, we further quantified
the number of sentence pairs that could be computed in real-time
based on the sentence search pipeline in LitSense [2]. LitSense
is a web server for searching for relevant sentences from
approximately 30 million PubMed abstracts and approximately
3 million PubMed Central full-text articles. To find relevant
sentences for a query, it uses the standard BM25 to retrieve top
candidates and then reranks the candidates using deep learning
models. The rerank stage in LitSense is allocated for 300 ms
based on evaluations of the developers. Using 300 ms as the
threshold, BERT models can rerank only 2 pairs in real-time,
whereas the CNN and BioSentVec models can rerank
approximately 30 and 87 pairs, respectively. It should be noted

that the results here are for demonstration purposes. In practice,
as mentioned above, many factors could impact the inference
time, such as GPUs and efficient multi-processing procedures.
The real inference time might differ, but the difference between
the models holds, as we fairly compared all of the models in
the same setting. On the basis of these results, we suggest using
compressed or distilled BERT models [31] for real-time
applications, especially when production servers do not have
available GPUs.

The second primary finding is that the random forest model
made more errors in sentence pairs of low similarity (similarity
scores from 0 to 1), whereas BERT models made more errors
on highly similar sentence pairs (similarity scores from 4 to 5).
The random forest model cannot effectively capture the sentence
semantics when a sentence pair shares consistent structures and
similar words but distinct topics. In contrast, ClinicalBERT had
an MSE of over 2.5 for highly similar sentence pairs, especially
when different negation terms or the word order is switched.
As mentioned above, the results also suggest that interannotator
consistency may also impact MSE, showing the difficulty of
relatedness-based tasks.

Limitations
The main limitation of this study is that the analysis was
conducted using the ClinicalSTS data set alone. To the best of
our knowledge, the data set is already the largest available
sentence similarity data set in this domain. Other data sets, such
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as BOSSES, are much smaller. We believe that it is critical to
developing more sentence similarity data sets from other sources
in the biomedical and clinical domains, which could expand
our analysis and further improve the existing methods.

Another limitation is that the ClinicalSTS data set lacked
user-level evaluations. The notion of relevance is
context-dependent: sentence pairs with high similarity scores
predicted by the models may not necessarily be considered
relevant by users [32]. Previous studies demonstrated that the
top sentences ranked by the top STS models were not the most
relevant to users based on manual judgment [33]. Therefore, it
is critical to conduct user-level assessments to understand
whether STS models can facilitate information retrieval in
practice, in addition to understanding the effectiveness and
efficiency measures. We consider this as future work.

Comparison With Prior Work
Most existing studies focus on developing innovative methods
to improve correlations in the testing set. Top-ranked methods
are summarized in the overview papers on clinical STS
challenge tasks [8,9], from traditional machine learning methods
[30] to word and sentence embedding–based methods [20] and
transformer-based methods [24]. Other studies further used
advanced learning methods, such as representation fusion [34]
and multitask learning [27]. The reported Pearson correlations
range from 0.83 to 0.90, which is consistent with our study.
Although it is exciting to further improve the state-of-the-art
results, it is more critical to understand the effectiveness and
efficiency of these models in depth, especially when the
human-level correlation level is only moderate in these data
sets.

Only 2 studies have compared the effectiveness of STS models
in the biomedical and clinical domains [35,36]. Tawfik et al
[35] compared the performance of a range of embeddings in
sentence-based data sets (mostly classification-based
applications, not STS) in the biomedical domain. Studies have
shown that embeddings pretrained in biomedical and clinical
corpora could achieve reasonable Pearson correlation scores,
which is consistent with our study. However, these studies
focused mainly on the Pearson correlations and did not consider
model robustness or efficiency. Arguably, the latter is more
critical to using STS models in practice.

Conclusions
In this postchallenge study, we comparatively analyzed the
effectiveness and efficiency of 5 deep learning models in the
ClinicalSTS data set. Although these models achieved high
Pearson correlation scores, their robustness varied dramatically
in terms of sentence pairs at different similarity levels, and
BERT models have significantly longer inference times. In
addition, the models achieved Pearson correlations of
approximately 0.90 in this data set, whereas the human-level
agreement was only moderate. Taken together, these
observations make us cautious about the further improvement
of this data set and argue for a more thorough evaluation of the
model-generalization capability and user-level testing. We also
call for community efforts to create more STS data sets from
different perspectives to reflect the multifaceted notion of
sentence relatedness, which will further improve the
generalization performance of deep learning models.
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Abstract

Background: Deep learning (DL)–based artificial intelligence may have different diagnostic characteristics than human experts
in medical diagnosis. As a data-driven knowledge system, heterogeneous population incidence in the clinical world is considered
to cause more bias to DL than clinicians. Conversely, by experiencing limited numbers of cases, human experts may exhibit large
interindividual variability. Thus, understanding how the 2 groups classify given data differently is an essential step for the
cooperative usage of DL in clinical application.

Objective: This study aimed to evaluate and compare the differential effects of clinical experience in otoendoscopic image
diagnosis in both computers and physicians exemplified by the class imbalance problem and guide clinicians when utilizing
decision support systems.

