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Abstract

Background: A high proportion of health care services are persistently utilized by a small subpopulation of patients. To improve
clinical outcomes while reducing costs and utilization, population health management programs often provide targeted interventions
to patients who may become persistent high users/utilizers (PHUs). Enhanced prediction and management of PHUs can improve
health care system efficiencies and improve the overall quality of patient care.

Objective: The aim of this study was to detect key classes of diseases and medications among the study population and to assess
the predictive value of these classes in identifying PHUs.

Methods: This study was a retrospective analysis of insurance claims data of patients from the Johns Hopkins Health Care
system. We defined a PHU as a patient incurring health care costs in the top 20% of all patients’ costs for 4 consecutive 6-month
periods. We used 2013 claims data to predict PHU status in 2014-2015. We applied latent class analysis (LCA), an unsupervised
clustering approach, to identify patient subgroups with similar diagnostic and medication patterns to differentiate variations in
health care utilization across PHUs. Logistic regression models were then built to predict PHUs in the full population and in
select subpopulations. Predictors included LCA membership probabilities, demographic covariates, and health utilization covariates.
Predictive powers of the regression models were assessed and compared using standard metrics.

Results: We identified 164,221 patients with continuous enrollment between 2013 and 2015. The mean study population age
was 19.7 years, 55.9% were women, 3.3% had ≥1 hospitalization, and 19.1% had 10+ outpatient visits in 2013. A total of 8359
(5.09%) patients were identified as PHUs in both 2014 and 2015. The LCA performed optimally when assigning patients to four
probability disease/medication classes. Given the feedback provided by clinical experts, we further divided the population into
four diagnostic groups for sensitivity analysis: acute upper respiratory infection (URI) (n=53,232; 4.6% PHUs), mental health
(n=34,456; 12.8% PHUs), otitis media (n=24,992; 4.5% PHUs), and musculoskeletal (n=24,799; 15.5% PHUs). For the regression
models predicting PHUs in the full population, the F1-score classification metric was lower using a parsimonious model that
included LCA categories (F1=38.62%) compared to that of a complex risk stratification model with a full set of predictors
(F1=48.20%). However, the LCA-enabled simple models were comparable to the complex model when predicting PHUs in the
mental health and musculoskeletal subpopulations (F1-scores of 48.69% and 48.15%, respectively). F1-scores were lower than
that of the complex model when the LCA-enabled models were limited to the otitis media and acute URI subpopulations (45.77%
and 43.05%, respectively).

Conclusions: Our study illustrates the value of LCA in identifying subgroups of patients with similar patterns of diagnoses and
medications. Our results show that LCA-derived classes can simplify predictive models of PHUs without compromising predictive
accuracy. Future studies should investigate the value of LCA-derived classes for predicting PHUs in other health care settings.
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Introduction

A small segment of the patient population utilizes a high volume
of health care services [1,2]. Population health management
programs often aim to identify high-utilizing subpopulations
and provide them with appropriate preventative interventions
to reduce undesired health outcomes while lowering utilization
[2,3]. Reducing unnecessary health care utilization such as
avoidable inpatient admissions enables more effective use of
health care resources across the patient population, hence
improving the overall health of the managed population [2-4].

Population health programs are often managed by insurers and
health care providers [2,5]. Traditionally, health care payers use
insurance claims to identify members/enrollees with high rates
of utilization. Health care providers are increasingly using
electronic health records (EHRs) to identify high-utilizing
patients [6,7]. Payers and providers routinely apply established
risk stratification techniques against their data to predict the
members/patients who will become a high utilizer in the short
term (eg, 30 days to 12 months) [8-11]. However, predicting
who will continuously remain a high utilizer in the long term
(eg, 24 months or more) has proven to be a challenging task for
population health risk stratification [12].

