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Abstract

Background: Effective resource management in hospitals can improve the quality of medical services by reducing labor-intensive
burdens on staff, decreasing inpatient waiting time, and securing the optimal treatment time. The use of hospital processes requires
effective bed management; a stay in the hospital that is longer than the optimal treatment time hinders bed management. Therefore,
predicting a patient’s hospitalization period may support the making of judicious decisions regarding bed management.

Objective: First, this study aims to develop a machine learning (ML)–based predictive model for predicting the discharge
probability of inpatients with cardiovascular diseases (CVDs). Second, we aim to assess the outcome of the predictive model and
explain the primary risk factors of inpatients for patient-specific care. Finally, we aim to evaluate whether our ML-based predictive
model helps manage bed scheduling efficiently and detects long-term inpatients in advance to improve the use of hospital processes
and enhance the quality of medical services.

Methods: We set up the cohort criteria and extracted the data from CardioNet, a manually curated database that specializes in
CVDs. We processed the data to create a suitable data set by reindexing the date-index, integrating the present features with past
features from the previous 3 years, and imputing missing values. Subsequently, we trained the ML-based predictive models and
evaluated them to find an elaborate model. Finally, we predicted the discharge probability within 3 days and explained the
outcomes of the model by identifying, quantifying, and visualizing its features.

Results: We experimented with 5 ML-based models using 5 cross-validations. Extreme gradient boosting, which was selected
as the final model, accomplished an average area under the receiver operating characteristic curve score that was 0.865 higher
than that of the other models (ie, logistic regression, random forest, support vector machine, and multilayer perceptron). Furthermore,
we performed feature reduction, represented the feature importance, and assessed prediction outcomes. One of the outcomes, the
individual explainer, provides a discharge score during hospitalization and a daily feature influence score to the medical team
and patients. Finally, we visualized simulated bed management to use the outcomes.

Conclusions: In this study, we propose an individual explainer based on an ML-based predictive model, which provides the
discharge probability and relative contributions of individual features. Our model can assist medical teams and patients in
identifying individual and common risk factors in CVDs and can support hospital administrators in improving the management
of hospital beds and other resources.
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Introduction

Background
The use of human and physical resources, which are both costly
and scarce, is essential for the efficient operation of hospital
processes. Hospitals are required to manage different kinds of
resources, such as managing the schedules of the medical team
and staff, bed management , and clinical pathways to improve
overall management efficiency [1]. Effective resource
management in hospitals can improve the quality of medical
services by reducing the labor-intensive burden on staff,
decreasing inpatient waiting time, and securing optimal
treatment time [2].

Bed management is a form of hospital resource management.
Currently, in most hospitals, clinicians manually check a
patient’s condition to decide whether to continue their
hospitalization or discharge them [3]. On the basis of this
decision, the medical team and staff identify the bed capacity
available in the near future and schedule the patient’s
reservation. In addition, the number of patients hospitalized for
a variety of chronic and acute illnesses, such as cardiovascular
diseases (CVDs) [4], has been steadily increasing, and their
insufficient treatment can lead to readmissions or complications.
However, a stay in the hospital longer than the optimal treatment
time hinders effective bed management. Thus, it is important
to accurately predict the patient’s hospitalization period and
make judicious decisions about their discharge.

Many studies have focused on the efficiency of hospital
resources, and most of them presented algorithms or models
for improving bed management. Bachouch et al [5] investigated
hospital bed planning and proposed the integer linear program
to solve the optimization problem. They illustrated the simulated
bed occupancy schedule. Troy et al [6] studied the simulation
of beds for surgery patients using the Monte Carlo simulation
to determine the intensive care unit (ICU) capacity. Particularly,
the predicted length of stay (LOS) is one necessary piece of
information for bed management, and there are many studies
predicting the LOS based on electronic health records (EHRs)
[7-9].

Moreover, authors have used machine learning (ML)–based
models to predict the LOS [7-9], prolonged hospitalization, and
unplanned readmission [10] and to find biomarkers for critical
diseases [11]. Recently, there have been many studies on
interpretable or explainable artificial intelligence (XAI) [12].
One XAI study [13] developed a model to predict acute illness
and provide results and interpretation. Compared with EHRs,
studies employing computer vision algorithms such as
convolutional neural networks are more actively pursued
because these models can directly visualize significant parts of
an image [14,15]. Thus, we developed an ML-based predictive
model to provide the daily discharge probability and individual

explainer visualizing significant features of each patient to
support bed management.

