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Abstract

Background: The COVID-19 pandemic has placed an unprecedented burden on health care systems.

Objective: We aimed to effectively triage COVID-19 patients within situations of limited data availability and explore optimal
thresholds to minimize mortality rates while maintaining health care system capacity.

Methods: A nationwide sample of 5601 patients confirmed with COVID-19 until April 2020 was retrospectively reviewed.
Extreme gradient boosting (XGBoost) and logistic regression analysis were used to develop prediction models for the maximum
clinical severity during hospitalization, classified according to the World Health Organization Ordinal Scale for Clinical
Improvement (OSCI). The recursive feature elimination technique was used to evaluate the maintenance of model performance
when clinical and laboratory variables were eliminated. Using populations based on hypothetical patient influx scenarios,
discrete-event simulation was performed to find an optimal threshold within limited resource environments that minimizes
mortality rates.

Results: The cross-validated area under the receiver operating characteristic curve (AUROC) of the baseline XGBoost model
that utilized all 37 variables was 0.965 for OSCI ≥6. Compared to the baseline model’s performance, the AUROC of the
feature-eliminated model that utilized 17 variables was maintained at 0.963 with statistical insignificance. Optimal thresholds
were found to minimize mortality rates in a hypothetical patient influx scenario. The benefit of utilizing an optimal triage threshold
was clear, reducing mortality up to 18.1%, compared with the conventional Youden index.

Conclusions: Our adaptive triage model and its threshold optimization capability revealed that COVID-19 management can be
achieved via the cooperation of both the medical and health care management sectors for maximum treatment efficacy. The model
is available online for clinical implementation.

(JMIR Med Inform 2021;9(11):e32726) doi: 10.2196/32726
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Introduction

The high incidences of infection, critical illness, and mortality
due to COVID-19 have placed unprecedented burdens on
international health care systems. In response, the World Health
Organization (WHO) guidelines have recommended that all
countries prepare for infection surges in their health care
facilities and implement appropriate triage protocols [1].
Unfortunately, these guidelines fail to provide a one-size-fits-all
approach that works for individual regions while accounting
for unique outbreak surges.

Numerous prognostic models have been developed to ensure
effective triage for COVID-19 patients [2-7]. While these
models exhibit modest predictive accuracy, their generalizability
has been questioned due to their confinement to single clinical
outcome measures and reductions in their discrimination
performance when using insufficient data. Most importantly,
the classification thresholds of these prediction models, which
are crucial for ensuring effective resource utilization by health
care systems, have been neglected, thereby limiting their
practicality. To overcome these models’ shortcomings, combing
multi-institutional data with advanced prediction models, such
as those using machine learning and simulation modeling, is
needed.

COVID-19 is associated with significant disruptions to most
health care infrastructures. Therefore, an adjustable risk
stratification model that considers the resource availability of
various regions, as well as one that identifies patients who will
likely require hospitalization and intensive care, will help to
reduce these systems’ burdens. In this study, we propose an
adaptive triage model that takes into account deficits in
established health care resources due to the COVID-19
pandemic. Our study has several main contributions. The first
contribution is a powerful and interpretable prediction model
using extreme gradient boosting (XGBoost) and Shapley
additive explanations (SHAP) that provides accurate prognoses
to facilitate preemptive treatments, thereby ensuring
improvements in patient survival outcomes. The second
contribution is the ability to apply the model with readily
available assessment parameters using the recursive feature
elimination (RFE) technique, thereby maintaining its reliability
in data-limited environments [8,9]. The third contribution is the
consideration of resource availability at either the facility or
national level relative to varying patient influx volumes by
employing the discrete-event simulation (DES) technique.

Our study objectives were 3-fold. First, we sought to develop
a baseline prediction model with an explanatory feature for
triaging COVID-19 patients. Second, based on this model, we
aimed to utilize the RFE technique to develop feature-eliminated
models that would help ensure efficient resource utilization
under limited data availability. Finally, we set out to develop
an adaptive triage model using the DES technique to assist in
efficient resource utilization under limited health care resources.

Methods

Ethics Statement
This study was approved by an institutional ethics committee
(2020-0883-001) and the Korea Disease Control and Prevention
Agency (KDCA) epidemiological survey and analysis committee
(20201120_4a). All study procedures complied with the 1946
Declaration of Helsinki and its 2008 update.