Methods: We used digital otoendoscopic images of patients who visited the outpatient clinic in the Department of
Otorhinolaryngology at Severance Hospital, Seoul, South Korea, from January 2013 to June 2019, for a total of 22,707
otoendoscopic images. We excluded similar images, and 7500 otoendoscopic images were selected for labeling. We built a
DL-based image classification model to classify the given image into 6 disease categories. Two test sets of 300 images were
populated: balanced and imbalanced test sets. We included 14 clinicians (otolaryngologists and nonotolaryngology specialists
including general practitioners) and 13 DL-based models. We used accuracy (overall and per-class) and kappa statistics to compare
the results of individual physicians and the ML models.

Results: Our ML models had consistently high accuracies (balanced test set: mean 77.14%, SD 1.83%; imbalanced test set:
mean 82.03%, SD 3.06%), equivalent to those of otolaryngologists (balanced: mean 71.17%, SD 3.37%; imbalanced: mean
72.84%, SD 6.41%) and far better than those of nonotolaryngologists (balanced: mean 45.63%, SD 7.89%; imbalanced: mean
44.08%, SD 15.83%). However, ML models suffered from class imbalance problems (balanced test set: mean 77.14%, SD 1.83%;
imbalanced test set: mean 82.03%, SD 3.06%). This was mitigated by data augmentation, particularly for low incidence classes,
but rare disease classes still had low per-class accuracies. Human physicians, despite being less affected by prevalence, showed
high interphysician variability (ML models: kappa=0.83, SD 0.02; otolaryngologists: kappa=0.60, SD 0.07).
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Conclusions: Even though ML models deliver excellent performance in classifying ear disease, physicians and ML models
have their own strengths. ML models have consistent and high accuracy while considering only the given image and show bias
toward prevalence, whereas human physicians have varying performance but do not show bias toward prevalence and may also
consider extra information that is not images. To deliver the best patient care in the shortage of otolaryngologists, our ML model
can serve a cooperative role for clinicians with diverse expertise, as long as it is kept in mind that models consider only images
and could be biased toward prevalent diseases even after data augmentation.

(JMIR Med Inform 2021;9(12):e33049)   doi:10.2196/33049
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human-machine cooperation; convolutional neural network; deep learning, class imbalance problem; otoscopy; eardrum; artificial
intelligence; otology; computer-aided diagnosis

Introduction

Machine learning (ML) based on deep learning (DL) in medical
imaging is developing at a rapid pace, to fill the gap between
the capacity of specialists interpreting the images and the need
for interpreted images. Many studies [1-6] show the possibility
that the performance of image classification is on par or better
than that of medical specialists in terms of accuracy. Despite
the promising results of these studies, characteristics of DL have
not been thoroughly evaluated and compared with human
experts, particularly in the domain of clinical practice. In tasks
such as medical image diagnosis, where accountability is an
important issue, cooperation between human experts and ML
models is necessary [1]. To foster cooperation between humans
and machines, the characteristics of human intelligence (HI)
and DL-based artificial intelligence (AI) should be specified at
the individual and systemic levels.

The class imbalance in real-world clinics is a big challenge in
data-driven ML. Different numbers of samples in various classes
due to imbalanced incidences inherent in the human population
are expected to induce biases toward high incident classes during
the training process.

Conversely, human medical experts learn in-depth by
experiencing limited numbers of cases, thus have less bias for
classes of different sizes [7]. However, clinical experience
differs among clinicians, and every clinician has their own
classification biases, that is, strengths and weaknesses in
classifying certain diseases [8]. Due to the bias induced by
individual experience, physicians may have large interindividual
variability. Meanwhile, ML models are statistically biased based
on the amount of data but show consistent performance among
different models [9]. Despite general speculations, these 2 biases
for data size for each class and interindividual variation due to
differential (small sample–biased) experiences have not been
directly evaluated in the clinical diagnostic setting.

In this study, we investigated the differential characteristics of
ML models and human experts concerning class imbalance bias
and interrater variability. For this, we use as the example the
classification of ear and mastoid disease using otoendoscopic
images. Ear and mastoid diseases are common in, but not limited
to, developing countries in Southeast Asia, Western Pacific
regions, and Africa [10]. However, otolaryngologists are
shorthanded in many developing countries, with as few as <1
otolaryngologist per a million people in 64% of African counties

[11]. Therefore, nonotolaryngologists in primary care are likely
to see patients with these diseases in clinics, and they must play
a role in managing ear diseases, particularly in areas with limited
access to otolaryngologists. However, nonotolaryngologists are
prone to misdiagnosing otitis media, which is a major part of
ear disease [11-13]. Evaluating ear disease involves careful
history taking and physical examination using conventional
otoscopy or otoendoscopy. The initial impression of otoscopy
is an essential gateway to diagnosis and treatment.

One of the domain-specific challenges in ear disease
classification, as in other medical fields, is the class imbalance
problem discussed earlier. This problem may affect both
clinicians and ML models but possibly more so ML models.
Because ear diagnosis is conducted by clinicians with diverse
levels of expertise, the variability of individual performance is
apparent in this field [14,15].