Persistent high users/utilizers (PHUs) are patients who have a
high utilization rate over an extended period (eg, a patient whose
annual costs are in the top 20% of all patients’ costs over 4
consecutive 6-month periods) [1,13]. Recent studies have taken
several approaches to characterizing PHUs, including the
frequency and type of utilization, total costs, and number of
chronic conditions [1,8-13]. Despite the variety of terminologies
used for PHUs (eg, high-cost high-need, super-utilizers),
population health analysts have typically faced barriers in
extracting the common probability classes of diagnoses and
medications for PHUs to improve the management of health
care resources in specific subpopulations [13,14].

PHUs constitute a small percentage of the patient population
[1]. PHUs of a health system may present a different mix of
comorbidities and medications compared with those of PHUs
in other health systems [8-14]. The variability of the underlying
probabilities of PHUs’diseases and medications across different
settings complicates the use of traditional approaches for
identifying PHUs from groupings of diagnostic codes.
Considering this diversity of conditions, the manual grouping
of diagnostic and medication codes by clinical experts will not
only be burdensome to compile for a given health system but
also impractical to use elsewhere [1-3]. Automated
clustering/grouping techniques can be a valuable alternative to
characterizing PHUs for a specific health system patient
subpopulation [15-19]. Automated groupings of health care
utilization patterns can also enhance the prediction of PHUs

through traditional analytical methods such as logistic regression
[15].

To address the difficulties of identifying common patterns of
comorbidities among PHUs, in this study, we implemented an
unsupervised clustering methodology, latent class analysis
(LCA) [20], to semiautomatically classify PHU patients by a
limited number of probability classes of characteristic
comorbidities and medications. We then used the LCA classes
along with a few demographic and health system factors to
predict PHU status for each member of the total study population
and a selected set of patient subpopulations. We finally
compared our LCA-enabled predictive model with a
sophisticated (but more complex) risk stratification model that
uses several demographic, clinical, and medication factors to
predict PHU status.

Methods

Overall Aims and Definitions
The overall goal of our study was to identify subpopulations of
PHUs where changes in care delivery could reduce the risk of
high utilization. Our analysis aimed to automate the extraction
of common probabilistic patterns of comorbidities and
medications for PHUs, and then use such information to improve
the prediction of PHUs among the study population as well as
specific diagnostic subpopulations.

We defined a PHU as an individual whose medical charges
remained in the top 20% of the highest health care costs for 4
consecutive 6-month periods (ie, total of 2 years after the base
period) [1]. Health care costs were defined as the sum of hospital
inpatient, outpatient department, emergency department (ED),
and professional and pharmacy costs covered by the insurer and
the patient’s out-of-pocket costs [1,6].

Data Source and Preparation
We performed a retrospective analysis of the Johns Hopkins
Health Care (JHHC) insurance claims data captured between
2013 and 2015. JHHC provides health insurance to a variety of
enrollees, including Medicaid and employer-based members.
JHHC enrollees can also seek care outside of the Johns Hopkins
health system. We applied the Johns Hopkins Adjusted Clinical
Groups (ACG) software to the claims data to generate additional
health care utilization variables consistent with previous PHU
analyses [1,21]. We categorized the diagnostic codes into
higher-level diagnosis groupings defined by the ACG
methodology as expanded diagnostic clusters (EDCs), and
grouped the medication data into ACG prescription-defined
morbidity groups (RxMGs) [21]. EDCs and RxMGs, which are
extensively validated and routinely used for risk stratification
[1,6], were used in our analysis as the base diagnosis and
medication categories, respectively.
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Study Population
Our initial sample population included 207,421 patients with
at least one JHHC claims record in 2013 and at least 2 years of
continuous JHHC enrollment between 2013 and 2015 (Figure
1). Following the CONSORT (Consolidated Standards of
Reporting Trials) statement [22], we first excluded 27,518
patients with missing EDC diagnosis codes since EDCs were
used to identify clusters of patients within the population. Next,
we excluded 14,308 patients with pregnancy or newborn EDC
codes since high costs typical of pregnancy complications differ
from those that distinguish PHUs. Finally, we excluded an
additional 1374 patients without JHHC claims in 2014-2015
since data in 2013 were used to predict PHUs in 2014 and 2015.

