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Abstract

Background: Privacy isof increasing interest in the present big data era, particularly the privacy of medical data. Specifically,
differential privacy has emerged as the standard method for preservation of privacy during data analysis and publishing.

Objective: Using machine learning techniques, we applied differential privacy to medical data with diverse parameters and
checked the feasibility of our algorithms with synthetic data as well as the balance between data privacy and utility.

Methods: All data were normalized to a range between —1 and 1, and the bounded L aplacian method was applied to prevent
the generation of out-of-bound val ues after applying the differential privacy algorithm. To preservethe cardinality of the categorical
variables, we performed postprocessing via discretization. The algorithm was eval uated using both synthetic and real-world data
(from the el CU Collaborative Research Database). We evaluated the difference between the origina data and the perturbated
data using misclassification rates and the mean squared error for categorical data and continuous data, respectively. Further, we
compared the performance of classification models that predict in-hospital mortality using real-world data.

Results:  The misclassification rate of categorical variables ranged between 0.49 and 0.85 when the value of € was 0.1, and it

converged to O as € increased. When € was between 10 and 102, the misclassification rate rapidly dropped to 0. Similarly, the
mean squared error of the continuous variables decreased as € increased. The performance of the model devel oped from perturbed
data converged to that of the model developed from original data as € increased. In particular, the accuracy of a random forest

mode! developed from the original datawas 0.801, and this value ranged from 0.757 to 0.81 when € was 10 and 10, respectively.

Conclusions:  We applied local differential privacy to medical domain data, which are diverse and high dimensional. Higher
noise may offer enhanced privacy, but it simultaneously hinders utility. We should choose an appropriate degree of noise for data
perturbation to balance privacy and utility depending on specific situations.

(IMIR Med Inform 2021;9(11):€26914) doi: 10.2196/26914
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Introduction

Big dataisacorefactor in the renovation of medicine. The raw
data have low utility; however, applying agorithms such as
machine learning (ML) enables us to make the most of these
data [1]. Unlike rule-based systems, ML algorithms are data
driven and require a large amount of data. Particularly,
conventional ML approaches require centralized data for
learning. To obtain this substantial amount of data, it is
necessary to exchange data among different organizations to
develop an effective ML model.

However, the exchange of data between different parties causes
privacy problems, and there are increasing concerns about
privacy violations by large companies [2]. Medical data that
mostly contain sensitive information should be appropriately
protected when shared with third parties. The European Union’s
General Data Protection Regulation [3] and the United States
Health Insurance Portability and Accountability Act of 1996
(HIPAA) [4] recognize this problem and require users' privacy
to be strengthened. Medical datahave various distinct properties
in addition to their sensitive attributes. For example, serum
glucose levels are continuous, whereas medical histories are
usually recorded using categorical values. Medical data also
contain multimodal values. some of the data may be obtained
from blood tests, whereas others may originate from radiologic
and physical examination tests.

Deidentification is defined as “the removal or replacement of
personal identifiers so that it would be difficult to reestablish a
link between the individual and hisor her data[5].” Especialy,
intheHIPAA, dataisconsidered as deidentified when specified
data elements are removed [4]. Anonymization is defined as
“theirreversible removal of thelink between theindividual and
his or her medical record data to the degree that it would be
virtually impossible to reestablish the link [5].” In such a case,
the anonymized data could never be reidentified using the data
in the underlying data sets. There are three primary ways to
anonymize these data: suppression, generalization, and noise
addition [6]. Deidentification may not necessarily be
anonymized. That is, anonymization is a subset of
deidentification. Following anonymization, three main measures
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to identify the privacy risk can be evaluated: k-anonymity [7],
[-diversity [8], and t-closeness [9]. Deidentification tools, such
as ARX [10], offer seamless privacy protection through feature
generalization and the suppression of records.

Differential privacy [11], which entails a semantic model, is
another data privacy approach. Compared to syntactic
anonymity, it requires|ess domain knowledge and isinherently
robust to linkage attacks combined with domain knowledge.
Moreover, differential privacy is considered to be a de facto
standard for private data analysis or publishing [12,13].
Technology companies such as Apple and Google have
attempted to apply differential privacy to protect the privacy of
mobile data [14,15]. Moreover, the rapid development of the
Internet of Things (IoT) should consider privacy risk [16].
Researchers have been actively applying differential privacy to
the IoT, such as automatically driving cars [17] and sensors
[16]. In ML, personal information can be leaked. Applying
differential privacy to the deep learning model can overcome
thisthreat [18,19], and the health care domain is no exception.
Several studies have been performed in the health care domain.
For example, Kim et al [20] introduced a local differential
privacy algorithm for health data streams. Also, Suriyakumar
et a [21] investigated the feasibility of differentially private
stochastic gradient descent in a health care setting with the
influential function. Most studies focus on a data set that has
only afew features and focus on differential privacy inthe deep
learning model.

In this study, we focused on local differential privacy with
regard to multivariate medical data. We applied differential
privacy with diverse parameters and checked (1) the feasibility
of training our algorithmswith synthetic dataand (2) the balance
between data privacy and utility with regard to ML techniques.

Methods

Figure 1 presentsthe workflow employed to achieve differential
privacy in this study. When auser requests data, we perturb the

datausing the bounded L aplacian method (1) and discretization

postprocessing (M:) to provide high-fidelity data while
preserving the privacy of the original data.