To investigate and compare the effect of the class imbalance
problem between human physicians and ML models as well as
interindividual variability, we evaluated the diagnostic rate and
interrater reliability of otoendoscopic images among 3 groups:
otolaryngologists (2 specialists and 4 residents),
nonotolaryngologists (2 family medicine specialists, 2
emergency medicine specialists, and 5 general practitioners),
and 13 convolutional neural network (CNN)–based classification
models in both balanced and imbalanced test sets, each
containing 300 otoendoscopic images. We also examined the
dependency of the accuracy on the prevalence of each class in
the machines compared with that of human experts. The class
imbalance problem was evaluated concerning diverse data
augmentation strategies generalizable for most CNN-based
classification models to overcome the aforementioned class
imbalance problem. We also evaluated the effect of the
augmentation strategy in improving classification accuracy
according to the incidence of the disease. All these evaluations
were conducted by optimizing our previous automated diagnosis
system [9]. Furthermore, we sought the possibility of using our
classification system as a virtual otolaryngologist to assist
physicians by comparing the accuracy and likelihood of
diagnosis between our classification system and
otolaryngologists.
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Methods

Patient Data Selection and Acquisition
Digital otoendoscopic images from patients who visited the
outpatient clinic in the Department of Otorhinolaryngology at
Severance Hospital, Seoul, South Korea from January 2013 to
June 2019 were used. A total of 22,707 otoendoscopic images
routinely taken using different otoendoscopic cameras by
otolaryngology residents, faculty, or experienced nurses were
reviewed for labeling. The image resolution was 640 x 480
pixels in the DICOM format. We excluded postsurgerical status
photos, duplicate images, images that were significantly out of
focus or fuzzy, and otoendoscopic images from the same
patient’s follow-up data without changes in the diagnosis. We
aggressively excluded similar images if an image was taken
multiple times at slightly different angles; we selected only one
of the images. As a result, 7500 otoendoscopic images were
selected for labeling. This study was approved by the Severance
Hospital Institutional Review Boards (IRB No 2019-0467-001).
Written informed consent was obtained from physician
participants. All methods complyed with the Declaration of
Helsinki.

Analysis and Labeling of Otoendoscopic Images
Otoendoscopic photos containing eardrums and the external
auditory canal (EAC) were classified into 6 categories to cover
all diseases based on the Color Atlas of Endo-Otoscopy [16]:
(1) normal eardrum and EAC including healed perforation and
tympanosclerosis; (2) tumorous condition, in which there are
tumors in the middle ear, EAC, or cerumen impaction; (3) otitis
media with effusion; (4) myringitis or otitis externa; (5)
perforated eardrums; (6) attic retraction or middle ear atelectasis.
Internally, there were more subclasses, but we consequently
merged those subclasses into the 6 aforementioned classes
because we could not acquire an adequate number of sample
sizes of smaller subclasses. Since the goal of the diagnosis
system is to offer an appropriate treatment strategy in real-world
clinics, the label was constructed considering both required
treatment and the similarity of physical findings.

Often, there could be multiple etiologies present in 1
otoendoscopic image. For example, attic retraction with middle
ear effusion could be present. In such cases, the image was
labeled as attic retraction according to our labeling priority.
This priority was determined by the certainty of disease and
possible need for surgery.

To ensure the ground-truth label was correct, we applied
additional steps in labeling, since the accuracy of otoscopy by
a single physician may only be 75% [17]. First, all images were
double-checked by reviewing the patient’s diagnosis in the
electronic medical record by the attending physician at the time,
who had at least 10 years of clinical experience in a tertiary
referral center. Second, if the otoendoscopic image was not
trivial, even after reviewing the medical records, additional test

results (audiological tests including pure-tone audiometry and
impedance audiometry, radiological tests including computed
tomography, magnetic resonance imaging) were considered for
labeling the ground truth. Last, if the first author could not agree
or make an appropriate impression on the otoendoscopic image
even after combining medical records and additional tests, the
picture was discarded. An in-house graphic user interface
software built with MATLAB2019a (MathWorks Inc, Natick,
MA) was used for manual labeling.

Supervised Training of CNN Models for EAC Data
With Transfer Learning
Public CNN models were pretrained with the ImageNet database
[18] to classify 1000 natural objects that served as a base model
for transfer learning of otoendoscopic images. Pareto-efficient
models were chosen to be transferred to this study domain. They
were ResNets [19] (ResNet101, ResNet152), InceptionV3 [20],
InceptionV4 [21], Inception-ResNet-V2 [21], VGG-19 with
batch normalization [22], SENet [23], DenseNet [24], and
NASNet [25,26]. Those models were modified to classify 6
categories of otoendoscopic images by replacing the last fully
connected layer of each model with a layer of 6 fully connected
output nodes. For model optimization, Adaptive Moment
Estimation (ADAM) [27] with a batch size of 32 was used.
Larger batch sizes were not used according to a study reporting
the advantage of smaller batch sizes [28]. We trained for a total
of 20 epochs with differential learning rates. The initial learning
rate was 0.01 in the last transferred layer for 5 epochs. After 5
epochs, fine-tuning was done: All the layers were trained for 7