The final study population included 164,221 patients (Figure
1).

To explore the sensitivity of our approach, we further divided
the study population into four distinct diagnostic-driven
subpopulations. These subpopulations were chosen based on
the frequency of the underlying EDC data and were validated
by two clinicians. The clinicians reviewed the combination of
EDCs and asserted their practical use in clinical settings. These
subpopulations were identified as: (1) otitis media (n=24,992
patients), (2) mental health (n=34,456), (3) musculoskeletal
signs and symptoms (n=24,799), and (4) acute upper respiratory
infection (URI; n=53,232).

Figure 1. Selection process of the study population. JHHC: Johns Hopkins Health Care; EDC: expanded diagnostic cluster.

Predictors and Outcome
The full study population and each subpopulation contained
several predictor variables and the outcome variable. Predictors
(ie, independent variables) included demographics, EDCs,
Rx-MGs, and other health utilization variables (eg,
hospitalization, care coordination) generated by the ACG
system. Many of these predictors, including all EDCs and
Rx-MGs, are categorical variables [21].

The outcome of interest, a binary variable, was whether or not
a patient became a PHU after the base year (ie, being in the top
20% of the highest health care costs over 4 consecutive 6-month
periods from 2014 to 2015). The outcome variable was
calculated separately in the full population and in each of the
diagnostic subpopulations (eg, a patient might be considered a
PHU in a subpopulation but not in the full population).

Statistical Approach

Unsupervised Clustering to Identify Diagnoses Clusters
LCA was performed on the full study population and on each
subpopulation separately to identify “phenotypes” (ie, classes)
of disease subtypes [20]. LCA is an unsupervised data-driven
clustering technique that identifies unobserved subtypes (latent
classes) within a population based on probability theory. A key
assumption in LCA is that conditional independence (ie, latent
class membership) explains all of the shared variance across
variables [20].

The main parameters generated by LCA are the probabilities
of latent class membership for each individual (ie, each patient
in the mental health subpopulation; n=34,456) and the
class-specific probabilities of observing each binary variable
(eg, tobacco use EDC among mental health patients). These
probabilities distinguish LCA from binning techniques in which
each individual (eg, patient) is merely assigned a probability of
belonging to an unobserved/latent class (eg, representing a
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specific pattern of comorbidities) based on a well-established
statistical theory [20].

LCA creates latent classes that optimize minimizing the variance
across individuals within each class while maximizing the
variance between individuals in different classes. Moreover,
LCA is a person-centered approach, does not make distributional
assumptions, and works well with categorical data, making it
particularly applicable to subtype identification of patients using
diagnostic data such as EDCs [20].

LCA models with a varied number of latent classes (2 to 6
classes) were constructed using EDC, Rx-MG, and selected
patient-level resource utilization variables. For both the full
population and the select subpopulations, 4-class models were
chosen because they provided the right balance between optimal
model fit and interpretability of the classes. Although models
with more classes (eg, 5- and 6-class models) might fit the data
slightly better, the interpretation of the classes becomes less
clear, and often classes may differ only across a few variables.
In other words, the gain in fit is not sufficient to overcome the
decline in interpretability that comes from adding too many
classes to the model. Additionally, LCA models with more than
6 classes did not improve the standard fit metrics, explained a
very small proportion of patients, and had limited mathematical
convergence, and were therefore not considered in this study.

LCA fit was measured using G2, Akaike information criterion
(AIC), and Bayesian information criterion (BIC) metrics; lower

values of G2, AIC, and BIC imply a better fit [23,24]. Similar
to standard regression techniques, LCA uses
maximum-likelihood estimation to determine its model
parameters. The goal of maximum-likelihood estimation is to
maximize the probability (likelihood, L) that the process
described by the model produced the observed data:

G2=–2×log(L), AIC=–2×log(L)+2×k, and
BIC=–2×log(L)+k×log(N), where k is the number of estimated
model parameters and N is the sample size. Since L is
maximized to achieve the best fit to the data, –2×log(L) is also

minimized, and thus lower G2, AIC, and BIC values indicate a
better model fit. For a large sample where log(N)>2, AIC tends
to favor more complex models (ie, more model parameters)
over BIC [23,24].

