
Original Paper

Prediction Model of Osteonecrosis of the Femoral Head After
Femoral Neck Fracture: Machine Learning–Based Development
and Validation Study

Huan Wang1, MPH; Wei Wu2, BM; Chunxia Han1, BSc; Jiaqi Zheng1, MPH; Xinyu Cai3, BM; Shimin Chang4, PhD;

Junlong Shi5, MPA; Nan Xu6, MD; Zisheng Ai1, PhD
1Department of Medical Statistics, Tongji University School of Medicine, Shanghai, China
2Department of Spinal Surgery, Shanghai East Hospital, Shanghai, China
3Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, China
4Department of Orthopedic Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
5Medical Record Department, Shanghai Ninth People’s Hospital, Shanghai, China
6Department of Radiology, Shanghai East Hospital, Shanghai, China

Corresponding Author:
Zisheng Ai, PhD
Department of Medical Statistics
Tongji University School of Medicine
No. 1239 Singping Road
Shanghai, 200092
China
Phone: 86 1 377 438 0743
Fax: 86 021 65986270
Email: azs1966@126.com

Abstract

Background: The absolute number of femoral neck fractures (FNFs) is increasing; however, the prediction of traumatic femoral
head necrosis remains difficult. Machine learning algorithms have the potential to be superior to traditional prediction methods
for the prediction of traumatic femoral head necrosis.

Objective: The aim of this study is to use machine learning to construct a model for the analysis of risk factors and prediction
of osteonecrosis of the femoral head (ONFH) in patients with FNF after internal fixation.

Methods: We retrospectively collected preoperative, intraoperative, and postoperative clinical data of patients with FNF in 4
hospitals in Shanghai and followed up the patients for more than 2.5 years. A total of 259 patients with 43 variables were included
in the study. The data were randomly divided into a training set (181/259, 69.8%) and a validation set (78/259, 30.1%). External
data (n=376) were obtained from a retrospective cohort study of patients with FNF in 3 other hospitals. Least absolute shrinkage
and selection operator regression and the support vector machine algorithm were used for variable selection. Logistic regression,
random forest, support vector machine, and eXtreme Gradient Boosting (XGBoost) were used to develop the model on the training
set. The validation set was used to tune the model hyperparameters to determine the final prediction model, and the external data
were used to compare and evaluate the model performance. We compared the accuracy, discrimination, and calibration of the
models to identify the best machine learning algorithm for predicting ONFH. Shapley additive explanations and local interpretable
model-agnostic explanations were used to determine the interpretability of the black box model.

Results: A total of 11 variables were selected for the models. The XGBoost model performed best on the validation set and
external data. The accuracy, sensitivity, and area under the receiver operating characteristic curve of the model on the validation
set were 0.987, 0.929, and 0.992, respectively. The accuracy, sensitivity, specificity, and area under the receiver operating
characteristic curve of the model on the external data were 0.907, 0.807, 0.935, and 0.933, respectively, and the log-loss was
0.279. The calibration curve demonstrated good agreement between the predicted probability and actual risk. The interpretability
of the features and individual predictions were realized using the Shapley additive explanations and local interpretable
model-agnostic explanations algorithms. In addition, the XGBoost model was translated into a self-made web-based risk calculator
to estimate an individual’s probability of ONFH.
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Conclusions: Machine learning performs well in predicting ONFH after internal fixation of FNF. The 6-variable XGBoost
model predicted the risk of ONFH well and had good generalization ability on the external data, which can be used for the clinical
prediction of ONFH after internal fixation of FNF.

(JMIR Med Inform 2021;9(11):e30079) doi: 10.2196/30079
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Introduction

Background
The incidence of hip fractures is changing worldwide. In most
Western and Northern European countries, the incidence is
decreasing, as well as in Singapore [1-5]. The incidence in China
and America is stabilizing [6,7], whereas that in Germany,
Japan, and Korea is still increasing [8-10]. Although the
age-adjusted incidence of hip fractures is declining or stabilizing
in some countries, the absolute number of hip fractures and the
costs of associated medical care are still increasing. Femoral
neck fractures (FNFs) account for approximately 48.22% to
52.26% of hip fractures [9,11,12], and 23% of young patients
have osteonecrosis of the femoral head (ONFH) after internal
fixation [13]. Early stages of ONFH allow hip joint preservation
surgery, such as free fibula transplantation and osteotomy,
before collapse of the femoral head occurs [14]. A previous
study demonstrated that the short-term and medium-term success
rates of early hip-preserving treatment of ONFH were between
55% and 87% [15,16].

Published papers regarding ONFH prediction are primarily
based on changes in the blood circulation of the femoral head
by radiological investigations, such as single-photon emission
computed tomography [17]/single-photon emission computed
tomography-computed tomography [18], positron emission
tomography [19]/positron emission tomography-computed
tomography [20], magnetic resonance imaging [21]/dynamic
contrast-enhanced-magnetic resonance imaging [22], and digital
subtraction angiography [23]. The sample sizes of most studies
were not large enough, and their prediction results were not
confirmed in subsequent prospective studies. Cui et al [24] first
applied machine learning to predict small samples of ONFH.
However, the accuracy, sensitivity, and area under the receiver
operating characteristic curve (AUC) of the model based on
naive Bayes were all lower than 80%. Zheng et al [25] and Zhu
et al [26] developed a nomogram for the risk assessment of
femoral head necrosis based on a traditional regression analysis.
The AUCs of the validation cohort were 0.94 and 0.95.
However, these studies lacked external validation.