Objectives
The main contributions of this study can be summarized in the
following steps: first, we developed an ML-based predictive
model to predict the discharge probability daily within 3 days
for each patient with CVD and to acquire the individual LOS.
Patients with chronic and acute diseases, including CVDs, have
high hospitalization and readmission rates and greater
complications [16]. There are alternatives to transfer those who
need urgent care or hospitalization to another hospital to address
delays. However, it could be causing other serious problems,
hospitals should continuously identify methods to reduce waiting
time, and efficient bed management can be considered as one
of them.

In addition, because of the diversity of diseases, it may be more
advantageous to find common risk factors and implement bed
management for specific departments or diseases (ie, clustered
specific wards), and then expand it further to the hospital level.
Therefore, we developed an ML-based model to determine the
bed capacity that would be available in the near future and find
risk factors by predicting the discharge of patients hospitalized
with CVDs [17]. By providing persuasive discharge information
such as expected individual discharge date and risk factors
related to CVDs, it is possible, in practice, to assist in precise
bed management, which is otherwise done manually by the
medical team.

Second, we assessed the outcome of the prediction and provided
the individual explainer to describe the primary risk factors of
inpatients for patient-specific care. Even if patients have the
same diseases and common variables represent the diseases,
each patient has different characteristics, history, circumstances,
and treatments. Therefore, it is also necessary to identify and
monitor the unique, individual variables for each patient. In this
study, our ML-based predictive model’s outcomes include not
only information on daily patient discharge but also the
contributions of features such as feature importance.
Furthermore, we visualized the day-by-day discharge probability
of each patient and the features that influenced individual
patients during the hospitalization. This explainer can guide the
medical team and patients to produce reasonable evidence on
the ML-based model’s outcomes and helps them understand
the conditions in detail and prepare in advance for treatment.
Such individual analysis can focus on each patient, and the
meaningful features identified can be used in other studies as a
basis for preidentifying variables affecting hospitalization.

Third, this study could help manage bed scheduling efficiently
and detect long-term inpatients in advance. Bed management
refers to the process of identifying patients who are most likely
to be discharged, confirming the number of available beds, and
allocating beds to patients waiting for admission after
reservation. As this process is complicated and usually carried
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out manually, we aimed to support it by providing the estimated
LOS and probability of discharge returned by the model and by
identifying the capacity of beds that would be available in the
near future. In addition, it is possible to detect not only patients
with a high probability of discharge but also patients with a
consistently low probability of discharge. In other words, it
helps discover and analyze the causes of long-term
hospitalization of high-risk patients and provides this
information to their management team.

To summarize, we developed an ML-based model to predict
whether hospitalized patients with CVDs would be discharged
within 3 days. On the basis of this model, we proposed an
individual explainer; the simulations of bed management are
depicted in Figure 1, including the probability of discharge and
influenced features such as demographics, prescribed
medications, and treatments. Our model can improve the
efficient use of hospital resources and enhance the quality of
medical services.

Figure 1. Visualized simulation of discharge prediction for machine learning–based bed management. DEPT: department; DICD: diagnostic code;
INDT: the date of visitation or admission; INNO: the patient’s encounter number; LOS: length of stay; PAID: the patient’s identification.

Methods

Overview
Figure 2 describes the overall flow of the prediction method
employed in this study. We set up the cohort criteria and

processed the data to create suitable data sets. Subsequently,
we trained the ML-based predictive models and evaluated them
to find an elaborate model. Finally, we predicted the discharge
probability within 3 days and explained the model’s outcomes
by identifying, quantifying, and visualizing its features.
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Figure 2. Overall flow of the prediction method for discharge within 3 days. AI: artificial intelligence; AMC: Asan Medical Center; AUROC: area
under the receiver operating characteristic.

Data Acquisition
Data were extracted from CardioNet [18] (Textbox 1), a
manually curated EHR database specialized in CVDs. CardioNet
consists of data from 572,811 patients who had visited Asan
Medical Center (AMC) with CVDs between January 1, 2000,
and December 31, 2016. The AMC institutional review board
approved the collection of CardioNet data and waived informed
consent. CardioNet contains 27 tables on topics such as
visitation, demographics, diagnosis, medication, and laboratory
examination. Most tables have common variables including
patient identification (PAID), patient encounter number (INNO),
the date of visitation or admission (INDT), and the date of

discharge (OUDT). The KEY column, which concatenates the
PAID and INNO columns, can connect the visitation table to
other tables. Using the KEY column, we extracted the variables
in each table to be analyzed.