LCA does not bin each individual into a class but rather
calculates the probability that an individual’s characteristics
most closely match those of the other individuals in each class.
Classes are constructed to maximize similarity of individuals’
characteristics within a class and dissimilarity of individuals
across classes. For example, in this study, the LCA methodology
generated four different class probabilities for each patient

representing the similarity of the patient’s comorbidities (ie,
mix of EDCs and RxMGs) to comorbidities of patients in each
LCA-derived class of the entire study population.

Logistic Regression Modeling to Predict PHUs
Once the classes were constructed via LCA and health utilization
characteristics of the classes were graphically compared, we
trained logistic regression models to predict PHUs in both the
full population and in each subpopulation using the following
variables: (1-3) latent class membership probabilities for 3 of
the 4 classes (the class with the lowest chronic EDC/RxMG
probabilities was chosen to be the reference class); (4) gender
(male; reference=female); (5-9) race (Black, Asian, Hispanic,
other, missing; reference=White); (10) medical and pharmacy
coverage in 2013; (11) Medicaid eligibility; (12) number of
acute care inpatient days; (13) number of acute care inpatient
stays; (14) presence of frailty conditions; and (15-16) likely or
possibly experiencing care coordination issues (yes/no).
Variables 12 to 16 were generated by the ACG system [21]
using the JHHC medical claims data.

We also used the ACG system’s internal risk stratification
functions (ie, embedded models) to predict PHU status in the
full population [21]. The ACG system implements a complex
model that uses over 300 variables (eg, demographics, all EDCs,
all RxMGs, and dozens of health system variables) to predict
health care utilization such as inpatient admissions, ED visits,
and overall medical or pharmacy costs. Predictive performance
of all regression models was assessed and compared using
sensitivity, predictive positive value (PPV), and the F1-score.

All analyses, including the descriptive analysis of the full
population and all subpopulations, were performed in R (v3.5.1).
We used R’s basic packages for the LCA clustering [25] and
logistic regression predictions.

Results

Descriptive Analyses
Descriptive statistics for the full population are summarized in
Table 1. Overall, approximately 5% of the full population were
identified as PHUs. The average age of PHUs was more than
twice that of the non-PHU population. The percentage of males
was smaller among PHUs than among non-PHUs. As expected,
a larger percentage of PHUs had one or more inpatient or
outpatient visits compared to non-PHUs (18.7% vs 2.5% for
inpatient visits and 99.7% vs 97.3% for outpatient visits,
respectively). Similar descriptive statistics were generated for
each of the four diagnostic subpopulations (see Multimedia
Appendix 1-4).
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Table 1. Characteristics of the study populations.

PHU population (n=8359)Non-PHUa population (n=155,862)Overall study population (N=164,221)Characteristic

Age group (years), n (%)

1459 (17.5)99,352 (63.7)100,811 (61.4)0-17

6730 (80.5)55,666 (35.7)62,396 (38.0)18-64

170 (2.0)844 (0.5)1014 (0.6)65+

38.51 (18.01)18.79 (16.82)19.79 (17.43)Age (years), mean (SD)

2735 (32.7)69,683 (44.7)72,418 (44.1)Male, n (%)

Race, n (%)

2,457 (29.4)38,762 (24.9)41,219 (25.1)White

2,879 (34.4)50,993 (32.7)53,872 (32.8)Black

6 (0.1)143 (0.1)149 (0.1)Otherb

3017 (36.1)65,964 (42.3)68,981 (42.0)Missingc

Inpatient visits, n (%)

6792 (81.3)151,971 (97.5)158,763 (96.7)0

1500 (17.9)3,866 (2.5)5,366 (3.3)1-5

54 (0.6)20 (<0.1)74 (<0.1)6-10

13 (0.2)5 (<0.1)18 (<0.1)11+

Outpatient visits, n (%)

27 (0.3)3,663 (2.4)3,690 (2.2)0

1234 (14.8)94,138 (60.4)95,372 (58.1)1-5

1428 (17.1)32,317 (20.7)33,745 (20.5)6-10

5670 (67.8)25,744 (16.5)31,414 (19.1)11+

aPHU: persistent high users.
b“Other”describes members of known race/ethnicity not equal to Asian, Hispanic, White, or Black.
c“Missing” describes members with empty values for race.