Prediction research using machine learning involves learning
models from sample data and making predictions and decisions
on the new data. The support vector machine (SVM) algorithm
exhibits good prediction performance and generalization ability
when dealing with small sample binary classification problems
[27]. Random forest (RF) and eXtreme Gradient Boosting
(XGBoost) are ensemble learning algorithms that establish
multiple models using the data and then integrate the modeling
results from all models. Currently, they are the most popular
models in the industry.

In machine learning, the black box describes models that cannot
be understood by examining their parameters (eg, neural network
and XGBoost) [28]. Interpretability is defined as the ability to
explain or provide meaning in understandable terms to a human.
The pursuit of interpretability of the black box model helps to
improve users’ trust in the machine learning model and provides
support for human decision-making. Arrieta et al [29]
summarized and distinguished between transparent models and
those that can be interpreted by post hoc explainability
techniques. Transparent models convey some degree of
interpretability by themselves, such as logistic regression (LR)
and decision trees. Post hoc explainability techniques are
model-agnostic methods, including local explanations,
explanations by simplification, and feature relevance explanation
techniques. Further exploration based on these methods could
help overcome the difficulties related to explainability and make
the machine learning models more persuasive and dependable.

Objectives
This study aims to explore and compare the application value
of different machine learning algorithms for the prediction of
ONFH after internal fixation of FNF and to develop a prediction
model of ONFH based on a machine learning algorithm. In this
study, the development and validation of the prediction model
was guided by the Prediction Model Risk of Bias Assessment
Tool (PROBAST) [30] and adhered to the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) [31] statement for reporting. To provide
appropriate models to the clinic, the design, implementation,
and report also considered the 20 key issues raised by Vollmer
et al [32] regarding transparency, reproducibility, ethics, and
effectiveness of the study.

Methods

Study Population
This multicenter retrospective follow-up study was performed
at least 30 months after follow-up in patients undergoing internal
fixation of FNFs. The study population comprised patients with
FNF with internal fixation who were discharged from Shanghai
Ninth People’s Hospital, Dongfang Hospital, and Yangpu
District Central Hospital from January 1, 2015, to May 1, 2018,
and the Tenth People’s Hospital from January 1, 2017, to May
1, 2018. By searching the inpatient electronic medical record
system, medical imaging information system, laboratory
information system, manual reading of cases, and follow-up,
we collected 47 clinical features from 316 patients with FNF.
After excluding patients who were lost to follow-up or who
died, 259 patients with FNF and associated 43 variables were
included in this study. The external data (n=376) were obtained
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from our previous retrospective cohort study [25], which
collected data from a cohort of patients with FNFs from May
2013 to January 2017 at Shanghai Sixth Hospital, Tenth
Hospital, and Tongji Hospital. Two patients aged >75 years
were excluded.

The inclusion criteria were as follows: (1) patients with FNF
treated with internal fixation aged between 18 and 75 years, (2)
patients with FNF with complete baseline data, (3) follow-up
time ≥30 months, (4) The American Society of Anesthesiologists
anesthesia risk of approximately grade I-III, and (5) no moderate
or severe pain or limitation of movement of the injured hip side
that occurred before the fracture. Exclusion criteria included
the following: (1) patients with FNF with pathological fractures
or old fractures admitted for >2 weeks after injury; (2) patients
with failed internal fixation operation; (3) patients with a history
of malignant tumors, nontraumatic fractures, ipsilateral lower
limb, or other fractures; (4) patients with a history of long-term
diving, alcohol abuse, and fluoroquinolone, antiplatelet drug,
or hormone use; (5) patients with multiple fractures at the same
site, injuries on the opposite side, or fracture of both lower limbs
in the past 6 months; (6) patients who experienced acute
myocardial infarction, cerebrovascular accident, severe trauma,
or major operation within half a year; (7) patients with vascular
transplantation or free fibula transplantation during internal
fixation; and (8) patients with poor compliance. The diagnosis
of ONFH was based on the updated version of the Association
Research Circulation Osseous grading system [14], which was
displayed and approved at the Association Research Circulation
Osseous conference in Dalian, China, in 2019, and was used at
the same time as the ONFH Chinese grading system developed
in China in 2015 [33].

Ethics Statement
The protocol for this research project was approved by the
Medical and Life Science Ethics Committee of Tongji
University (2019tjdx285; date June 18, 2019). Given the
retrospective nature of this study, the requirement for informed
consent was waived.