From the 572,811 patients in CardioNet, we obtained 84,251
records of 63,261 anonymous patients hospitalized in the
departments of cardiology or thoracic surgery. Furthermore, to
develop a practical and usable model, we focused on predicting
discharge within 3 days and detecting long-term patients.
Long-term patients, defined as those hospitalized for more than
30 days, are separately managed by the AMC. Therefore, we
set the LOS between 3 and 30 days.
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Textbox 1. Data extracted from CardioNet.

• Visit table: patient identification, patient encounter number, KEY, date of visitation or admission, date of discharge, type of visit, medical
department, and duration of stay in the intensive care unit (ICU).

• acute care unit, coronary care unit, cardiac surgery ICU, medical ICU, neonatal ICU, neurological ICU, neurosurgical ICU, pediatric ICU,
and surgical ICU.

• Diagnosis table: International Classification of Diseases, Tenth Revision code of diagnosis.

• Laboratory test result table: date and code of pathology examination, and the result of the examination.

• Physical information table: patient’s age, height, weight, systolic and diastolic blood pressures, respiratory rate, pulse rate, BMI, body surface
area, and date of measurements.

• Medication table: date and code of prescription.

• Procedure table: date and code of order.

• Operation table: date and code of surgery or treatment.

• Picture archiving and communication system table: date and code of order.

• Transfusion order table: date and code of order.

Data Preprocessing

Data Set Creation
In the visit table, which is the primary table of CardioNet, there
are 4 main columns (PAID, INNO, INDT, OUDT) and
visit-related variables. Each row represents a single
hospitalization case for each inpatient. We reset the index to
create a new data set with the duration between admission and
discharge as date-index (eg, a row with an INDT of 2021.2.1
and an OUDT of 2021.2.10 has an LOS 10 of days; therefore,
it was converted to 10 rows with 10 date-indexes). Finally, after

preprocessing all values corresponding to PAID, INNO, and
date-indexes of other tables, we merged and concatenated the
tables to generate a new data set for model training.

Figure 3 shows the data set creation process. Each table of
diagnosis, medication, laboratory test results, and physical
information was used for both past and present features. The
operation, procedure, and picture archiving and communication
system (PACS) were used for the present features, and LOS in
the ICU was used for the past features. The preprocessing of
values for each table is discussed in the next section. The
specific methods of feature handling are as follows:

Figure 3. Data set creation process for machine learning–based model training. ICU: intensive care unit; INDT: date of visitation or admission; LOS:
length of stay; OUDT: date of discharge; PACS: picture archiving and communication system.
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Data-Related Features
After creating the new data set, we removed the OUDT
containing future information. To distinguish and recognize the
time information in date by type, we created a total of 10
date-related features. INDT and date-index were sliced into
integer features such as year, month, day, and weekday.
Furthermore, we created a feature that denotes whether the
date-index is a holiday or not and another feature that indicates
the LOS at the date-index by subtracting INDT from the
date-index.

Day-by-day Present Features Related to Hospitalization
As the visit table and other tables contain only one piece of
information per row, it is difficult for the ML model to learn
the data all at once. Therefore, we performed one-hot encoding
(OHE) of clinically important orders and codes and created
them as features in the new data set. Consequently, we could
access aggregated records by date for each patient.

First, in the diagnosis and operation tables, we sliced all the
values of the International Classification of Diseases-10th
edition codes and the operation codes at the third digit to convert
them into three-digit codes because the strings from the fourth
digit onward represent the subhierarchy of the three-digit codes.
We arranged all the frequency values in descending order and
selected the first 99 codes. We transformed the remaining codes
(ie, unselected codes) into the others feature and performed the
OHE on all 100 codes. The features in the form of Z_code, such
as Z_DICD and Z_OPCD, refer to others in each original table.
As a result, we obtained a total of 100 codes for each table (ie,
diagnosis and operation table) and filled the date-index values
with 1 if there were valid prescribed or ordered data and 0
otherwise. Similarly, the values of the PACS table were
converted to 100 features.