Patient Cohort
We retrospectively retrieved the demographic, clinical,
laboratory, and disease outcome records of 5628 patients who
were confirmed with SARS‐CoV‐2 by real-time reverse
transcription-polymerase chain reaction using
nasopharyngeal/oropharyngeal swab or sputum specimens until
April 2020. The data were collected and comprehensively
managed by the KDCA. Among 10,774 patients consecutively
diagnosed with COVID-19 within this time frame, data on
52.2% (5628/10,774) of the patient population were publicized
for research purposes after excluding patients with any missing
data. The database did not account for the location of diagnosis
within Korea. The database included patients who had been
treated and released from quarantine or hospitalization, as well
as those who died from COVID-19 sequelae. The criteria for
patient release included obtaining 2 consecutive negative results
at least 24 hours apart and an asymptomatic status. Among the
5628 patients, 27 patients with missing clinical severity data
were excluded, resulting in a final development cohort of 5601
patients.

Covariates and Outcome Definitions
Baseline data collected at each patient’s diagnosis were used
for model development. Demographic data included patient
age, sex, systolic and diastolic blood pressure, heart rate, body
temperature, and BMI. Medical comorbidities included
hypertension, diabetes mellitus, heart failure, cardiovascular
disease, asthma, chronic kidney disease, chronic obstructive
pulmonary disease, chronic liver disease, autoimmune disease,
dementia, malignancy, and pregnancy. Clinical findings included
a history of fever (temperature ≥37.5℃), cough, sputum
production, myalgia, fatigue, sore throat, rhinorrhea, dyspnea,
vomiting, nausea, diarrhea, headache, and altered consciousness.
Laboratory data included hemoglobin, hematocrit, white blood
cell count, %leukocyte, and platelet count. Each patient’s
maximum clinical severity during quarantine or hospitalization
was classified according to the WHO Ordinal Scale for Clinical
Improvement (OSCI) [10].

Statistical Analysis

Model Development
Multivariate logistic regression (LR) and XGBoost were used
to select the best performing prediction model using all available
clinical and laboratory data [11]. The models were developed
and cross-validated using data from 5037 (89.9%) patients and
were then revalidated using a hold-out cohort of 564 (10.1%)
patients. Performance metrics were calculated using 10-fold
cross-validation to avoid any overfitting. Model development
was performed using the caret package in R Statistical Package

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e32726 | p. 2https://medinform.jmir.org/2021/11/e32726
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


(version 4.0.5; R Project for Statistical Computing). The best
performing model derived from XGBoost was defined as Model
1 and was used as a baseline model for RFE.

Variable Elimination
The RFE technique was used to evaluate the extent of the
maintenance of model performance when various predictors
were eliminated. RFE was performed for the following 2 models
that incorporated all clinical data with and without laboratory
data: Model 1 (clinical data with laboratory data) and Model 2
(clinical data without laboratory data). SHAP was used to rank
each variable based on its significance to the models for its
desirable properties, including local accuracy, missingness, and
consistency [12]. At each RFE iteration, the lowest-ranked
feature was eliminated, the model was refitted, and its
performance was assessed using 10-fold cross-validation. The
feature-eliminated models (Model 3: limited clinical data with
laboratory data and Model 4: limited clinical data without
laboratory data) were then selected at a point wherein the
number of features was minimized while differences in area
under the receiver operating characteristic curve (AUROC)
values remained statistically insignificant. The 4 classification
models were revalidated with the hold-out cohort to avoid any
overfitting. Analysis was performed using caret and the
SHAPforXGBOOST package in R.

Model Interpretation and Comparison
To interpret Model 1, we used SHAP as it provides visible
post-hoc interpretability to black-box machine learning models
[12]. Patient-specific plots were created by aggregating the
SHAP score of each variable for a specific prediction.

The hyperparameters of the XGBoost algorithm were optimized
to maximize its AUROC values using a simple grid search with
10-fold cross-validation. Accuracy, AUROC, sensitivity,
positive predictive value (PPV), and negative predictive value
(NPV) were calculated at 90% specificity using the pROC
package in R. CIs of the performance measures were then
calculated using a stratified bootstrap method with 2000
replicates.

Threshold Optimization

DES and Patient Influx Generation

The DES technique replicates complex behaviors and
interactions among individuals, populations, and their
environments. Therefore, it has been widely used to form more
effective clinical decisions to minimize mortality rates under
medical resource constraints [13]. Thus, we applied DES to
identify the optimal threshold within limited medical resource
environments that minimizes mortality rates, as calculated by
n (total deaths) / n (total patients), using the simmer R package.