Latent Class (Cluster) Analyses
LCA models with 2 to 6 classes were trained using the full
population to identify the optimal number of classes. The fit
statistics for these models were then calculated and compared
for the full population (Table 2). The 4-class models were
chosen for both the full population and subpopulations as they
optimally balanced good model fit with interpretability of the
classes (see Multimedia Appendix 5). The LCA’s 4 classes
represented probability patterns of diseases and medications
that were deemed to be optimal and interpretable for identifying
subgroups of patients within the full sample and in each of the
diagnostic subpopulations.

A model with the lowest AIC tends to be more complex if it is
not the same as the model with the lowest BIC [23]. Thus, we
selected the 4-class LCA model since it fit the data better than
the 2- and 3-class models, and the classes were more
interpretable than those in the 5- and 6-class models (Table 2).
Additionally, AIC and BIC metrics can be compared only across
nested models (ie, when the terms in one model are a subset of
the terms in the other model). As a result, AIC and BIC
measures should not be compared across different study
subpopulations (Multimedia Appendix 5).

The LCA models were run with 178 different EDCs and RxMGs
on the full population and with the same EDCs/RxMGs on the
diagnostic subpopulations, excluding the EDCs used to define
the subpopulations. Examining all EDCs/RxMGs in our 4-class
LCA models, excluding the EDCs used to define our
subpopulation, led us to very similar descriptions of each class.
A caveat to this observation is that many EDCs/RxMGs had
very low or very high probabilities of being observed in all
classes and hence were not useful for distinguishing among
classes.

Each LCA class contained item-response probabilities for each
of the EDC/RxMG codes; however, for only a few of the
EDC/RxMG codes, the probability was ≥0.4 in every class.
Figure 2 depicts the EDC/RxMG codes that reached the
threshold of 0.4 within the full population across all classes.
Within the figure, the selected EDC categories that made the
threshold are shown along the x-axis and their (item-response)
probabilities are shown on the y-axis. The color shading
indicates the four different LCA classes, which have different
levels of probabilities across different EDCs. Only items with
a maximum difference in probability of 0.4 (40%) or greater
across pairs of classes are shown for simplicity. Classes 1, 3,
and 4 represent people with moderate, high, and low likelihoods
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of EDCs, respectively. Class 2 is associated with higher
probabilities of infections.

The selected subtype characteristics from the LCA and fractions
of patients assigned to each subtype were also explored for each
of the four diagnostic subpopulations (Figures 3-6). For
example, within the full study population, 21.2% of the patients
were attributed to class 1 (Figure 2). However, 13.2%, 14.9%,
30.0%, and 46.2% of the patients were in class 1 for the otitis
media (Figure 3), mental health (Figure 4), musculoskeletal
(Figure 5), and acute URI (Figure 6) subpopulations,
respectively. In Figures 3 to 6, only items with a maximum
difference in probability of 0.4 (40%) or greater across pairs of
classes are shown for simplicity. In Figure 3, classes 1, 2, and
3 represent people with moderate, low, and high (particularly
chronic conditions) likelihoods of EDCs, respectively, whereas
class 4 is associated with higher probabilities of infections (eg,
URI) and fever. In Figure 4, classes 1 and 3 represent people
with high and low likelihoods of EDCs, respectively, whereas

class 2 is associated primarily with a high likelihood of minor
infections and class 4 represents people with moderate
likelihoods of infections and pain. In Figure 5, classes 1, 3, and
4 represent people with moderate, low, and high likelihoods of
EDCs, respectively, whereas class 2 is associated primarily with
a high likelihood of minor infections. In Figure 6, classes 1, 3,
and 4 represent people with low, moderate, and high likelihoods
of EDCs, respectively, whereas class 2 is associated primarily
with a high likelihood of airway hyperactivity.