Second, similar to the diagnosis table, in the medication and
procedure tables, we obtained the 99 most frequent codes and
others, performed the OHE, and filled the corresponding data.
In the case of the transfusion table, we used all 27 codes
available. We filled the values with the number of prescriptions
per day or at once, considering the severity of each patient’s
ailment.

Third, in the laboratory test result table, the 60 most frequent
examination codes, examined in more than 50% of all patients,
were selected. The physical information table had only 10 codes,
which were all used. We performed the OHE of values and
filled them with results corresponding to each examination. If

a patient had been tested several times a day, the data set was
populated with the average of the results.

Past Features
We considered that the patient’s anamnesis (ie, medical history)
should also be included in the data set, along with the day-to-day
features (described in the previous paragraph) for the ML model
to learn the data deeply. When the date-index in each
hospitalization started from INDT, we created some past features
from the principal information of hospital visit records 3 years
before INDT.

For past features, OHE was performed, and values were filled
in, similar to the present features. The hospitalization periods
of all ICUs in the visit table were summed up. For 100
diagnostic codes, we summed up each value if there was a record
of diagnosis. For 100 medication codes, the number of
prescriptions per day or at once were summed up if the record
existed. Finally, recent laboratory test results and physical
information within 3 years were used for a total of 70 codes. In
conclusion, the data set was filled with either summed up or
recent values equivalent to each feature.

Imputation
Except for the laboratory, physical, and date-related features,
we replaced all the null values with zero. The value type of most
of the other features was null or integer because most were
calculated by frequency. In contrast, to deal with missing values
in the continuous data type of the present laboratory and physical
features, we first separated the data set based on the KEY. The
KEY refers to a single hospitalization case of one patient; thus,
separating the data set by KEY does not mix individual
hospitalizations. Therefore, we filled in null values in
chronological order (ie, from past to present). Subsequently,
we filled in the rest of the null values in reverse chronological
order (ie, from present to past) to handle those cases where
results were not measured at the beginning of the admission.
Using this method, it was possible to impute the null value for
each hospitalization of an individual patient. Finally, to fill the
values where all the features were not ordered or measured, we
filled the rest of the null values with the most frequent value
for each feature.

Target Criteria
The supervised learning algorithm for classification requires
the label true or false to indicate the correct answer. The target
criteria for true labeling in this study are depicted in Figure 4.

Figure 4. Target criteria to provide the true label (ie, correct answer) to machine learning–based models.
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As shown in Figure 4, day 1 is INDT, day N is OUDT, and the
circles represent each day of the hospitalization period. We
excluded day N (ie, discharge date) from the data set because
of information such as discharge procedure, which could
provide the ML model with a hint. In addition, even if the
accuracy of discharge prediction is higher from the discharge
date to 2 days earlier, it is useful to make the prediction 3 days
in advance when actually using the model. Therefore, we labeled
1 from one day before OUDT to 3 days before OUDT and
labeled 0 from the INDT to 4 days before OUDT.

As a result, we transformed the diverse variables of original
tables into 10 date-related features, 597 present features, and
279 past features, creating a data set of 669,667 rows with 886
features from 84,251 records of 63,261 inpatients with CVDs.

ML-Based Predictive Models

ML-Based Models
We experimented with 5 models to identify the most suitable
one. We set the logistic regression [19] model as the baseline
to estimate performance, and support vector machine [20,21],
random forest (RF) [22], multilayer perceptron (MLP) [23], and
extreme gradient boosting (XGB) [24] were selected as
comparison models. We also performed hyperparameter tuning
for each model through random search.

We selected XGB, which is a gradient boosting algorithm
(GBM) model, as the final model. GBM is an ensemble method
that combines several weak classifiers (trees). The main idea
of GBM is to focus and place the weights on incorrectly
predicted results. While XGB is training, one tree trains the data
set and assigns weights to incorrectly predicted records with
errors, and the next tree of the same model learns the weighted
data set and repeats the process of assigning weights. Moreover,
GBM can quantify the contribution of features to the prediction

results, such as feature importance. Particularly, XGB has the
advantage of regularization and performance. It can perform
parallel processing, regulate to avoid overfitting, is widely used
for learning structured data, and has superior prediction
performance.