First, we ran a simulation using different COVID-19 historical
epidemic patient influx scenarios (H1, H2, H3, and H4) that
were observed between February 2020 and February 2021
(Multimedia Appendix 1) [14]. Second, hypothetical patient
influx scenarios were created using the
susceptible-infectious-recovered (SIR) model for disease spread
[15]. The total population calculated was fixed at 60,000,
considering that the largest historical influx observed in South

Korea was H4 (58,654 cumulative patients). We defined initial
conditions at time t=0, S(0), I(0), and R(0), and I(0) and R(0)
were fixed at 6 and 0, respectively. The recovery rate gamma
was set at 0.05 because the average COVID-19 recovery time
was 20.1 days [16]. The transmission rate beta ranged between
0.75 and 5 when generating influxes with different R0 (basic
reproduction rate) levels. The number of newly confirmed
patients per day was obtained from the SIR modeling data
(Multimedia Appendix 2).

Probability Generation

Out-of-fold prediction results of the 10-fold cross-validation
were aggregated to generate an empirical probability distribution
of the disease severity probability. We used the results of Model
3 because of its high performance and its potential use in
instances of limited diagnostic tools. Inverse transformation
sampling was performed on the empirical probability distribution
function, which was approximated using Gaussian kernel density
estimation and linear interpolation [17]. The process was
performed separately for severe and nonsevere patients, with
sampled probabilities being randomly matched with generated
patient influx rates while maintaining the prevalence of severe
patients. The prediction probability distribution of the
out-of-fold samples and the generated prediction probability
distribution are presented in Multimedia Appendix 3.

Simulation Scenarios

Patients with a severe disease probability above the threshold
are directed to the intensive care unit (ICU), with admission to
this unit then being dependent on its current capacity. Rejected
patients are directed to the general ward along with those who
have a severe disease probability below the threshold. The
probability of severe disease patients dying while in the ICU
was 0.507, while it was 0.990 for those outside of the ICU [18].
We assumed that nonsevere patients would survive regardless
of ICU admission. Patient deaths were categorized as follows:
resource-independent deaths, wherein severe patients died
despite ICU care (type I); resource-dependent deaths, wherein
severe patients died due to ICU unavailability (type II); and
threshold-dependent deaths, wherein severe patients died after
being incorrectly classified as “nonsevere” and subsequently
directed to the general ward (type III).

The maximum capacity of the ICU was established as 504 beds
based on the number of isolation beds under negative pressure
[14]. To estimate the distribution of length of stay, we used a
previously suggested gamma distribution with a shape parameter
of 1.5488 and a rate parameter of 0.1331 for those who died,
and with a shape parameter of 0.8904 and a rate parameter of
0.0477 for those who survived to approximate the median and
IQR [18,19]. Simulations were repeated 20 times for each influx
scenario to ensure robustness.

Results

Patient Characteristics
Descriptive characteristics of the training and hold-out cohorts
are provided in Tables 1 and 2. A total of 5330 (95.2%) patients
exhibited nonsevere disease symptoms with an OSCI value <6,
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while 271 (4.8%) exhibited severe disease symptoms with an OSCI value ≥6.

Table 1. Demographic characteristics.

P valueaHold-out cohort (N=564)Training cohort (N=5037)Total cohort (N=5601)Variable

Missing data,
%

Value, n (%) or
mean (SD)

Missing data,
%

Value, n (%) or
mean (SD)

Missing data,
%

Value, n (%) or
mean (SD)

.410.0%0.0%0.0%Age (years)

5 (0.9%)61 (1.2%)66 (1.2%)0-9

20 (3.6%)185 (3.7%)205 (3.7%)10-19

122 (21.6%)988 (19.6%)1110 (19.8%)20-29

51 (9.0%)513 (10.2%)564 (10.1%)30-39

87 (15.4%)652 (12.9%)739 (13.2%)40-49

102 (18.1%)1039 (20.6%)1141 (20.4%)50-59

98 (17.4%)809 (16.1%)907 (16.2%)60-69

50 (8.9%)495 (9.8%)545 (9.7%)70-79

29 (5.1%)295 (5.9%)324 (5.8%)≥80

.730.0%237 (42.0%)0.0%2073 (41.2%)0.0%2310 (41.2%)Sex (male)

.6520.9%21.5%21.4%BMI (kg/m2)