epochs with a discriminative learning rate, ranging from 1x10-4

in the last layer to 1x10-6 in the first layer. Afterward, we trained

for 7 epochs with a learning rate of 1x10-9 in the last layer and

3.3x10-10 in other layers. To prevent overfitting, affine
transformations of images were applied. A horizontal flip,
rotation of up to 20 degrees, random scales between 0.8 and
1.2, change of lighting up to 20%, and a random symmetric
warp of magnitude between –0.2 and 0.2 were randomly applied
with a probability of 75% on every epoch. Model construction,
training, validation, and testing were implemented using Pytorch
[29] with the Fastai library [30].

Comparison of the Accuracy of the Models With
Diverse Training Settings

Comparison of Model Construction and Performance
According to Training Sample Size
Among a total of 7500 otoendoscopic images, 7200 images
(300 mutually exclusive images were left out for testing in both
balanced and imbalanced scenarios; Table 1) were used for
training in 20 epochs. To maximize available data for training,
we included data from other test sets into the training set; that
is, we put the imbalanced test dataset into the training set when
evaluating in the balanced testing environment and vice versa
when evaluating in the imbalanced testing environment.
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Table 1. Composition of the training and test sets as well as labels, sorted by labeling priority.

Number of imagesClassification

Test-imbalancedb (n=300), n (%)Test-balanceda (n=300), n (%)Training (n=6900), n (%)

51 (17.00)50 (16.77)1793 (26.99)(1) Tympanic perforation

20 (6.67)50 (16.77)521 (7.56)(2) Attic retraction/atelectasis

15 (5.00)50 (16.77)256 (3.71)(3) Myringitis/otitis externa

29 (9.67)50 (16.77)506 (7.33)(4) Otitis media with effusion

18 (6.00)50 (16.77)285 (4.13)(5) Tumors

167 (55.67)50 (16.77)3539 (51.29)(6) Normal

aAll classes are distributed equally.
bClasses are distributed proportionally to the training set.

We chose random image samples using different random seeds
5 times to flatten accuracy fluctuations. Performance according
to training sample size was evaluated to verify the significance
of the larger training sample size: 10% (720 images), 25% (1800
images), 50% (3600 images), 90% (6480 images), and 100%
(7200 images).

Strategies to Overcome Class Imbalance Between Labels
Class imbalance was inevitable due to the diverse incidence of
various ear diseases. To mitigate this problem, 3 strategies were
incorporated in training: oversampling, the mixup [31] method,
and focal loss [32] as the loss function (focal loss with γ = 1).
Oversampling was done by copying images in the smaller
classes to a level equivalent to the largest class, combined with
affine transformations of images. Images of diseases other than
normal eardrums were oversampled to reach the number of
normal eardrum images in the current database. Images of otitis
media with effusion and attic retractions were augmented
approximately 6-fold. The images of myringitis and tumors
required almost 10-fold oversampling. Mixup and focal loss
are described in detail in Multimedia Appendix 1.

We tested 12 models with 8 different configurations (baseline,
with and without oversampling, focal loss, and mixup) resulting
in a total of 12 x 2 x 2 x 2 = 96 CNN-based ML model variants.

Evaluation of the ML Model Accuracy and Similarities
in Prediction Tendency in Both Balanced and
Imbalanced Test Sets
After fine-tuning various CNN-based ML models, the accuracies
of all models were evaluated in both balanced and imbalanced
testing scenarios (Table 1). The first, balanced, 300-image set
consisted of 50 images for each label, which is different from
the incidence ratio in clinical settings but better suited for
measuring accuracies. The second, imbalanced, 300-image set
contained different numbers of images with each label based
on its prevalence in the database, which may represent the
proportion of disease in real-world clinics, particularly a tertiary
referral hospital. Also, the likelihood of diagnosis between
different ML models was evaluated using the Fleiss kappa
method [33]. The kappa (κ) scores were interpreted as follows:
κ<0 as poor, 0.01-0.20 as slight, 0.21-0.40 as fair, 0.41-0.60 as
moderate, 0.61-0.80 as substantial, and 0.81-1 as almost perfect
agreement [34].

Evaluation of Human Physicians’Diagnoses: Accuracy
and Variability
A computerized online questionnaire consisting of 2 sets of 300
questions, identical to the ML model’s balanced and imbalanced
test sets (600 images in total, Table 1), was presented to 14
participants in 3 groups: 6 otolaryngologists (2
otolaryngologists, 4 otolaryngology residents), 8
nonotolaryngologists who had previous exposure to otoscopy
(2 emergency medicine specialists, 2 family medicine
specialists), and 4 general practitioners). Informed written
consent was obtained from all participants.

All participants answered the questionnaire in the same order.
Participants were requested to answer according to the same
labeling priority as in ML models if more than one pathology
was present in the given image. Along with the diagnosis, the
participants were asked to rate the confidence of their diagnosis
on a scale of 1 (not confident) to 10 (very confident). The
participants were not told whether the set was balanced or
imbalanced, since it might have provided additional clinical
suspicion of less common disease entities.