Evaluation
We set the positive (1) label for discharge and the negative (0)
label for hospitalization. To evaluate and compare the
performance of candidate models, we used metrics including
accuracy, sensitivity (recall for positive), specificity, precision,
positive predictive value, negative predictive value,
false-positive rate, and true-positive rate. When we monitored
model training and validation, we used the F1-score to reflect
imbalanced targets, the receiver operating characteristic (ROC)
curve to find the optimal threshold, and the area under the ROC
(AUROC) score to compare models.

To prevent overfitting the ML-based models and reduce biased
results, we performed stratified, 5-fold cross-validation [25]
illustrated in Figure 5. First, we randomly shuffled 63,261
PAIDs and divided them into 5 groups with approximately
12,000 people because we tried not to divide the records of a
single patient into training (ie, plain box in Figure 5) and testing
sets (ie, diagonal hatching box in Figure 5). Second, the first
PAID group becomes the testing set, and the remaining groups
become the training set in fold 1. We created fold 1 to fold 5 in
a similar way to ensure equal division of the imbalanced targets
(ie, the data set has true labels comprising 62.4% label 0 and
37.6% label 1) across all folds. Besides, we split 25% of the
training set as the validation set to tune the hyperparameters.
Consequently, in each fold, we divided the data set into
approximately 133,000 rows for the testing set and 535,000
rows for the training set (including the validation set). The
ML-based models trained and tested all 5 folds.

Figure 5. Stratified 5-fold cross-validation to avoid overfitting.

JMIR Med Inform 2021 | vol. 9 | iss. 11 | e32662 | p. 7https://medinform.jmir.org/2021/11/e32662
(page number not for citation purposes)

Ahn et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Individual Explainer for Outcome Assessment
Feature importance lists the features that the model considers
prominent, and their contribution scores, in the process of
training the data using the tree-based algorithm model. However,
we considered XGB as the final model not only because of its
high performance but also because of the access to the
decision-making process inside the model. By approaching the
trees, it is possible to describe the specific features and their
influences that contribute to the prediction of each patient’s
daily prediction of discharge.

We demonstrate an individual explainer that can help in the
interpretation of the XGB prediction results using a waterfall
chart. Also called a bridge or cascade chart, it is a type of bar
chart that portrays relative values and calculates the difference
between adjacent values. It can show the positive or negative
influence and gradual direction of the final discharge score.

To estimate values for individual explainers, we predicted the
desired records with the trained XGB and obtained the
contributions of all the features. The contribution refers to a
feature’s influence obtained by aggregating the scores that each
feature contributes to all trees. Subsequently, we calculated the

logistic value—logistics (x) = 1 / (1 + e-x)—of the feature’s
influence and the relative values required for the explainer. We
selected the number of features to be displayed as 15, and the
remaining 871 features were integrated and displayed
simultaneously as others in the explainer.

Results

Data Characteristics
We created a data set that consisted of 669,667 records with
886 features, including diagnosis code, laboratory test results,
physical information, medication, procedure, operation, PACS,
and transfusion. Patients were admitted to cardiology or thoracic
surgery, and their LOS ranged from 3 to 30 days. The average
age of the patients was 61.03 (SD 13.42) years. The data set
comprised 37.97% (254,254/669,667) women and 62.03%
(415,413/669,667) men.

Performance of the ML-Based Predictive Models

Final ML-Based Model Selection
We experimented with the 5 ML-based models using 5
cross-validations. The AUROC score for each fold is listed in
Table 1. The highest AUROC score for each fold is shown in
italics, and the support column in Table 1 represents the number
of each true label. Figure 6 shows the ROC curve plot; the area
of the curve is represented by the AUROC and has a value
between 0 and 1. The closer the AUROC score is to 1, the higher
the model performance. XGB achieved the highest and a
relatively stable score on all folds. Table 2 provides a
comparison of the 5 ML-based models. All scores in Table 2
are the average values of the results and the SD in 5 folds, and
the highest score for each metric is shown in italics. The
specificity of logistic regression and support vector machine,
which obtained 0.828, was the highest, but XGB achieved the
highest in the rest of the metrics. Particularly, although the label
of the data set was imbalanced, XGB scored 0.7 or higher for
predicting label 1. Hence, we chose XGB as the final model to
predict discharge probability.

Table 1. Evaluation by area under the receiver operating characteristic score of 5-fold cross-validation for each model.