23 (4.1%)236 (4.7%)259 (4.6%)<18.5

188 (33.3%)1666 (33.1%)1854 (33.1%)18.5-22.9

106 (18.8%)929 (18.4%)1035 (18.5%)23.0-24.9

107 (19.0%)938 (18.6%)1045 (18.7%)25.0-29.9

22 (3.9%)185 (3.7%)207 (3.7%)≥30

Medical history

.920.0%68 (12.1%)0.1%620 (12.3%)0.1%688 (12.3%)Diabetes mellitus

.320.0%111 (19.7%)0.1%1087 (21.6%)0.1%1198 (21.4%)Hypertension

.810.0%7 (1.2%)0.1%52 (1.0%)0.1%59 (1.1%)Heart failure

.260.4%23 (4.1%)0.3%156 (3.1%)0.3%179 (3.2%)Cardiovascular
disease

.480.0%10 (1.8%)0.1%118 (2.3%)0.1%128 (2.3%)Asthma

.430.0%2 (0.4%)0.1%38 (0.8%)0.1%40 (0.7%)Chronic obstruc-
tive pulmonary
disease

.670.0%7 (1.2%)0.1%48 (1.0%)0.1%55 (1.0%)Chronic kidney
disease

.390.0%11 (2.0%)0.1%134 (2.7%)0.1%145 (2.6%)Malignancy

>.996.7%8 (1.5%)5.7%75 (1.6%)5.8%83 (1.6%)Chronic liver dis-
ease

.376.9%6 (1.1%)5.8%32 (0.7%)5.9%38 (0.7%)Autoimmune dis-
ease

.816.7%21 (3.7%)5.8%203 (4.3%)5.9%224 (4.2%)Dementia

aDifferences between groups were analyzed using the Welch t test for continuous variables, the Mann-Whitney U test for ordinal variables, the chi-square
test for categorical variables with frequencies above 5, and the Fisher exact test for categorical variables with frequencies below 5. Two-sided P values
are reported.
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Table 2. Clinical characteristics.

P valueaHold-out cohort (N=564)Training cohort (N=5037)Total cohort (N=5601)Variable

Missing data,
%

Value, n (%) or
mean (SD)

Missing data,
%

Value, n (%) or
mean (SD)

Missing data,
%

Value, n (%) or
mean (SD)

.602.7%2.5%2.5%Systolic blood pressure (mmHg)

129 (22.9%)1177 (23.4%)1306 (23.3%)<120

126 (22.3%)1012 (20.1%)1138 (20.3%)120-129

107 (19.0%)977 (19.4%)1084 (19.4%)130-139

137 (24.3%)1281 (25.4%)1418 (25.3%)140-159

50 (8.9%)463 (9.2%)513 (9.2%)≥160

.042.7%2.5%2.5%Diastolic blood pressure (mmHg)

224 (39.7%)1878 (37.3%)2102 (37.5%)<80

196 (34.8%)1601 (31.8%)1797 (32.1%)80-89

85 (15.1%)971 (19.3%)1056 (18.9%)90-99

44 (7.8%)460 (9.1%)504 (9.0%)≥100

.472.5%86.3 (SD 15.4)2.3%85.8 (SD 15.0)2.3%85.8 (SD 15.1)Heart rate (bpm)

.860.7%37.0 (SD 0.6)0.8%36.9 (SD 0.6)0.7%36.9 (SD 0.6)Body temperature (°C)

Symptoms

.800.0%134 (23.8%)0.1%1168 (23.2%)0.1%1302 (23.3%)Fever

.580.0%228 (40.4%)0.1%2103 (41.8%)0.1%2331 (41.6%)Cough

.290.0%151 (26.8%)0.1%1460 (29.0%)0.1%1611 (28.8%)Sputum

.570.0%93 (16.5%)0.1%779 (15.5%)0.1%872 (15.6%)Sore throat

.510.0%57 (10.1%)0.1%560 (11.1%)0.1%617 (11.0%)Rhinorrhea

.410.0%100 (17.7%)0.1%820 (16.3%)0.1%920 (16.4%)Myalgia

.650.0%26 (4.6%)0.1%207 (4.1%)0.1%233 (4.2%)Fatigue

.190.0%57 (10.1%)0.1%608 (12.1%)0.1%665 (11.9%)Shortness of breath

.450.0%90 (16.0%)0.1%873 (17.3%)0.1%963 (17.2%)Headache

.780.0%4 (0.7%)0.1%31 (0.6%)0.1%35 (0.6%)Altered conscious-
ness

.050.0%34 (6.0%)0.1%210 (4.2%)0.1%244 (4.4%)Vomiting

.320.0%59 (10.5%)0.1%457 (9.1%)0.1%516 (9.2%)Diarrhea

Laboratory values

.4131.6%13.2 (SD 1.8)26.7%13.3 (SD 1.8)27.2%13.3 (SD 1.8)Hemoglobin (g/dL)