Independent Variables (Features)
A total of 47 clinical features were collected, and features with
missing values >20% were excluded. Overall, 43 candidate
variables were included in the following categories: (1)
demographic information: age, sex, smoking, drinking, and
age-adjusted Charlson Comorbidity Index [34]; (2) fracture
related: injury cause [35], injured side, fracture position,
impaction, preoperative displacement, vertical axis of the neck
angle [36], and Garden classification [37]; (3) preoperative
biochemical characteristics: total protein, albumin,
albumin/globulin, total bilirubin, alanine aminotransferase,
aspartate aminotransferase, creatinine, uric acid, and urea
nitrogen; (4) preoperative routine blood parameters: red blood
cells, hemoglobin, white blood cells, platelets, and hematocrit;
(5) preoperative coagulation parameters: prothrombin time,
fibrinogen, activated partial thromboplastin time, and
international normalized ratio; (6) surgery-related parameters:
American Society of Anesthesiologists grade, time to surgery,
type of anesthesia, surgical treatment, and surgical method; (7)
postoperative related characteristics: reduction quality [38],

Lowell curve, Gotfried reduction [39], and femoral neck
shortening [40]; and (8) follow-up information: interval to part
weightbearing, interval to weightbearing, implant removal, and
visual analog scale (VAS) score [41]. The values and definitions
of the variables are presented in Multimedia Appendix 1.

Data Preprocessing
Outlier detection was performed on the raw data. Each source
of outlier was checked by looking through the medical history
twice, so that we knew whether the value of the outlier was true.
The errors caused by incorrect manual collection were rectified.
In this study, the proportion of missing variables was <5% and
was substituted with the mean value. The original data, such as
blood biochemical indices, were continuous variables, which
were converted into low, normal, and high categorical variables
according to clinical significance. According to the modeling
requirements, categorical variables were transformed into
dummy variables. Standardization of continuous variables was
not a necessary step in preprocessing. Although there were few
continuous variables included in this study, we compared the
effects of standardization with nonstandardization during the
modeling process. Finally, the processed data were randomly
divided into a training set and validation set at a ratio of 7:3.

Development of Prediction Models

Data Balance
The ratio of ONFH to non-ONFH was 1:5, which is unbalanced.
When unbalanced data are used to fit the model, the
classification interface will be biased toward the minority,
resulting in low sensitivity and high specificity [42]. To address
this issue, we used the synthetic minority oversampling
technique (SMOTE) algorithm to balance the training set. The
steps of the SMOTE algorithm [43] are as follows: (1) for each
sample X in the minority sample set, use the Euclidean distance
as the standard to calculate the distance from all samples in the
minority sample set to obtain its K nearest neighbors; and (2)
set the sampling ratio according to the sample imbalance ratio
and determine the sampling magnification N. For each minority
sample X, randomly select several samples from its K nearest
neighbors, assuming that the selected nearest neighbor is xn;
(3) for each randomly selected neighbor xn, combine the original
sample to construct a new sample according to the following

formula: where Xj is the sample in a few

classes used to synthesize new samples, is the nearest
neighbor. Although the features of adjacent points in the feature
space are similar, the newly synthesized sample set will not
affect the spatial boundary of the original minority samples.

Variable Selection
A large amount of collected clinical data will inevitably contain
redundant features and noise data, which will lead to overfitting
in modeling and cannot be effectively classified. Variable
selection is a process that can remove irrelevant and redundant
features and reduce the impact of noise data on classifier
performance to a certain extent [44]. We used a combination
of least absolute shrinkage and selection operator (LASSO)
regression and the SVM algorithm for variable selection.
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Modeling and Parameter Adjustment
Four classification algorithms, LR, RF, SVM, and XGBoost,
were used to establish the models. The parameter learning curve,
grid search, and cross-validation methods were used to adjust
the parameters of the model, and the best parameter combination
was determined by checking the accuracy, sensitivity, and AUC
of the model on the validation set. The parameter learning curve
is a curve with different parameter values as the abscissa, and
the model score under different parameter values as the ordinate.
We can see that the change in trend of the model evaluation
index under different parameter values, initially obtain a small
parameter search interval, or select the value of the best point
of the model performance as the optimal parameter value. Grid
search refers to the selection of all candidate parameters through
loop traversal. The system tries every possibility, and the
best-performing parameter is the final result, which is the
process of training and comparison. Cross-validation refers to
randomly dividing the data set into K parts without replacement,
k-1 parts are used to train the model, and the remaining part is
used for performance evaluation. This process was repeated K
times to obtain k models and performance evaluation results.

Evaluation of Model Fitting Effect
The aim of parameter tuning is to minimize the generalization
error of the model. The generalization error was used to measure
the accuracy of the model with unknown data in machine
learning. A model that is too simple or too complex will cause
high generalization errors. If the model is too complex, it will
overfit; if the model is too simple, it will underfit. By comparing
the sample learning curves of the training with validation sets,
we can observe the fitting effect of the model. The sample
learning curve is drawn with the number of different training
samples as the abscissa, and the accuracy of the training or
validation sets under the number of samples as the ordinate.
When the errors of the training and validation sets converge but
the accuracy is low, it indicates a high bias. When the deviation
of the upper left corner of the curve is very large and the
accuracy of the training and validation sets is very low, the
model is underfitted. When the errors of the training and
validation sets are large, there is high variance; the variance in
the upper right corner of the curve is high, the accuracy of the
training and validation sets are too different, and the model is
overfitted. If one of the biases and variances is large, this
indicates that the generalization error is large.