Support (0, 1)XGBeMLPdRFcSVMbLRa

(83,113, 50,188)0.866 f0.8330.8530.8250.826Fold 1

(83,538, 50,310)0.8680.8350.8510.8260.827Fold 2

(84,192, 50,585)0.8650.8210.8500.8240.824Fold 3

(83,969, 50,460)0.8640.8310.8500.8230.824Fold 4

(82,918, 50,394)0.8630.8340.8480.8210.822Fold 5

N/Ag0.865 (0.002)0.831 (0.005)0.850 (0.002)0.824 (0.002)0.824 (0.002)Value, mean (SD)

aLR: logistic regression.
bSVM: support vector machine.
cRF: random forest.
dMLP: multilayer perceptron.
eXGB: extreme gradient boosting.
fThe italicized values indicate the highest score of each fold.
gN/A: not applicable.
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Figure 6. Receiver operating characteristic curve of the machine learning–based models. LOGREG: logistic regression; MLP: multilayer perceptron;
RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting.

Table 2. Comparison of the 5 machine learning–based models by metric.

Values, mean (SD)Model

AUROCfNPVePPVdSpecSenbACCa

0.824 (0.002)0.786 (0.005)0.686 (0.005)0.828h (0.004)0.624 (0.005)0.75 (0)LRg

0.824 (0.002)0.784 (0.005)0.686 (0.005)0.828 (0.004)0.624 (0.005)0.75 (0)SVMi

0.85 (0.002)0.818 (0.004)0.696 (0.005)0.818 (0.004)0.696 (0.005)0.77 (0)RFj

0.831 (0.005)0.792 (0.007)0.686 (0.005)0.822 (0.007)0.642 (0.017)0.758 (0.004)MLPk

0.865 (0.002)0.828 (0.004)0.71 (0)0.824 (0.005)0.716 (0.005)0.782 (0.004)XGBl

aACC: accuracy.
bSen: sensitivity.
cSpe: specificity.
dPPV: positive predictive value.
eNPV: negative predictive value.
fAUROC: area under the receiver operating characteristic.
gLR: logistic regression.
hThe italicized values refer to the highest score of each metric.
iSVM: support vector machine.
jRF: random forest.
kMLP: multilayer perceptron.
lXGB: extreme gradient boosting.

Figure 7 shows the relative feature importance of XGB sorted
by gain score. The gain score refers to the average gain across
all splits that the feature is used in. All the features used in the
model have been replaced by their names used in the AMC.
Except for the date-related feature, all other features that affected

the model were found in all the tables. The features in the
procedure table are substantially related to clinically critical
situations. For example, the terms denoted with (D) are likely
to mean a more severe state than others. The remaining features
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are also associated with CVDs or include primary examination
and prescriptions during hospitalization.

However, because feature importance can only explain the
model but not each patient, it is insufficient for use as an

individual explainer for prediction. Depending on the patient’s
condition, different features affect the daily probability of
discharge. Therefore, we suggested an individual explainer that
provides a patient-specific feature for daily prediction during
hospitalization.

Figure 7. The feature importance sorted by gain score. B.WT.: body weight; CR: chest radiograph; CRP: C-reactive protein; CVP: central venous
pressure; DISP: disposable; ESR: erythrocyte sedimentation rate; I/O: intake and output; supp: suppository; inj: injection; NEC: necrotizing enterocolitis;
PA: posteroanterior; PACS: picture archiving and communication system; Z_DICD: all diagnostic codes not selected for one-hot encoding.

Feature Reduction
Too many features tend to reflect negatively on the model
performance; therefore, it was necessary to select an appropriate
number of features. We performed recursive feature elimination
with cross-validation (RFECV). This algorithm aims to identify
the optimal number of features by comparing model
performance while eliminating the features with low feature
importance one at a time. RFECV returns the ranks and names
of all features; we identified approximately 150 features with
a rank of 1 by applying RFECV to our final model XGB. For
performance comparison, we performed 5-fold cross-validation

using the same data set with the same parameters. The number
of features to be compared was 886 (all), 150 selected by
RFECV, and the top 50 features in the model trained with the
150 selected by RFECV.

As shown in Figure 8 and Table 3, the performance difference
between the model using all the features and the models with
150 and 50 features was only approximately 1% to 2.5% based
on the AUROC score. This indicates that even with 83.1% to
94.4% of feature reduction, there is only a maximum
performance difference of 2.5%. Therefore, a suitable number
of features should be selected considering the situation in each
hospital or the data characteristic.
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Figure 8. Receiver operating characteristic curve of the extreme gradient boosting models with the different number of features. FI: feature importance;
RFE: recursive feature elimination; XGB: extreme gradient boosting.