Only a handful of EDCs clearly distinguished the four classes
in each LCA model (full population and the diagnostic
subpopulations). In the full population and in most of the
diagnostic subpopulations, three of these classes were associated
with uniformly high, moderate, or low probabilities of the EDCs.
The remaining class was characterized primarily by a high
likelihood of minor infections, pain, or respiratory diagnoses
(Figures 2-6).

Table 2. Model fit statistics for latent class analysis models with 2 to 6 classes (N=164,221).

BICcAICbG2aModel

9,116,8889,113,3155,487,7022-class model

8,845,3008,839,9355,213,9643-class model

8,721,7088,714,5525,088,2234-class model

8,569,8268,560,8784,934,1925-class model

8,512,4198,501,6794,874,6346-class model

aG2: likelihood ratio/deviance statistic.
bAIC: Akaike information criterion.
cBIC: Bayesian information criterion.

Figure 2. Latent class item-response probabilities for the full population (N=164,221).
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Figure 3. Latent class item-response probabilities for the otitis media subpopulation (n=24,992).

Figure 4. Latent class item-response probabilities for the mental health subpopulation (n=34,456).

Figure 5. Latent class item-response probabilities for the musculoskeletal subpopulation (n=24,799).
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Figure 6. Latent class item-response probabilities for the acute upper respiratory infection subpopulation (n=53,232).

PHU Predictive Modeling (Logistic Regression)
Logistic regression models were developed for the full
population and for each subpopulation to predict PHUs from
latent class membership probabilities along with demographic
and health utilization characteristics of each patient. These
models were trained on a randomly selected sample of 80% of
the patients in the full population/subpopulation and were
evaluated on a test data set with the other 20% of patients.
Classification metrics for each of these models (Table 3)
revealed that PHU predictions are more accurate within
subpopulations that have a high prevalence of PHUs. For
example, the F1-score reached 38.6 in the LCA-enabled
regression models predicting PHUs in the full population,
whereas the F1-score reached 45.8, 48.7, 48.1, and 43.0 among
the otitis media, mental health, musculoskeletal, and acute URI

subpopulations, respectively. Although the musculoskeletal
subpopulation had the highest percentage of PHUs (Table 3),
the regression model for the mental health subpopulation
performed the best in terms of the sensitivity and F1-score (62.4
and 48.7 vs 55.1 and 48.1, respectively).

The LCA-enabled regression model for the full population
performed modestly lower than the ACG model (ie, F1-score
38.6 vs 48.2); however, the LCA-enabled model had fewer
predictors (16 variables) than the ACG model (≥300 variables).
The F1-scores of the LCA-enabled regression models in the
subpopulations were comparable to the F1-score of the complex
ACG model in predicting PHUs in the full population (ie,
F1-scores ranging from 43.0 to 48.7 vs 48.2). Since the
specificity, sensitivity, PPV, and F1-score were calculated for
specific thresholds, only one estimate was calculated for each
of those metrics (ie, the 95% CI was not applicable).

Table 3. Comparing classification metrics for predicting persistent high user/utilizer (PHU) status.

acute URIb

(n=53,232)
MSKa (n=24,799)Mental health

(n=34,456)
Otitis media
(n=24,992)

Full study population (N=164,221)Metric

LCA-LRMLCA-LRMLCA-LRMLCA-LRMLCA-LRMdACGc

41.2842.7439.9144.4038.5348.60PPVe (%)

44.9955.1462.4347.2338.7247.90Sensitivity (%)

43.0548.1548.6945.7738.6248.20F1-score (%)

95th (0.23)95th (0.53)80th (0.25)95th (0.18)95th (0.33)95th (0.33)Percentile (threshold)

4.615.512.84.55.15.1PHUs (%)

aMSK: musculoskeletal.
bURI: upper respiratory infection.
cACG: Adjusted Clinical Groups; latent class analysis results not included in the model.
dLCA-LRM: latent class analysis-logistic regression model; latent class probabilities included as predictors in the model.
ePPV: positive predictive value.