Model Evaluation and Comparison
Confusion matrix indicates the count of the true outcome and
prediction under different labels (ONFH or non-ONFH). A
series of indicators can be calculated using the confusion matrix.
The accuracy of the model is a key indicator for measuring the
quality of the model. According to PROBAST [30], reviewers
should evaluate the model performance, including discrimination
and calibration ability. The receiver operating characteristic
(ROC) curve reflects the dynamic relationship between the
false-positive rate (FPR) and sensitivity (also known as recall).
Different FPRs and sensitivities were obtained by classifying
different predicted values corresponding to each point on the
ROC curve. The area under the ROC curve is known as AUC,
which is also considered as the possibility of the fact that

sensitivity is larger than FPR. In addition, the precision-recall
(PR) curve reflects the dynamic relationship between the
precision and sensitivity. The area under the PR curve equals
the average precision (AP), which is the AP at all thresholds.
A larger AP usually indicates better discrimination ability, so
does AUC. In particular, PR curves are available for unbalanced
data [45]. By evaluating the fraction of true positives among
positive predictions and actual positives (real ONFH patients),
we illustrated the discrimination ability more properly and
specifically. In this study, sensitivity, specificity, F1 score, ROC
curve, and PR curve were used to evaluate discrimination ability.

Calibration includes log-loss and the calibration curve. Log-loss
is the negative logarithm of the probability of the real probability
for a given probability classifier under the condition of
prediction probability. A smaller value of the log-likelihood
function indicates a more accurate prediction. In this study, all
samples were reordered according to the predicted probability
and divided into 10 equal groups. The calibration curve showed
the distance between the predicted probabilities and the true
incidence of ONFH in each group. A curve closer to the ideal
line (y=x) shows a better calibration ability of the model.

Model Interpretability
The black box model is explained through both global and local
explanations. Shapley additive explanations (SHAP) is based
on the theoretically optimal Shapley values [28]. The Shapley
value explains the prediction of instance x by computing the
contribution of each feature to the prediction. For each
prediction sample, the model produces a prediction value, and
the sum or average of the Shapley absolute value of each feature
of all individuals is the overall feature importance. Features
with large absolute Shapley values are very important; therefore,
the importance of features can be ranked from a global
perspective according to the absolute value of Shapley. The
local interpretable model-agnostic explanations (LIME)
algorithm obtains the probability value of each category by
selecting specific samples in the data set and explains the reason
for the distribution probability. LIME decomposes the sample
space into parts and attempts to use simple models (such as
linear models) that are easy to explain to fit complex models
that are not easy to explain. LIME focuses on training local
surrogate models to explain individual predictions [28].

Statistical Analysis
Qualitative variables are expressed as ratios or constituent ratios.
The Kolmogorov-Smirnov test was used to test the normality
of the quantitative variables. Variables that fit the normal
distribution were expressed as the mean (SD), and variables
that did not fit the normal distribution were expressed as the
median (25th percentile [P25] and 75th percentile [P75]). The
Kendall correlation coefficient and Spearman correlation
coefficient were used to describe the correlation between the
qualitative and quantitative variables, respectively. A coefficient
greater than 0.6 indicates that there is a correlation between the
2 variables. LASSO regression was used to eliminate
multicollinearity. Statistical analysis was performed using
Python 3.7.4 (Anaconda 4.9.2). The main Python library and
version information used for modeling are listed in Table 1.
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The flowchart of the study is shown in Figure 1.

Table 1. Python library and function.

FunctionVersionLibrary

Machine learning0.24.1scikit-learn

Scientific computing1.16.5NumPy

Data analysis0.25.1pandas

Visualization3.3.4Matplotlib

Imbalanced data set0.0imblearn

Statistical computations0.12.2statsmodels

Gradient boosting framework1.3.3XGBoosta

Explain the output of machine learning model0.39.0SHAPb

Explain the output of machine learning model0.2.0.1LIMEc

Web development1.1.1Flask

HTTP server20.1.0Gunicorn

aXGBoost: eXtreme Gradient Boosting.
bSHAP: Shapley additive explanations.
cLIME: local interpretable model-agnostic explanations.

Figure 1. Flowchart of the study. LASSO: least absolute shrinkage and selection operator; LIME: local interpretable model-agnostic explanations; LR:
logistic regression; ONFH: osteonecrosis of the femoral head; RF: random forest; SHAP: Shapley additive explanations; SMOTE: synthetic minority
oversampling technique; SVM: support vector machine; XGBoost: eXtreme Gradient Boosting.
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Results

Patient Characteristics
A total of 259 patients with FNF were included in this study,
comprising 124 (47.8%) men and 135 (52.1%) women, and the
median (P25, P75) age was 57 (49, 62) years. A total of 43
patients experienced ONFH after internal fixation surgery, with
an incidence of ONFH of 16.6%. All data were randomly
divided into a training set (181/259, 69.8%) and a validation
set (78/259, 30.1%) at a ratio of 7:3 (randomstate=420). There
were 29 patients with ONFH and 152 patients without ONFH
in the training set. After using the SMOTE algorithm to
oversample the femoral head necrosis group in the training set,
the number of ONFH and non-ONFH groups reached a balance
(152 cases in each group). There were 14 patients with ONFH
and 64 patients without ONFH in the validation set. Patient
characteristics in the 3 data sets are presented in Multimedia

Appendix 2. Overall, the composition of the patients’ variables
in the 3 data sets was the same. The results of the feature
correlation analysis are presented in Multimedia Appendix 3.