.5631.7%39.1 (SD 5.2)26.7%39.3 (SD 4.9)27.2%39.2 (SD 5.0)Hematocrit (%)

.0932.1%28.2 (SD 11.0)27.1%29.3 (SD 11.7)27.6%29.2 (SD 11.7)Lymphocyte pro-
portion (%)

.8631.4%235,943 (SD
86,395)

26.7%236,776 (SD
82,534)

27.1%236,697 (SD
82,897)

Platelet count (/μL)

.7531.4%6167 (SD 2666)26.7%6121 (SD 2841)27.1%6126 (SD 2824)White blood cell
count (/μL)

.800.0%29 (5.1%)0.0%242 (4.8%)0.0%271 (4.8%)WHO OSCIb ≥6

>.990.5%2 (0.4%)0.3%17 (0.3%)0.4%19 (0.3%)Pregnancy

.400.5%0.03 (SD 0.5)0.4%0.06 (SD 1.1)0.4%0.05 (SD 1.1)Pregnancy weeks

aDifferences between groups were analyzed using the Welch t test for continuous variables, the Mann-Whitney U test for ordinal variables, the chi-square
test for categorical variables with frequencies above 5, and the Fisher exact test for categorical variables with frequencies below 5. Two-sided P values
are reported.
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bWHO OSCI: World Health Organization Ordinal Scale for Clinical Improvement.

Model Performance
The cross-validated AUROC values of the XGBoost and LR
models were 0.965 (95% CI 0.958-0.972) and 0.938 (95% CI
0.911-0.959), respectively (P=.04). We chose the XGBoost
model as our baseline Model 1 since it outperformed the LR
model across all performance measures. Regarding the AUROC,
we also examined XGBoost’s outperformance across 4 different
severity endpoints (Multimedia Appendix 4). An online clinical
decision-support system based on Model 3 is provided for
clinical implementation [20].

Model Interpretability
According to SHAP, age and lymphocyte count were the most
important risk factors for predicting disease severity of OSCI
≥6 (Figure 1). Patient age, lymphocyte proportion, platelet count,
BMI, hematocrit, and heart rate all exhibited nonlinear
influences in predicting disease severity (Figure 2). In addition
to the overall impact of each feature on the model’s output,
SHAP provides patient-specific influences of each variable on
the predicted disease severity (Multimedia Appendix 5).

Figure 1. Relationships between each feature and Shapley additive explanations (SHAP) values. Summary plot in which each dot point represents the
SHAP value of a patient in the data set used to construct the developed model. The dots are plotted for every feature used to fit the baseline model,
excluding 2 features (pregnancy and number of weeks pregnant) that were not selected for the developed model. The SHAP values are displayed in
rank order, based on their feature importance, along the y-axis as calculated by averaging the absolute SHAP values of each dot. A point’s location on
the x-axis shows its impact on the predictive output of the model. Purple indicates a relatively high feature value, while yellow represents a relatively
low feature value. Grey dots represent missing values. COPD: chronic obstructive pulmonary disease; WBC: white blood cell.
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Figure 2. Relationships between each feature and Shapley additive explanations (SHAP) values. Dependence plots for each of the top 9 important
features, including patient age, lymphocyte proportion, platelet count, BMI, hematocrit, shortness of breath, sex, body temperature, and heart rate. Each
scatter plot shows the impact of each feature on the predictions made by the study model. The x-axis represents the variables’ values, and the y-axis
represents their SHAP values. The inflection points indicate the nonlinear impact of a feature on the model’s prediction.

Predictive Performance Under Limited Data
Availability
An AUROC of 0.965 (95% CI 0.958-0.972) was obtained with
Model 1, which included all 37 variables. Notably, a reduction
in its performance was found to be insignificant when 20
variables were eliminated, resulting in Model 3 (Multimedia
Appendix 6 and Multimedia Appendix 7). Model 1 achieved
both a sensitivity and specificity greater than 90%. Model 3
achieved a sensitivity of 88% and a PPV of 31% at the
specificity level of 90%. Model 3 still outperformed the LR
model regarding all performance measures.