Interrater agreement among individual groups was calculated
using the aforementioned Fleiss kappa method [33]. Spearman
correlation analyses were also performed to check the possible
relationships between confidence and accuracy of diagnosis to
determine whether higher confidence is associated with better
accuracy.

Comparison of Diagnostic Performance and Tendency
Between Physicians and ML Models
All the answers, which were provided in identical order, from
the human physicians and ML models were lined up to compare
the accuracy. We evaluated the differences in the classification
pattern depending on the class prevalence between physicians
and ML models in both balanced and imbalanced test sets. We
measured the likelihood of the ML model’s diagnosis to that of
human physicians by comparing kappa values. We also
compared the per-class accuracy, precision, recall, and F1 scores
between physicians and ML models. We then analyzed the
differential effects of class prevalence in accuracy and prediction
counts using linear regression analysis.
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Results

Training and Test Sets
We used a total of 6900 otoendoscopic images from 6 classes
for training (Table 1). The training dataset was imbalanced,
reflecting the prevalence of ear disease. Although the dataset
was obtained based on a tertiary referral center, therefore having
rich pathologic cases, normal classes were substantially
common. The testing environment consisted of 2 different
settings: (1) balanced test set (300 sample images), consisting
of 6 classes with 50 images each, without considering the
prevalence of ear diseases and (2) imbalanced test set (300

samples), each class distributed proportionally to the training
dataset. Figure 1 displays representative classes and their
activation heatmaps. The classification system could focus on
important areas of eardrums and EACs. For attic retraction, the
DL model focused on pathologic attic areas of the eardrum.
When EACs were wet due to inflammation of the middle or
external ear, it was visible in the heatmap. Normal and middle
ear effusions have the same area of interest, mainly the eardrum
and the middle ear cavity, which was correctly depicted by the
classification system. Perforation of the tympanic membrane
was visualized by the heatmap, as well as middle ear tumors
inside the tympanic membrane (Figure 1).

Figure 1. Representative class and their activation heatmap (Grad-CAM): (A) attic retraction), (B) myringitis or otitis externa, (C) normal findings,
(D) otitis media with effusion, (E) tympanic perforation, (F) middle ear or external ear canal tumors.

ML Model Performance Over Different Numbers of
Training Samples, the Class Imbalance Problem, and
Modifications
When testing with the baseline model (without adjustment of
class imbalance in training), the overall average accuracy was
82.78% in the imbalanced (according to disease prevalence)
test set. However, in the balanced test set, the overall accuracy
was 68.69% (chance level: 16.7%), substantially inferior to the
accuracy of 82.78% for the imbalanced testing data. To mitigate
the class imbalance problem, we retrained a classification model
using oversampling, mixup, and focal loss. We tested every

combination of these strategies under the balanced testing
environment. Applying all 3 strategies in the training phase had
a synergistic effect, achieving an average of 8.41% gain (average
accuracy: 77.14% vs 68.69%) in the balanced test set while
compromising 0.75% in the imbalanced test set. Especially,
oversampling was universally beneficial (Multimedia Appendix
2). The augmented classifier gained more per-class accuracy
for classes with fewer samples, such as attic retractions, than
the baseline model, leading to better overall accuracy in the
balanced test set (n=7200; Figure 2; additional example results
of both test sets with a Resnet101-based classifier available in
Multimedia Appendix 3).
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Figure 2. Per-class recall and overall classification accuracy (bars = 95% CI) for classes according to the number of training samples and augmentation,
trained with 12 different convolutional neural network models and tested on the balanced test set. Acc: overall accuracy; Ar: attic retraction, destruction;
No: normal; Oe: myringitis or acute otitis externa; Om: otitis media with effusion; Tp: tympanic perforation; Tu: middle or external ear canal tumors
or cerumen impaction.

To explore the relationship between the classification bias and
the size of the training dataset in detail, we compared the
classification performance over different numbers of training
samples when tested in a balanced testing environment. The
overall accuracy increased with a higher number of samples.
The adjustment for the class imbalance during the training steps
improved the performance, particularly for classes with fewer
training samples (Figure 2). For classes with a high incidence
rate, there were no significant gains by augmentation as they
already reached a plateau of accuracy, not to mention the
oversampling method synthesizes more images for smaller
classes to match the most common, “normal,” class.
Nevertheless, augmenting images (affine transformations) for
rare classes did not yet reach a saturated accuracy as the number
of total training samples increased.