Variable Selection
First, we used the grid search and 10-fold cross-validation
estimators (GridSearchCV) to explore the LASSO regression
regularization parameter α (Figure 2A). The results of the
cross-validation showed that the optimal α was 0.0016. Second,
we used the LassoCV object that sets its α parameter
automatically from the data by internal cross-validation and
used external cross-validation to evaluate the reliability of the
selection of α. After 3 cross validations, we obtained 3 alphas
for different subsets of the data, which were 0.00646, 0.00281,
and 0.00281. However, the scores for these alphas differed
substantially, with 0.49697, 0.76142, and 0, respectively. It can
be seen that the reliability of LASSO for selecting variables is
not very high.

Figure 2. The process of exploring the optimal feature subset. (A) Grid search and 10-fold cross-validation estimators of least absolute shrinkage and
selection operator regression regularization parameter α. The y-axis represents the average and SD of 10 cross validations. (B) Prediction results of
support vector machine (SVM) with different validation samples under 4 kernel functions of linear, polynomial, radial basis function (RBF) and sigmoid.
(C) Best α that makes the SVM model have the best accuracy, sensitivity, and area under the receiver operating characteristic curve performance on
the validation set. (D) Comparison of standardized with nonstandardized results of continuous variables under different support vector machine parameters
C (kernel=linear). AUC: area under the receiver operating characteristic curve; CV: cross validation.

Therefore, to obtain a reliable α and identify the optimal feature
subset, the feature subset under the 10-fold cross-validation was
first introduced into the SVM classifier for modeling. The
performance of the SVM classifier on the validation set using
different kernel functions was determined (other parameters
used default values). Figure 2B shows the prediction results of

SVM with different validation samples under 4 kernel functions:
linear, polynomial, radial basis function, and sigmoid. Figure
2B shows that the linear kernel performs best. Next, we
identified an α between 0.001 and 0.02, which made the SVM
model have the best accuracy, sensitivity, and AUC performance
on the validation set. Figure 2C shows that when the α was
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0.017, the total accuracy, sensitivity, and AUC were the best.
The optimal feature subset included age, sex, time to surgery,
injury cause, low energy, fracture position, subcapital, fracture
position, neck-to-head, Garden classification Ⅳ, reduction
quality, interval to weightbearing, femoral neck shortening, and
VAS score.

In addition, we compared the results of standardization with
nonstandardization on the accuracy, sensitivity, and AUC of
the verification set under different SVM parameters C
(kernel=linear). In Figure 2D, the solid line is the result of no
standardized treatment for continuous variables, and the dotted
line is the result of standardization. The figure shows that the
performance of the model decreased after the standardization

of continuous variables. Therefore, continuous variables were
not standardized.

Modeling and Parameter Tuning
After confirming the optimal feature subset, LR, RF, SVM, and
XGBoost algorithms were selected to fit the models on the
balanced training set. Table 2 presents the comparison of
accuracy, sensitivity, and AUC on the validation set before and
after tuning the parameters. The LR and SVM models did not
significantly improve. However, the accuracy, sensitivity, and
AUC of the RF model were increased by 0.012, 0.072, and
0.006, respectively, and those of the XGBoost model were
increased by 0.025, 0.072, and 0.003, respectively. The
hyperparameters tuned in each of the 4 classifiers are listed in
Table 3.

Table 2. Comparison of model performance on the validation set.

After tuningBefore tuningModel

AUCSensitivityAccuracyAUCaSensitivityAccuracy

0.9840.9290.9620.9820.9290.962LRb

0.9910.9290.9740.9850.8570.962RFc

0.9790.9290.9620.9730.9290.962SVMd

0.9920.9290.9870.9890.8570.962XGBooste

aAUC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eXGBoost: eXtreme Gradient Boosting.
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Table 3. Hyperparameter configuration for algorithms.

ResultAdjustment rangeInitial valueAlgorithm and parameter name

LRa

L2(L1, L2)L1Penalty

0.5(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1)0.3C

RFb

11Range (0, 200, 10)100n_estimators

8(1, 3, 5, 6, 7, 8, 9, 10, 15, 20)8max_depth

5(2, 3, 4, 5, 6, 7, 8)3max_features

2(1, 2, 3, 4)1min_samples_leaf

SVMc

Linear(Linear, polynomial, rbf, sigmoid)RbfKernel

7.37Range (0.01, 20, 20)1C

XGBoostd

51Range (0, 200, 10)100n_estimators

8Range (1, 20, 1)6max_depth

7(2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20)1min_child_weight

0.335(0.3, 0.31, 0.32, 0.33, 0.335, 0.36,
0.38, 0.4)

0.3learning_rate

1(0, 1, 2, 3, 4)0gamma

aLR: logistic regression.
bRF: random forest.
cSVM: support vector machine.
dXGBoost: eXtreme Gradient Boosting.