An AUROC of 0.946 (95% CI 0.936-0.956) was obtained with
Model 2, which included 32 variables. The reduction in
performance was found to be insignificant when 21 variables
were eliminated, resulting in Model 4 (Multimedia Appendix
7 and Multimedia Appendix 8). Models 2 and 4 achieved
sensitivities of 84% and 81%, respectively, at a fixed specificity
level of 90% (Table 3). Significant differences in AUROCs
were observed when laboratory variables were excluded in these
models, which implied that the laboratory variables had a solid
discriminative power (all P≤.01).
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Table 3. Comparison of model performance.

NPVc, value
(95% CI)

PPVb, value
(95% CI)

Accuracy, value
(95% CI)

Sensitivity, value
(95% CI)

Specificity, value
(95% CI)

AUROCa, value
(95% CI)

Number of variablesModel

0.995 (0.993-
0.997)

0.314 (0.295-
0.335)

0.900 (0.892-
0.908)

0.905 (0.868-
0.942)

0.900 (0.892-
0.909)

0.965 (0.958-
0.972)

371

0.991 (0.988-
0.994)

0.297 (0.276-
0.319)

0.897 (0.888-
0.905)

0.839 (0.793-
0.884)

0.900 (0.891-
0.908)

0.946 (0.936-
0.956)

322

0.994 (0.991-
0.996)

0.309 (0.289-
0.329)

0.899 (0.891-
0.907)

0.884 (0.839-
0.921)

0.900 (0.892-
0.908)

0.963 (0.955-
0.971)

173

0.989 (0.987-
0.992)

0.291 (0.270-
0.313)

0.896 (0.888-
0.904)

0.810 (0.756-
0.860)

0.901 (0.892-
0.909)

0.942 (0.931-
0.953)

114

aAUROC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.

The AUROCs of Models 1 and 2 for the held-out cohorts were
0.958 (95% CI 0.924-0.991) and 0.943 (95% CI 0.901-0.985),
respectively, which were both indifferent from the
cross-validation results (P=.66 and P=.89, respectively). The
AUROCs of Models 3 and 4 for the held-out cohorts were 0.949
(95% CI 0.906-0.990) and 0.941 (95% CI 0.903-0.978),
respectively, and were also indifferent from the cross-validation
results (P=.54 and P=.95, respectively). The indifferences
between the cross-validation and hold-out results revealed that
all models had a degree of generalizability to unseen data
(Multimedia Appendix 9). Detailed results and the selected
variables used at each step of the RFE are presented in
Multimedia Appendix 7 and Multimedia Appendix 10.

Optimal Triage Under Limited Resource Availability
The overall DES workflow is illustrated in Figure 3. Mortality
rates were minimized at thresholds of 0.1, 0.01, 0.04, and 0.24
for H1, H2, H3, and H4, respectively (Multimedia Appendix
11). The mortality rates showed a convex shape in accordance
with these thresholds (Multimedia Appendix 12).

We can infer that as the death rate increases, the threshold
should be raised when a large increase is accompanied. While
the association between mortality rates and triage thresholds
across various patient influx scenarios is inferable through an
analysis of historical influx data, it is impractical to draw general
conclusions from this information. For example, looking at
Multimedia Appendix 11, an upward trend in the optimal

threshold and optimized mortality rate occurred when comparing
H2, H3, and H4, wherein there was a clear increase in the patient
influx volume. However, it is difficult to infer this information
when comparing H1 with H3 or H4 because of differences in
their multidimensional characteristics, including duration,
maximum daily patients, and cumulative patients. To further
support our results, we performed additional simulations using
patient flow data that were generated using the SIR model with
varying R0s.

The DES using hypothetical patient influxes revealed that the
optimal threshold ranged from 0.02 to 0.66, while the respective
minimized mortality rates ranged from 0.017 (1.7%) to 0.042
(4.2%) (Multimedia Appendix 13). The optimal threshold values
and minimized mortality rates for each R0 showed that a larger
R0 value tends to result in increases in both of these variables.
The optimal threshold is increased along with the R0 values to
increase precision for severe patients while fully utilizing the
ICU. The optimized mortality rates were increased due to an
increased proportion of deaths outside the ICU resulting from
a larger volume of patient influx. The benefits of utilizing an
optimal triage threshold were clear when compared with the
conventional Youden Index (J-index) as a benchmark value,
which was 0.013. Decreased mortality rates ([J-index mortality
rate – optimized mortality rate] / J-index mortality rate) were
notably large in a magnitude ranging from 6.1% to 18.1%
(Figure 4). Detailed data are provided in Table 4.
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Figure 3. Simulation workflow. Diagram showing how medical resources can be allocated among COVID-19 patients according to the machine
learning–based triage system. Patients with a prediction probability exceeding a certain threshold are first triaged to an intensive care unit (ICU) that is
currently under its total capacity. Conversely, patients are directed to a general ward if the ICU’s capacity is full or if their severity prediction probability
is lower than the threshold. Type I deaths represent those occurring in the ICU. Type II and III deaths represent those of patients who have been directed
to the general ward due to ICU unavailability and because they were found to have a disease severity probability lower than the threshold, respectively.
We used simulations to obtain the optimal threshold wherein the mortality rate (n [total deaths] / n [total patients] = n [type I death + type II death +
type III death] / n [total patients]) is minimized.