AI Versus HI in Per-Class Accuracy and Interrater
Variability
The diagnostic accuracy of the 2 test sets was evaluated
separately (Table S2 in Multimedia Appendix 4; additional

metrics including precision, recall, and F1 scores are in
Multimedia Appendix 4). All participants, including prediction
models, assessed the same collection of images in the same
order to rule out bias caused by different questionnaire layouts.
Otolaryngologists (n=6) significantly outperformed
nonotolaryngologists (n=8) in both balanced (mean 71.17%,
SD 3.37% vs mean 45.63%, SD 7.90%; Mann-Whitney U=0;
P<.001) and imbalanced (mean 72.84%, SD 6.41% vs mean
44.08%, SD 15.84%; Mann-Whitney U=0.5; P=.001) test sets.
Our fine-tuned CNN-based ML models (n=12) tended to be
better than otolaryngologists (n=6) in both imbalanced (mean
82.03%, SD 3.06% vs mean 72.84, SD 6.41%; Mann-Whitney
U=10.50; P=.014) and balanced (mean 77.14%, SD 1.84% vs
mean 71.17%, SD 3.37%; Mann-Whitney U=3; P<.001) test
sets and outperformed nonotolaryngologists in both test sets
(Figure 3A).

Figure 3. Mean (A) overall diagnostic accuracy and (B) Fleiss generalized kappa for interrater reliability (error bars = 95% CI); the predictions by the
ResNet152-based deep learning model were assumed to be a human rater. ENT: otolaryngologists; ENT+ML': machine learning model plus
otolaryngologists; ML: baseline machine learning models; ML': augmented machine learning models; Non-ENT: nonotolaryngologists; Non-ENT+ML':
machine learning model plus nonotolaryngologists; NS: not statistically significant. *P<.001 (Mann-Whitney test: ENT vs Non-ENT; Wilcoxon
matched-pairs signed-rank test: ML vs ML').

Compared with nonotolaryngologists, ML models had better
accuracy in all classes. Compared with otolaryngologists, ML
models were better at predicting normal ears, tympanic
perforations, and attic retractions, which were more prevalent

in the training dataset. The diagnosis rate of otitis media with
effusion and myringitis was similar between prediction models
and otolaryngologists. For classifying tumorous conditions,
otolaryngologists were better than prediction models in the
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balanced test set (Table S2 in Multimedia Appendix 4). The
overall accuracy for all physicians was not significantly different
between the balanced and imbalanced test sets, while both
augmented (n=12; median 5.3; P=.001; Wilcoxon matched-pairs
signed-rank test) and baseline (n=12; median 13.3; P<.001;
Wilcoxon matched-pairs signed-rank test) ML models had
significantly higher accuracy in the imbalanced test set (Figure
3A). Of note, augmented ML models had gained significant
accuracy in the balanced test set (n=12; median 8.3; P<.001;
Wilcoxon matched-pairs signed-rank test) without loss of
accuracy in the imbalanced test set (n=12; median 0.8; P=.28;
Wilcoxon matched-pairs signed-rank test) compared with ML
models without augmentation.

Regarding variance in accuracy, ML models had similar
prediction results across different models, resulting in a low SD
(1.76%), which was much lower than that of the otolaryngology
specialists (5.86%) and nonotolaryngologists (14.82%). The
results of the Fleiss generalized kappa as a measure of interrater
reliability are presented in Figure 3B. Between ML models, ĸ
scores ranged between 0.77 and 0.85, indicating a substantial
diagnostic similarity among ML models. The ĸ score was >0.60
between 2 otolaryngology specialists and mostly >0.50 between
all otolaryngology specialists and residents, which corresponds
to moderate agreement between them. However, it was mostly
<0.30 between nonotolaryngologists, which may be interpreted
as fair agreement between these physicians. The predictions by
the ML models were more likely to resemble those of
otolaryngologists than nonotolaryngologists, showing similarity
to otolaryngologists (Figure 3B; ĸ=0.5947, SD 0.05, n=12 vs
ĸ=0.2966, SD 0.13, n=16; P<.001; Mann-Whitney U test).

Using the 4 top-performing models (ResNet152, DPN92,
InceptionV4, and Densenet201), we constructed an ensemble

classifier by adding and taking the maximum arguments
following the softmax activation function in each classifier.
Using this approach, we were able to gain an average of 1.83%
in the balanced dataset and 3.5% in the imbalanced dataset,
reaching 80.33% and 86.67% overall accuracy, respectively
(Table S2 in Multimedia Appendix 4). The ensemble classifier
of the different models outperformed any other CNN-based
classifier alone in overall accuracy and proved to be a stable
model for final prediction. Indeed, ensembling had a positive
but, at the same time, limited effect in enhancing the overall
accuracy because of diagnostic similarity, as indicated by high
ĸ scores between models.

AI Compared With HI in Class Prevalence and Size
of the Training Dataset
In otolaryngologists, accuracies tended to be stable regardless
of sample sizes, whereas ML models showed a bias towards
prevalent classes (Figure 4). Also, the augmentation method
showed significantly improved accuracies in minor classes (attic
retraction: n=12, median 15.0, P<.001; otitis media with
effusion: n=12, median 13.0, P=.005; middle or external ear
canal tumors or cerumen impaction: n=12, median 6.0, P=0.01;
myringitis or acute otitis externa: n=12, median 13.0, P<.001;
Wilcoxon matched-pairs signed rank tests). Otolaryngologists
had a higher variance in the accuracies compared with the
augmented ML models in prevalent classes (normal, tympanic
perforation) and overall accuracy. We additionally analyzed the
count of predicted samples, which corresponds to true-positive
and false-negative predictions, for each class of the balanced
test set. Each classification had 50 occurrences in the set, so
ideally, the count of predicted samples (true positives and false
negatives) should be 50, which is drawn as the dotted line in
Figure 4B.