Table 3. Evaluation by area under the receiver operating characteristic (AUROC) score of 5-fold cross-validation to select features.

Values, mean (SD)Number of features

AUROCNPVePPVdSpecSenbACCa

0.865 (0.0018)0.828 (0.004)0.71 (0)0.824 (0.005)0.716 (0.005)0.782f (0.004)886 (All)

0.853 (0.0018)0.818 (0.004)0.694 (0.005)0.814 (0.005)0.696 (0.005)0.77 (0)150 (RFEg)

0.840 (0.00096)0.802 (0.004)0.682 (0.004)0.812 (0.004)0.67 (0.006)0.76 (0)50 (RFE and FIh)

aACC: accuracy.
bSen: sensitivity.
cSpe: specificity.
dPPV: positive predictive value.
eNPV: negative predictive value.
fThe italicized values refer to the highest score of each metric.
gRFE: recursive feature elimination.
hFI: feature importance.
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Explainer of Individual Prediction for Outcome
Assessment

Overview
The predictive model classifies the data as 0 or 1 based on a
threshold. The optimal threshold is the point where the sum of
sensitivity and precision can be maximized simultaneously (in
the ROC curve, true-positive rate and false-positive rate are
proportional to each other). However, sensitivity and precision
require trade-off against each other; therefore, decreasing FN
increases sensitivity, and decreasing false positive increases
precision. In other words, it is necessary to adjust for the
appropriate threshold to suit the decision point of the hospital
operation.

We presented the daily discharge score during hospitalization
and the influence of the features by date through the explainer
of individualized predictions. The following section includes a
description and an example of our explainer for the sample data
set, which represents one of the patients in the test set.

Discharge Score During Hospitalization
The sample data set consisted of the records of a patient with a
PAID of 228,443 and an INNO of 2, hospitalized for 13 days
and discharged on day 14. The patient’s daily discharge score
plot is depicted in Figure 9. The plot's x-axis represents the daily
date excepted discharge date (ie, day 14) within the patient’s
hospitalization period, and the y-axis represents the probability
of discharge (ie, discharge score). The model’s optimal threshold
was 0.39, indicated by a horizontal dotted line. The circle and
the triangle represent the true labels 1 and 0, respectively, and
the size of the figure is proportional to the discharge score. The
colors of the figure denote the results predicted by the model:
red for positive prediction (label 1, discharge) and blue for
negative prediction (label 0, admission).

For this sample, the model accurately predicted the discharge
within 3 days. However, if the threshold is adjusted, the
prediction results may change on dates 11 and 12. For example,
if the current threshold rises slightly, 1 is applicable only for
dates 12 and 13. This can be useful when trying to avoid false
positive even if the false negative increases.

Figure 9. Daily discharge score of a patient’s identification of 228,443 and patient’s encounter number of 2. INNO: patient’s encounter number; PAID:
patient’s identification.
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Daily Feature Influence Score
Figures 10 and 11 describe the plot of feature influence for each
day. The following is the basic description of the individual
explainer: the x-axis of the plot is a score ranging from 0 to 1,
and the y-axis represents the contributed features and the
corresponding values that influenced the probability of discharge
on that day. The threshold represented by the vertical dotted
line is equal to the optimal threshold in Figure 9. The intercept,
the plain blue box at the bottom of the y-axis, is a revised value
reflecting that the number of each true label is imbalanced. The
discharge probability, the gray box at the top of the y-axis, is
the discharge score, which is the same as the probability in
Figure 9. The width of each box corresponding to the feature
refers to the absolute value of each score. The original score is
indicated on the right side of the plot. The absolute value
decreases from bottom to top, which means the contribution to
the discharge score also decreases (the box of others is relatively
wide because it is the sum of the scores of approximately 800
features, excluding the features below it). The red box with
diagonal hatching represents each score of the feature that

positively contributed to the discharge score and moves to the
right. Conversely, the plain blue box represents negatively
contributing feature scores and moves to the left.

To summarize, on the y-axis, from bottom to top, the features
contributed to the prediction; the diagonal hatched red box to
the right is positive, and the plain blue box to the left is negative.