Figure 4. Optimized results of the patient triage simulations for hypothetical influx. Decreased mortality rate = (J-index mortality rate − optimized
mortality rate) / J-index mortality rate.
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Table 4. Optimized threshold and its benefits on mortality outcomes according to patient influx settings.

Decreased mortality rateaOptimized mortality rateOptimal thresholdInflux

0.2980.0220.10Hb1

0.0470.0150.01H2

0.1460.0190.04H3

0.2090.0310.24H4

0.0610.0170.02R0c=1.5

0.1790.0250.16R0=2

0.1810.0320.39R0=4

0.0680.0410.43R0=6

0.0710.0420.62R0=8

0.0690.0420.66R0=10

aDecreased mortality rate: (J-index mortality rate – optimized mortality rate) / J-index mortality rate.
bH: historical epidemic patient influx scenario.
cR0: basic reproduction rate.

We observed a convex relationship for mortality rates in
accordance with the thresholds in Figure 5. The mortality rate
was minimized at a point where type I death, which had the
lowest Pdeath (50.7%), was maximized in proportion to total
death. For example, when R0 was 1.5, the proportion of type I
deaths was maximized at the optimal threshold, accounting for
66.4% of all deaths. However, a threshold that is too low leads

to inadequate capacity exhaustion with misclassified nonsevere
patients. Consequently, the resulting limited capacity for actual
severe patients then decreases the proportion of type I deaths
and increases those of type II deaths. Conversely, a threshold
that is too high would result in unnecessary rejection for severe
patients, which then decreases the proportion of type I deaths
and increases those of type III deaths.

Figure 5. Mortality rates in hypothetical patient influxes are decomposed by death subtype at each threshold. The x-axis represents the threshold, and
the y-axis represents the stacked proportion of each death subtype to the total number of patients, calculated as n (death subtype) / n (total patients) at
each threshold. R0: basic reproduction rate.
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In situations of excessively high R0 values and increased ICU
demand, increasing the triage threshold to reject more patients
will still deplete the ICU capacity. Therefore, adjusting the
threshold will mostly result in trade-offs between the numbers
of threshold- and capacity-dependent rejections, limiting the
influence of threshold adjustment on minimizing patient
mortality. In situations of sufficiently low R0 values, the effect
of threshold optimization is reduced along with its necessity.
Nonetheless, the large reduction in mortality rates among the
remaining influxes highlights the substantial benefits of
optimizing the patient triage threshold under resource
constraints.

Code Availability
The code used to develop and evaluate this study’s models is
available online [21].

Discussion

Principal Findings
A distinctive feature of our Model 1 is its high discriminative
power with an AUROC that exceeded 0.97 in both
cross-validation and hold-out settings. Previous prediction
models for determining the clinical deterioration of COVID-19
patients have reported predictive accuracies ranging from 0.77
to 0.91 [2-5]. Additionally, these models require specific
diagnostic data, including laboratory data, peripheral oxygen
saturation, or radiographic findings, to maintain their predictive
accuracies. Moreover, to what extent the performance abilities
of these models are maintained during the partial absence of
data has not been studied. Given this unmet clinical need, we
developed Model 1. In addition, we confirmed that our
feature-eliminated models maintained an adequate discriminative
power even in the partial absence of data. The advantages of
our feature-eliminated models include not only their increased
generalizability to unseen data, but also their applicability within
scenarios wherein there is limited medical data. We have
uploaded Model 3 online to be implemented in clinical practice.
Given the acute exacerbation of pneumonia in COVID-19
patients, our model can also be used to re-evaluate hospitalized
patients in the short term, so that individuals whose clinical
manifestations are likely to worsen can be identified as early as
possible [22].