Figure 4. In the balanced test set, (A) per-class recall and overall accuracy (bars indicate 95% CI) and (B) prediction counts in individual classes (the
dotted line at 50 indicates the sample size of the balanced test set for each class; x axis is on a logarithmic scale). Classes are listed left to right by
descending number of training samples. Each class had 50 samples in the balanced test set (a total of 300 samples for all 6 classes). Nonotolaryngologists
had too high variations and low accuracies and were not plotted. ENT: Y intercept=42.14 (95% CI 39.14-45.24), slope=0.006836 (95% CI
0.004805-0.008939), pseudo R-squared=0.3262; ML’: Y intercept=37.89 (95% CI 35.77-40.07), slope=0.01053 (95% CI 0.008981-0.01211), pseudo
R-squared=0.8665; ML: Y intercept=26.68 (95% CI 24.73-28.69), slope=0.02028 (95% CI 0. 01861-0.02198), pseudo R-squared=0.9167. Acc: overall
accuracy; Ar: attic retraction; ENT: otolaryngologist; FN: false negative; ML: baseline machine learning models; ML': augmented machine learning
models; No: normal; Oe: myringitis or acute otitis externa; Om: otitis media with effusion; Tp: tympanic perforation; TP: true positive; Tu: middle or
external ear canal tumors or cerumen impaction. *P<.01 (Wilcoxon matched-pairs signed rank test).

ML models showed more bias towards the number of training
data, as more prevalent classes tended to have more than 50
counts (above the dotted line; normal class was above the line
and therefore overly diagnosed), while rarer classes such as
myringitis or acute otitis externa had a lower count (below the

dotted line; underdiagnosed). Different classification tendencies
of humans and machines were evaluated with respect to their
dependency on class prevalence. The Poisson regression analysis
for the correlation between each class’s number with the
corresponding number of predictions showed a significantly
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different slope between otolaryngologists, augmented ML
models, and baseline ML models (Figure 4B; slope: 0.021 for
ML, 0.011 for ML’, and 0.007 for otolaryngologists). The
likelihood ratio test with the null hypothesis had one curve for
all data sets, and the alternative hypothesis had a different curve
for each data set. The likelihood ratio between baseline ML
models and the augmented ML models was 76.36 (P<.001),
and the likelihood ratio between the augmented ML models and
humans was 7.958 (P=.019). Differing slopes indicated that the
ML models tended to produce more likely predictions based on
the number of training samples.

Of note, otolaryngologists’ predictions were not well fitted
linearly because of individual differences in prediction (pseudo
R-squared=0.3262). While the augmented ML model had
mitigated the class imbalance problems, it still preferred
prevalent classes, which was not apparent with
otolaryngologists.

Discussion

Principal Findings
The main implications of this study are 3-fold: (1) Work by HI
and AI shows different behaviors (prevalence dependency and
interrater variability); (2) data augmentation reduces the class
imbalance problem but the result is different according to the
sample sizes of each class, requiring a certain amount of data
samples for the rare class to achieve a reliable level; and (3)
considering the high accuracy comparable to otologists and high
variations in diagnostic performance by site clinicians, our ML
model may act as a virtual otoendoscopic image analysis
consultant, as long as clinicians consider that this ML model
considers only images and there are potential biases in the ML
models toward prevalence.

First, we showed that machines work in different ways than
human knowledge, which is exemplarily reflected in the effects
of class imbalance. As expected, ML models showed bias toward
higher prevalent samples in the training set, but lower interrater
(or ML model) variations. In contrast, human experts showed
high interrater variations in their classifications but no
prevalence-dependent biases. For example, the normal class is
diagnosed when all other pathologies are excluded; hence, it is
inherently difficult to diagnose despite its extensive prevalence.
Meanwhile, cerumen impaction and tympanic perforation were
less prevalent in the dataset, but they were classified correctly
more times than the normal class by the human raters because
of the obvious findings. Attic retractions and otitis media with
effusions were subtle in many cases; hence, they were diagnosed
with lower accuracy (Figure 4A). Therefore, for physicians, the
difficulty lies mainly in class-specific abstract rules, which the
data-driven ML model does not detect.

Second, although the class imbalance problem was mitigated
by combining strategies in the training phase (oversampling,
mixup, and focal loss), it had less effect for prevalent diseases
but more for rare diseases (Figure 2). For the data-driven
approach using ML, finding the hyperspace of features that
covers within-class diversity, different from the other classes,
is not trivial. ML attempts to find within-class diversity using

imaging features based on statistics, which demands a large
sample size to capture within-class variability. Indeed, in ML
models, a higher number of samples in training produced better
accuracies and reduced model variability (Figure 2), which is
in line with the results of a previous study [9]. In reality, due
to low incidence, we lacked a sufficient number of data samples
for less prevalent diseases. Data augmentation improves the
overall accuracy and recall of individual classes, especially for
less prevalent classes. However, data augmentation was
performed by manipulating the given dataset, which limited its
diversity within images for rare classes compared with that of
prevalent classes. Therefore, having more actual data for training
is still essential for higher performance, particularly for rare
classes. Often, datasets contain an abundance of normal and
common disease classes and lack uncommon diseases. It is a
general problem in the field of medical imaging, especially
when diseases are rare and obtaining sufficient samples is
difficult [35].