Figure 10 shows the feature influence at day 7 with a low
probability of discharge of 0.004, and Figure 11 shows day 12
with a high probability of 0.811. In Figure 10, arterial
monitoring=1 and infusion pump=3 negatively affected the
probability. In contrast, in Figure 11, infusion pump=0 had a
positive effect on probability. Because arterial monitoring and
infusion pump are mainly prescribed for critical patients, both
consist mostly of zeros in the data set. Therefore, displaying
features and values together can help the medical staff interpret
the plot intuitively. Moreover, each explainer may or may not
have the features that appeared in the feature importance plot.
This suggests that it is also necessary to identify features that
contributed to individual patients rather than managing only the
features of feature importance.

Figure 10. Feature influence with low probability of discharge date 7. CVP: central venous pressure; INNO: patient’s encounter number; MCH: mean
corpuscular hemoglobin; MCV: mean corpuscular volume; PAID: patient’s identification; supp: suppository; ZM_ODCD: all medication codes not
selected for one-hot encoding; ZP_ODCD: all procedure codes not selected for one-hot encoding.
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Figure 11. Feature influence with high probability of discharge on date 12. CK-MB: creatine kinase-myoglobin binding; CRP: C-reactive protein;
DAYW_DT: integer feature of weekday; DT_IN: time since admission date in days; I/O: intake and output; INNO: the patient’s encounter number;
PAID: the patient’s identification; PT: prothrombin time; Z_DICD: all diagnostic codes not selected for one-hot encoding; ZP_ODCD: all procedure
codes not selected for one-hot encoding.

Outcome Assessment
Figure 1 shows the simulated impact in bed management applied
with our predictive model and individual explainer. It is possible
to recognize the probabilities of discharge of all patients for
each ward every day. The paramount features and values that
affect the discharge scores can be identified at once. It is
informative for interpreting both high or low probability because
the explainer implies the reasoning not only for discharge but
also prolonged discharge. Similarly, it is possible to obtain
information based on the expected discharge date of each
patient, such as bed capacity in the near future. For the human
and physical resources of the hospital to be used efficiently,
future bed availability information can help reduce hospital

costs through better management of beds and hospitalization
reservations.

Discussion

Principal Findings
Investigations into bed management, which requires the use of
hospital processes, and biomarker detection for patient-specific
care, are actively pursued. In this study, we propose an
ML-based predictive model to identify the discharge date for
better bed management and the risk factors regarding discharge
and CVDs. However, because each hospital has varying
environmental variables, an algorithm that can consider them
collectively was needed. Our study can contribute to improving
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the algorithm and supporting health care services. We have
summarized the expectations of our predictive model and its
explanation, along with its limitations.

First, we predicted the possibility of discharge to learn future
information, but for the model to be practically applied,
objective information about the current bed situation must be
obtained. Currently, we are collecting bed information to
combine it with the prediction results and optimize overall bed
management. Consequently, our predictive model can be
extended from ward-level up to hospital-level bed management.
It may reduce the labor-intensive tasks for the medical team
and the waiting time for patients.

Second, although our model provides adjustment of the optimal
threshold according to the hospital circumstances, the ambiguity
of decision-making because of results near the threshold exists,
such as dates 10 and 11 in Figure 9. To solve this problem, there
is a method that uses weighted average to make the result more
conservative but reliable. Instead of using the probability
returned by the model directly, it may be more useful to use it
after weighting it for the past results, so that the target day
reflects the weighted past results. It is just as necessary to

produce reliable results as it is trying to explain the model and
its internal features.

Finally, EHRs are longitudinal and sequential, but the sequence
is different for each patient, and they do not have a regular
interval. Consequently, we are preparing a preprocessing
technique that can properly control the EHRs and reflect them
in the model. Furthermore, compared with computer
visualization, sequential data are relatively difficult to apply to
XAI. Still, we are preparing explainable methods that are
compatible with these data.

Conclusions
In this study, we have proposed an ML-based model to predict
the daily discharge probability for each patient and demonstrated
the individual explainer for any date during hospitalization,
along with the reasonable contributing features. Our XGB model
accomplished an AUROC of 0.865 and represented the
simulated bed management based on explainable features. It
could assist the medical team and patients in identifying the
individual and common risk factors in CVDs and support
hospital administrators in improving the management of hospital
beds and other resources.
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