Figure 3 shows the ROC curves of the 4 models for the training
and validation sets. The AUC values of each algorithm were
similar, and the XGBoost model had the highest AUC value in
the validation set. Figure 4 shows the learning processes of the
4 models. Except for the RF model, which exhibited slight

overfitting when the number of training samples was less than
250, all other models fit well. The parameter configuration of
the machine learning models is shown in Multimedia Appendix
4.
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Figure 3. Receiver operating characteristic curves of the logistic regression, random forest, support vector machine (SVM) and eXtreme Gradient
Boosting (XGBoost) prediction models on the training set and the validation set, which indicate discrimination ability. The more convex the upper left
corner of the curve, the better. AUC: area under the receiver operating characteristic curve.
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Figure 4. The learning curves of the logistic regression, random forest, support vector machine (SVM) and eXtreme Gradient Boosting (XGBoost)
prediction models on the training and validation sets. The 2 curves of logistic regression, support vector machine and XGBoost model are consistent at
a higher accuracy level, which indicates that the model is well fitted for training. The 2 curves of random forest are not well merged, indicating that
they are slightly overfitted.

Model Evaluation and Comparison
Table 4 presents the confusion matrix of the classification results
for the 4 models on the external data. XGBoost generated the
maximum number of ONFH (67), and SVM generated the
maximum number of non-OFNH (278). Table 5 presents the
evaluation results of the 4 models for the external validation
data. The XGBoost model exhibited the highest accuracy
(0.907). With the exception of the specificity of the XGBoost
model being lower than SVM (0.949), the sensitivity (0.807),
AUC (0.933), and F1 score (0.793) were all higher than those

of the other models. In addition, the XGBoost model presented
the smallest log-loss (0.279). A comparison of the ROC curves
of the 4 models is shown in Figure 5A. The AUCs of the 4
models were above 0.9, and the XGBoost model achieved the
largest AUC. The shapes of the 4 ROC curves were similar. A
comparison of the PR curves of the 4 models is shown in Figure
5B. When the sensitivity of the prediction model was greater
than 0.7, the XGBoost model had the highest prediction
precision. In addition, the LR model achieved the largest AP.
The calibration curve is shown in Figure 6, and the curve of the
XGBoost model was closest to the ideal calibrated line (y=x).
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Table 4. Confusion matrices of the prediction models of ONFHa.

PredictiveModel and actual

Non-ONFHONFH

LRb

1964ONFH

27221Non-ONFH

RFc

1964ONFH

26924Non-ONFH

SVMd

2261ONFH

27815Non-ONFH

XGBooste

1667ONFH

27419Non-ONFH

aONFH: osteonecrosis of the femoral head.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eXGBoost: eXtreme Gradient Boosting.

Table 5. Performance comparison on external data.

CalibrationDiscriminationAccuracyModel

Log-lossF1 scoreAUCaSpecificitySensitivity

0.2880.7620.9270.9280.7710.894LRb

0.7750.7490.9100.9180.7710.886RFc

0.3270.7670.9040.9490.7350.901SVMd

0.2790.7930.9330.9350.8070.907XGBooste

aAUC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cRF: random forest.
dSVM: support vector machine.
eXGBoost: eXtreme Gradient Boosting.
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Figure 5. (A) Comparison of receiver operating characteristic curves of the 4 models on external data. The curve closer to the upper left corner showed
better overall discrimination ability. (B) Comparison of precision-recall curves of the 4 models on external data. The curve closer to the upper right
corner also showed the ability to combine precision with sensitivity. AP: average precision; AUC: area under the receiver operating characteristic curve;
ROC: receiver operating characteristic; SVM: support vector machine; XGBoost: eXtreme Gradient Boosting.

Figure 6. Comparison of calibration curves of the 4 models on external data. The calibration curve of the model is consistent with the ideal calibrated
line (y=x), indicating that the predicted value of the model is close to the actual probability of the outcome. SVM: support vector machine; XGBoost:
eXtreme Gradient Boosting.
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Interpretability of the Prediction Model
On the basis of the above comparisons, we determined that the
XGBoost model was the best predictive model for ONFH. Take
the average of the absolute value of the SHAP of each feature
as the importance of the feature. The predictor variables of the
XGBoost model and their importance ranking are as follows:
reduction quality (1.759), VAS score (1.483), Garden
classification (0.299), time to surgery (0.247), cause of injury

(0.127), and fracture position (0.090). Figure 7 shows a summary
of the SHAP values of each feature in each sample. The color
represents the feature value, and the redder the color, the greater
the feature value. Therefore, we can see that the VAS score,
Garden classification IV, time to surgery, and fracture
position_subcapital are all risk factors for ONFH. Reduction
quality_good and injury cause_low energy are protective factors
for femoral head necrosis.

Figure 7. Global explanations of the eXtreme Gradient Boosting model based on Shapley additive explanations (SHAP) values. Summary of the SHAP
values of each feature in each sample. The abscissa is the SHAP value (the impact on the model output), the ordinate is the different features, a point
represents a sample, and the color represents the feature value. The larger the feature value is, the redder the color, and the smaller the feature is, the
bluer the color. VAS: visual analog scale.