Odds ratios (ORs) of the LCA-enabled regression models
predicting PHUs in the full population and in each of the
diagnostic subpopulations were calculated separately
(Multimedia Appendices 6-10). In all LCA-enabled regression
models, the class probabilities were statistically significant in
predicting PHUs and resulted in the highest ORs of 22.3, 6.0,
and 135.3 for classes 1, 2, and 3 in the full population model,

respectively. Other predictors were either not statistically
significant (eg, sex, inpatient hospitalization days) or, if
significant, had a small effect size (ie, ORs ranging between
0.4 and 3.0). Being Asian or Hispanic, having medical or
pharmacy insurance coverage, and being on Medicaid were
protective against PHUs (ie, ORs of 0.77, 0.41, 0.85, and 0.69,
respectively), while being Black, having a high count of
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inpatient stays, holding frailty conditions, and likely or possibly
experiencing care coordination issues were associated with
PHUs (ie, ORs of 1.18, 1.25, 1.14, 1.68, and 3.07, respectively).
These findings highlight some of the demographic and health
care factors associated with a higher or lower likelihood of being
a PHU.

Discussion

Principal Findings
PHUs are defined as the patient population who stay in the
highest deciles of health care costs and/or utilization for multiple
years [1,8-15]. Predicting PHUs is a challenge as their
underlying mix of comorbidities and medications may differ
across settings [12,13]. To address this analytic gap and improve
the efficiency of grouping underlying conditions of PHUs, we
applied LCA, a novel unsupervised clustering approach, to the
JHHC’s insurance claims data to identify classes of
high-utilizing patients with similar probabilities for different
sets of diseases and medications. We then explored the value
of the LCA classes for predicting which patients, within the full
population or specific subpopulations, will become PHUs using
a simple parsimonious regression model, and then compared
its predictions to those of a more detailed complex predictive
model.

Our study demonstrated the use of nontraditional statistical
clustering methods such as LCA to facilitate the automated
development of diagnostic and medication probability classes
that can be effectively used in traditional logistic regression
models to predict PHUs, without the need for complex predictive
models. Two of our study findings specifically support the use
of LCA in predicting PHUs. First, the F1-score of the
LCA-enabled logistic regression was comparable to that of the
complex predictive model despite having a fraction of the
variable predictors (16 vs ≥300 variables). Second, the ORs of
the LCA-derived classes were much higher (ranging from 22
to 135) than those of the other variables (ranging from 0.4 to
3.0) used in the logistic regressions. Therefore, LCA can be an
efficient (ie, unsupervised process requires minimal manual
effort), effective (ie, high ORs in the predictive models), and
usable (ie, avoiding complex predictive models) method for
predicting PHUs in different settings.

The mix of LCA classes may differ among PHUs of different
health systems. For example, our study population of 164,221
patients included 130,711 members enrolled in a special
Medicaid insurance plan (ie, Johns Hopkins Priority Partners)
targeting mothers and children. Thus, as 79.6% of the study
population were enrolled in this Medicaid program, the average
age of the full population was close to 20 years. Consequently,
the most common EDCs for three of the four diagnostic
subpopulations included pediatric conditions such as ear
problems [26], which led our clinical experts to categorize one
of the subpopulations as otitis media. In addition, the fact that
one of the diagnostic subpopulations was identified as “mental
health” reflects the reported association of higher health care
costs for children with mental health conditions [27], which
made this subpopulation particularly relevant to our study of
PHUs.