Third, our ML model showed the possibility of acting as a
physician’s assistant in real-world clinics. Inconsistent
performance in humans was apparent, especially in the group
of nonotolaryngologists (ĸ=0.24, 95% CI 0.21-0.26) compared
with ML models (ĸ=0.83, 95% CI 0.81-0.84). Physicians often
overestimated their skills despite the variance in their diagnostic
capabilities, leading to faulty and inconsistent clinical
information delivered to patients. Meanwhile, machines
sometimes produced errors in trivial cases, even if their overall
accuracies were expected to be on par or better than those of
otolaryngologists. When making diagnostic suggestions,
physicians’ decisions should be taken into account to
compensate for faulty ML suggestions, not to mention that the
final responsibility of the decision should be on the care
provider. In a previous study, diagnosis of middle ear disease
by nonspecialists was reportedly only 30% in a study with
primary care trainees [36] and 50% in a study with pediatricians
just after finishing a continuing medical examination course
[37]. Even for otolaryngologists, the accuracy of diagnosing
otitis media using a pneumatic otoscope was 73% [37], which
implies that accurate diagnosis using otoscopy is challenging
[13,14,17]. Computer-aided diagnosis may be beneficial for
both experts and nonotolaryngologists, for example, with our
proposed ML model.

It is worth mentioning that our ML model acted as an
otolaryngologist since the interrater variability (kappa) score
between the ML model and otolaryngologist was similar to the
kappa score between otolaryngologists (Figure 3B, ENT and
ENT+ML’). Therefore, having our ML models interpret
otoendoscopic images may be similar to having an on-demand
otolaryngology consultant. Considering the shortage of
specialists, nonotolaryngologists may combine our image
interpretation results and clinical manifestations, which our ML
does not consider, to deliver an accurate diagnosis and care for
their patients.

Limitations
We point out the limitations and future directions of our study.
Due to privacy issues, we could not perform our model outside
the institution, and external validation could not be performed.
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However, our otoendoscopic images were acquired from a
diverse set of types of imaging equipment, which may mimic
external validation. Also, as pointed out in our Methods section,
one image may have multiple pathologies but was labeled
according to the labeling priority. Multilabel classification
should be conducted in the future, along with multimodal models
that consider a patient’s clinical information. Last but not least,
although our ML models showed good accuracy in analyzing
images, the current model does not consider additional clinical
information, which most clinicians consider when making a
diagnosis. Therefore, our ML model’s higher accuracy in image
translation may not necessarily correlate to better diagnostic
expertise to physicians in the real world.

Comparison With Prior Work
In our previous study [9], we also classified ear disease into 6
entities but tested our model in a 5-fold cross-validation manner.
Therefore, overall accuracy was less affected by classes of lower
prevalence, showing inferior performance when applying the
model in real-world clinics. A more recent study by Byun et al
[38] assessed the effects of diagnostic assistant systems when
used by otolaryngology residents. However, the diversity of
disease was limited (only 4 diseases) and did not cover all ear
diseases, especially external ear diseases and tumors. Also, the
test set’s size was small and did not test under various
circumstances, that is balanced and imbalanced test sets. Our
work addressed these effects and tests in both settings with a
larger test set and more importantly, nonotolaryngologists, who
may benefit most from using diagnostic assistance. We also
measured the interrater reliability using kappa statistics, proving

our proposed ML model similar to an otolaryngologist rather
than a general practitioner.

Conclusions
Among the many potential differences, we focused on the
data-driven classification bias of AI due to class imbalances of
data in real-world clinics. ML is trained to find statistically
optimal features from a large amount of training data in a way
that improves the overall classification accuracy. Different
numbers of samples in different classes due to imbalanced
incidences inherent in the human population induce difficulty
in building a reliable ML model. Based on the results of class
imbalance, sample size, and accuracy (Figure 2), we still prefer
a large but imbalanced dataset to a small but balanced dataset
for a robust ML model. Therefore, our future system should
analyze the strengths and weaknesses of the human experts and
weigh the ML results to make suggestions depending on the
situation: It provides strong suggestions when ML is superior
and weak suggestions when ML is vulnerable. Along with
suggestions, the system may display relative confidence in its
diagnostic ability. Especially in atypical and rare diseases, this
approach may provide more robust diagnoses, making the
prediction system similar to consulting a fellow expert trained
in a different institution for a second opinion.

Considering the practical situation in the clinical field that is
short of otolaryngology specialists, clinicians may utilize our
diagnostic assistance systems to deliver reliable patient care,
while keeping in mind that the ML model does not consider
additional clinical information and could be biased toward
prevalent diseases.
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