Figure 8 shows the decision process for the single-sample
prediction. These are local explanations of XGBoost model
based on SHAP and LIME. The true outcome of the first sample
is non-ONFH, and the predicted outcome is non-ONFH, as
shown in Figure 8A. The true outcome of the second sample is
ONFH, and the predicted outcome is ONFH, as shown in Figure
8B. The 2 figures on the left and the 2 figures on the right are
the results of local explanations by the SHAP and LIME
algorithms, respectively. As can be seen from A1 and A2, both

SHAP and LIME show that the features determined the outcome
of non-ONFH, including reduction quality_good (1), VAS score
(0), time to surgery (64), Garden classification_IV (0), and
injury cause_Low energy (1). The difference is that LIME can
provide a predicted probability of non-ONFH of 0.97. Similarly,
B1 and B2 show that the features determined the outcome of
ONFH, including reduction quality_good (0), VAS score (3),
fracture position_subcapital (1), and time to surgery (85). LIME
also shows that the prediction probability of the ONFH is 0.97.
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Figure 8. Local explanations of the XGBoost model. (A) The true outcome is nonosteonecrosis of the femoral head (ONFH), and the predicted outcome
is non-ONFH. (B) The true outcome is ONFH, and the predicted outcome is ONFH. A1 and B1 are local explanations realized by Shapley additive
explanations. Variables in blue decided the sample to be classified into category non-ONFH, and variables in red decided the sample to be classified
into category ONFH. A2 and B2 are local explanations realized by local interpretable model-agnostic explanation (LIME). LIME can obtain the
probability value of each category, and showing which variables determine the sample to be classified into category non-ONFH (blue) and which
variables determine the samples to be classified into category ONFH (orange), specifically listing the numerical size of the samples in these features.
VAS: visual analog scale.

Discussion

Principal Findings
In this study, we compared the application of different machine
learning algorithms in the prediction of femoral head necrosis
after internal fixation of FNFs and obtained a 6-variable
XGBoost model that could be used for the clinical prediction
of traumatic ONFH. This model was translated into a self-made
web-based risk calculator to estimate an individual’s probability
of ONFH. The predictors included reduction quality, VAS score,
Garden classification, time to surgery, cause of injury, and
fracture position. This prediction model exhibited good
discrimination and calibration and showed good generalization
performance on external data. Performance on the internal
validation set yielded an accuracy of 0.987, sensitivity of 0.929,
and AUC of 0.992. Performance on external data revealed an
accuracy of 0.907, sensitivity of 0.807, specificity of 0.935,
AUC of 0.933, F1 score of 0.793, and log-loss of 0.279. The
web-based risk calculator can be found on the Herokuapp
website [46].

While constructing the predictive model, we also conducted an
excavation on the predictive variables of ONFH after internal
surgery for FNF. In the design stage of the study, we made our
best effort to collect relevant injury and clinical information
throughout the clinical course, such as preoperative coagulation
indicators, preoperative routine blood tests, and other indicators
that have not been analyzed in previous studies. However, these
indicators did not pass variable selection. A new British study
[47] revealed that poor nutritional status was correlated with
mortality and worse postoperative outcomes in patients with
FNF. We did not find any indices related to femoral head
necrosis on preoperative biochemical examination. Huang et al
[48] reported that compared with open reduction in pursuit of
anatomical reduction, which may cause vascular injury, positive

support can provide reasonable reduction support and reduce
the occurrence of vascular necrosis. When Gotfried reduction
had a positive buttress pattern, the medial cortex of the distal
end of the fracture straddled the medial femoral neck support
bridge due to sliding compression of the femoral head. The
special stress transfer effect of the arch structure can effectively
resist the longitudinal shear force between the fracture pieces
and stabilize the fracture. We used Gotfried reduction as a
predictive variable to participate in the model. However, the
overall performance of the model decreased. This is similar to
the results reported by Zhao et al [49]. Other controversial risk
factors that might be related to femoral head necrosis, such as
early weight bearing, removal of internal fixation implants, and
reduction methods, were not selected by the classification model.

Among the 6 predictors in the XGBoost model, poor reduction,
severe fracture displacement, and delay in operation time were
clear risk factors for ONFH after internal fixation of FNF. The
VAS pain score is widely used in clinical prognosis research
and has high reliability and validity. After internal fixation,
patients generally experience slight soreness when they get up
and sit down and when the temperature suddenly drops. When
osteocytes of the hip joint change histologically, patients may
experience pain. Through finite element analysis based on
biomechanics, Li et al [50] reported that when necrosis occurs,
the increase in mechanical load on the hip joint in patient’s daily
life will increase the area of necrotic lesions, especially lesions
in the anterior and lateral areas of the femoral head, which are
more likely to accelerate expansion and collapse in advance.
The causes and mechanisms of postoperative hip pain have not
been fully explored and require further investigation. A
subcapital fracture indicates that the fracture line is completely
located at the bottom of the femoral head. When a subcapital
fracture of the femoral neck occurs, it is usually accompanied
by a rupture of the medial and lateral femoral circumflex artery,
in which the epiphyseal artery from the medial femoral
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circumflex artery supplies most of the blood to the femoral head.
Subcapital fractures are usually accompanied by rupture of the
medial and lateral femoral circumflex arteries. However, the
epiphyseal artery from the medial circumflex femoral artery
supplies most of the blood to the femoral head. The lateral
epiphyseal artery is the primary blood vessel for the femoral
head. Injury causes most of the blood supply to the femoral
head to be interrupted. Only the internal artery of the round
ligament supplies the blood. Its blood vessels are thin and supply
the femoral head over a small range, but it cannot provide the
necessary blood volume to the entire femoral head. Therefore,
the necrosis rate of subcapital fractures is higher [51]. Different
trauma mechanisms cause different fracture injuries. In FNFs
caused by high-energy traumas, such as road traffic accidents
and falling from a height, the displacement of the broken end
is usually large, often tearing the ascending cervical branches
that stem off the arterial ring supply formed by the circumflex
arteries, destroying the blood supply to the femoral head and
causing nonunion of the fracture or complications, such as
femoral head necrosis [52]. The cause of injury has also been
considered a risk factor for femoral head necrosis [53].