A noteworthy feature of our model is its ability to discriminate
between patient-specific factors contributing to disease
exacerbation and their individual contributions using SHAP
values. Current COVID-19 treatment guidelines provide
recommendations based on the average-risk patient under limited
available insights into their disease stage [10]. These
recommendations provide a one-size-fits-all approach to all
patients, which is problematic for those with more complex or
atypical disease presentations. Our model obviates the need for
arbitrary patient risk groupings and is therefore useful in
maximizing survival odds based on individual risk stratification.
Furthermore, our model can be integrated into electronic medical
record systems, which utilize coding algorithms, as a notification
system that helps in the early identification of disease
exacerbation risk factors.

The validity of our model is supported by the high consistency
between the results of its interpretation using SHAP and
previously reported prognosticators of COVID-19 severity
[23-28]. We noted that old age, followed by lymphopenia and
thrombocytopenia, exhibited the highest Shapley values for
disease exacerbation. We presume that age interacts with
relevant features in older adults, including poor functional
performance and increased frailty, which are associated with
adverse outcomes and increased mortality among patients with
respiratory syndromes [29]. Our findings also support literature
indicating that lymphopenia plays an important role in
COVID-19 exacerbation [25-28]. Lymphopenia is characterized
by the lowering of lymphocytes due to injured alveolar epithelial
cells and is commonly observed in COVID-19 patients [30].
Consistent with previous studies, thrombocytopenia was also
found to be associated with adverse COVID-19 outcomes
[26,31]. It has been suggested that a reduction or morphological
alternation in the pulmonary capillary bed exerts pathological
platelet defragmentation because the lungs are a platelet release
site with mature megakaryocytes [32]. Our prediction model
supports the notion that the early identification of COVID-19
infection, before a hematological crisis occurs, is necessary for
ensuring a better prognosis.

There is no existing study that has examined COVID-19 severity
prediction models in an attempt to provide an explicit solution
for the delivery of optimal triage using threshold modification
that accounts for limited resource availability. We employed
DES in our Model 3 to examine discrimination thresholds that
are usable in an adaptive manner across various patient influx
scenarios and the related health care resource availability. Our
simulations revealed that applying the optimal thresholds of
both historical and generated patient influxes will minimize the
mortality rate of each patient influx scenario. Our hypothesis
is supported by the significant differences found in mortality
rates between the J-index and our optimized thresholds when
applied to the expected patient influx volumes. This observation
supports the potential usability of our model to substantially
reduce COVID-19 mortality rates through the appropriate and
effective adjustment of triage thresholds.

Limitations
One limitation of our study is its incorporation of a single
national cohort of Asian ethnicity with a relatively small sample
size, which impacts the generalizability of our findings. External
validation using a more multiethnic population is thus needed
to determine if a similar discrimination performance occurs
among other ethnic groups. However, to ensure our model’s
robustness, we implemented 10-fold cross-validation with
additional confirmation using a hold-out cohort. Second, the
triage threshold was evaluated using a simulation. Simulations
do not yield concrete answers and are unable to assess all kinds
of potential situations [33]. Third, the applicability of utilizing
SHAP values to discriminate patient-specific contributing factors
for disease exacerbation has not been prospectively validated.
Whether the early identification of disease exacerbation risk
factors and their individual contributions can result in a better
prognosis would need to be validated after the implementation
of our online system into clinical practice. Lastly, clinical data,
including self-reported measurements, may not be objectively
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interpreted, and models utilizing these parameters should be
interpreted cautiously.

Conclusions
We developed and validated a robust prediction model, with an
explanatory feature, that offers an effective means of enhancing
the efficiency of COVID-19 triage. We further proposed an
adaptive triage model that utilizes both patient influx volume

and the capacity of a health care system to minimize mortality
rates within the scope of resource limits. Our model has the
potential for effective application because it is available online
for patients and providers in both inpatient and outpatient
settings. Overall, our results imply that COVID-19 treatment
plans need to integrate both medical and health care management
expertise to guarantee maximum efficacy.
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DES: discrete-event simulation
ICU: intensive care unit
KDCA: Korea Disease Control and Prevention Agency
LR: logistic regression
NPV: negative predictive value
OSCI: Ordinal Scale for Clinical Improvement
PPV: positive predictive value
R0: basic reproduction rate
RFE: recursive feature elimination
SHAP: Shapley additive explanations
SIR: susceptible-infectious-recovered
WHO: World Health Organization
XGBoost: extreme gradient boosting
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