Comparison With Prior Work
A few prior studies have explored the use of LCA and other
classifying techniques to improve the prediction of PHUs. One
study focused on US older and middle-aged patients and grouped
them using the Medical Expenditure Panel Survey data set to
explore high to moderate utilization rates [16]. Due to the older
demographic of their population, the study found age,
unemployment, insurance status, and number of chronic
conditions and medications as key clustering factors. Two
separate studies in Singapore applied LCA to segment
populations into different utilization classes [18,19]. Their first
study focused on primary health care patients enrolled in
governmental insurance programs, and found that a specific
class with metabolic diseases and multiorgan complications had
the highest hospital admissions and ED visits [18]. Their second
study focused on patients enrolled in the government-sponsored
hospital-to-home transitional care program, and found that
patients with frailty and cognitive impairment had the highest
hospital readmission rate [19]. Another study in the United
States further explored the use of LCA grouping for improving
the prediction of superutilizers; however, that study was limited
to veterans experiencing homelessness [15]. Veterans who were
in an LCA group representing older, male, White, unmarried,
and disabled patients proved most likely to be superutilizers.
However, none of these studies explored the Medicaid
population (with a high percentage of pediatric patients),
assessed the LCA classes in separate diagnostic subpopulations
in addition to the full population, or compared the value of LCA
classes in predicting PHUs compared to a standard/complex
utilization prediction model.

Practical Implications
Health care providers increasingly use risk stratification tools
to manage their patient populations. However, providers often
do not have access to insurance claims data and use local EHRs
to risk stratify patients and predict PHUs [6,7,28]. Despite the
advances in using unique EHR data in improving risk prediction
[29-34], quality issues render EHR data challenging to use in
complex predictive models of utilization [35-38]. Using an
unsupervised methodology to classify underlying diagnostic
and medications can enable providers to surmount some of these
deficiencies and improve the prediction of PHUs using EHR
data [37]. Furthermore, LCA and similar classification
approaches can help providers to better understand the unique
needs of their underlying patient populations and to better target
their population health interventions [39]. Nonetheless, fully
automating the LCA classes, and excluding clinical feedback
in the process, may result in identifying subpopulations that
may not provide a meaningful clinical context for targeted care
management.

Limitations
Our study has several limitations. First, the results of our LCA
approach, and the improvement of the PHU prediction, may not
generalize to other populations (eg, older adults, Medicare),
settings (eg, inpatient only), or data sources (eg, EHRs). Future
research should explore the use of LCA in new populations and
settings using alternate data sources. Second, our specific
definition for PHU (ie, percentile of cost and time period) may
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not fit all populations. The risk stratification research community
should offer a harmonized definition of PHU so that various
research findings on PHUs can be compared effectively to
establish generalizable evidence. Third, results of the logistic
regression should be interpreted with caution as race and
ethnicity are likely to be closely linked to differences in health
care coverage and quality rather than being directly related to
PHU [40,41]. Fourth, although the LCA approach automates
the classification of the populations, clinical feedback is still
key to produce useful results. Hence, the LCA process may
become more complex to incorporate in clinical settings
compared to the traditional regression models such as ACGs
[1,21]. Finally, our selection of the diagnostic subpopulations
was based on subjective feedback provided by clinical experts.
Future research should examine a mix of qualitative and
quantitative methods to normalize and expedite this process.
Moreover, with even ideal classification of high-cost health care
users, effective operational use of these classes in clinical and
operational settings remains to be determined.

Conclusion
A small percentage of patients use most of the health care
services continuously over extended periods. We used LCA,
an unsupervised clustering approach, to automate the process
of extracting classes of comorbidity and medication probabilities
for individual patients that can be effectively used in predicting
PHUs. The latent classes highlight broad differences in health
care utilization patterns among groups of people, while also
providing a way to condense critical information into a smaller
set of variables to simplify the PHU prediction model and
improve its interpretability. From a care management
perspective, the LCA and PHU prediction models provide care
managers with insights on specific resource utilization variables
that are strongly associated with PHU. Future studies should
investigate the value of LCA-derived classes for predicting
PHUs in other health care settings with potentially different
underlying populations.
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