It is worth noting that before the categorical variables entered
the machine learning classifier to fit the model, they were
converted into dummy variables according to the category. The
Garden classification is a 4-category variable. After XGBoost
modeling, only Garden classification IV became a predictor
variable. At this time, Garden classification is no longer a
4-category variable but becomes a 2-category variable of Garden
classification_IV.

Obtaining a sufficient number of training samples is difficult
and time-consuming for the prediction of femoral head necrosis
after FNF. LR, RF, SVM, and XGBoost can learn effectively
from a limited training set. As a strongly integrated algorithm,
the performance of XGBoost was not only better than that of
SVM and RF but also more accurate and reliable than traditional
LR in our study.

In addition, we opened the black box of machine learning with
the help of post hoc interpretability techniques of the machine
learning model. Through the global interpretation based on
SHAP, we can understand the relationship between predictors
and outcomes in the XGBoot model. The variables of reduction
quality_good and injury cause_low energy correlated negatively
with the outcomes and were protective factors; VAS score,
Garden classification_IV, time to surgery, and fracture
position_subcapital correlated positively with the outcomes and
were risk factors. Both SHAP and LIME can provide local
explanations for a single sample. The explanatory plot produced
by the SHAP is close to the one generated by LIME in that it
shows the variables’ names and contributions that are used in
the explanation [54]. The advantage of the LIME method is that
the explanation is based on the local regression model, which
allows physicians to make statements about changes in

explanations for changes in the features of the patient to be
explained. The disadvantage is that the instability of the
explanations is insufficient. For a single sample, if you get the
explanation twice, you may have 2 different explanations.
Comparably, the principle of the SHAP method is strictly
improved from the classical Shapley value estimation method
[55], so the interpretation results of the SHAP algorithm have
variable consistency and model stability.

Limitations
This study has several limitations. First, the number of ONFH
cases was insufficient. According to the requirements of
PROBAST for the number of participants in clinical events, the
ratio of participants in clinical events to the number of candidate
predictors was at least 10. There were 6 predictors in the model,
and only 43 patients had ONFH. However, we used the SMOTE
algorithm to balance the training set and increase the number
of ONFH to 152 cases. Second, the sensitivity and F1 score on
the external data were approximately 0.8, which is low compared
with other indicators. When using the LIME algorithm to explain
individual predictions, we discovered that most samples used
only 4 variables for prediction. Therefore, the reasons for the
low sensitivity and F1 score may include the following: (1) the
number of ONFH is insufficient and (2) there are still risk factors
related to ONFH that have not been identified. In the future, we
will conduct prospective validation based on this model,
continue to explore important risk factors for ONFH, and modify
the model to further improve the accuracy of the XGBoost
prediction model.

Comparison With Prior Work
The patients with FNF in this study were from 6 hospitals in
Shanghai, which are more representative. We included a wider
range of candidate variables. Instead of using traditional
single-variable analysis for variable selection, LASSO was
integrated into the SVM as a new variable selection method.
The performance of our model on the validation set was better
than that of the naive Bayesian prediction model proposed by
Cui et al [24], whose accuracy, sensitivity, and AUC were 0.744,
0.742, and 0.746, respectively. The AUC of our model on the
validation set was higher than that of the hybrid nomogram
based on LR developed by Zhu et al (0.948) [26] and the
nomogram based on Cox regression developed by Zheng et al
(0.97) [25]. It also exhibited satisfactory generalization ability
on external data, with accuracy, specificity, AUC, and log-loss
values of 0.907, 0.935, 0.933, and 0.279, respectively.

Conclusions
Machine learning performs well in predicting ONFH after
internal fixation of FNF. The 6-variable XGBoost model predicts
the risk of ONFH well and has good generalization ability in
external data, which can be used for the clinical prediction of
ONFH after internal fixation of FNF.
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ONFH: osteonecrosis of the femoral head
PR: precision-recall
PROBAST: Prediction Model Risk of Bias Assessment Tool
RF: random forest
ROC: receiver operating characteristic
SHAP: Shapley additive explanations
SMOTE: synthetic minority oversampling technique
SVM: support vector machine
VAS: visual analog scale
XGBoost: eXtreme Gradient Boosting
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