Figure 1. Differentia privacy upon data request from third party users. The owner perturbs the original data to preserve privacy before sending the
data externaly. The third-party user can be either a curator or the fina user. <inline-graphic xlink:href="medinform_v9i11e26914 fig5.png"

xlink:type="simple" mimetype="image"/>:
xlink:type="simple" mimetype="image"/>: discretization postprocessing.
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The Value of € for Local Differential Privacy

Dwork et a [22] defined e-differential privacy asarandomized
function. For adjacent data Y, and Y,, function Kk is (g,

o)—differentialy privateif
Pik(Y)OS <e-Pk(Y,) OS] +0

where S [0 Range(k). Local differential privacy is a specific
casein which therandom function or perturbation is applied by
data owners, not by central aggregators.

Bounded L aplacian Method

Before applying local differential privacy, all variables were
normalized to arange between —1 and 1. First, we applied the
bounded L aplacian method. Because a conventional Laplacian
distribution yields an infinite boundary, it entails some
limitations when applied to clinical domains. For example,
respiratory rates, which are supposed to be a positive number,
may become negative after applying the conventional Laplacian
method, whichisillogical. There are two methodsto overcome
this problem: the truncation method and the bound method [23].
We focused on the latter to minimize the probability of data
manipulation because changes in data in the medical domain
may have a considerable impact on the desired outputs.

We used the bounded L aplacian function proposed by Holohan
et a [23], assuming that the input variable is within the output
domain. Givenb >0, W;: Q - D, for each q 0 D, we defined

the probability density function f® as;

o () 1 _lx-q
R T
where
_ AQ _ _1 _q-t _u—q
b= Thassy =1z (T )

We set 6=0,] (lower bound) as —1, u (upper bound) as 1, and
AQ as2inour experiments and adjusted € to measure the effect
of the privacy changes.

Discretization Postprocessing for Discrete Variables

Because we applied the bounded L aplacian method to perturb
the given data to a range between —1 and 1 in a continuous
manner, there are infinite possibilities for a given input. Many
medical domain variables are categorical (either ordina or
nominal), such asmedicosurgical histories. Therefore, following
the application of the bounded Laplacian method, additional
postprocessing was performed for categorical variables. We
distributed the intermediate output of the given data over the
Bernoulli distribution, similar to the method proposed by Yang
et al [17]. The perturbed datay 00 [-C,C] were separated into
m pieces, where misthe cardinality of theoriginal input variable
(apositive integer). We first shifted the range [-C,C] to [0, m]

by equally dividing the space, which resulted in % intervals.
Therefore, for given perturbed datay, we obtain the following:

2C 2C
—k-C<y< —(k+1)-C , ke{01,.., m}
m m

k< mOFO iy

-z
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After calculating k, the Bernoulli probability p was sampled
such that

=m(y+C)_ _ m(_‘y+C)_[m(y+C)|
2C 2C 2c |
which isthe distance between two adjacent possibilities. Finally,
we discretized the perturbed data y concerning the Bernoulli
probability p such that

¢ if B) =0
Lo -
2= 5"

—(k+1)-cC,

m

ifB(p)=1

where B denotes the Bernoulli distribution function.

Data Set for Validation

We used simulated (randomly generated) data for initial
validation to ensure that the bounded Laplacian method
functions as expected. To simulate real-world use, we used the
elCU Caollaborative Research Database [24]. First, to evaluate
the extent to which the proposed differential privacy algorithms
effectively perturbed the given origina data, we used the
misclassification rate for categorical variables and mean squared
error (MSE) for continuous variables when measuring the
similarity between two data sets. Second, to evaluate the adverse
effect of differential privacy on the utility of the data set, we
compared the accuracy of predicting the mortality rate following
intensive care unit admission using Acute Physiology and
Chronic Health Evaluation (APACHE) [25] scoring variables
under various € values. The data set contained intubated,
ventilation, dialysis, medication status (cardinality: 2), eyes
(cardinality: 4), motor (cardinality: 5), and verba status
(cardinality: 6) as categorical variables. Urine output,
temperature, respiratory rate, sodium, heart rate, mean blood
pressure, pH, hematocrit, creatinine, albumin, oxygen pressure,
CO, pressure, blood urea nitrogen, glucose, bilirubin, and
fraction of inspired oxygen (FiO,) values were considered
continuous variables. There were initially 148,532 patients
(rows) in the data set, but after the deletion of missing values,
the data set contained atotal of 4740 patients (3597 who were
aliveand 1143 who had died). Thefollowing ML methodswere
used for mortality prediction: decision tree, K-nearest neighbor,
support vector machine, logistic regression, naive Bayes, and
random forest. The datawere divided into training and test sets
inaratio of 80:20. All predictionswere averaged using a5-fold
cross-validation method, and the scikit-learn [26] library was
used with the Python programming language.

Results

Synthetic Data for Validation of the Bounded
Laplacian Function

We created an equally spaced distribution, ranging between —1
and 1, and applied the bounded L aplacian method. In contrast
to the conventional Laplacian method, which has an infinite
range, the bounded method entailed arange of —1 to 1.

After confirming that the bounded L aplacian method works as
intended, we then created synthetic continuous data that range
from —1 to 1 and applied the conventional Laplacian method
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and bounded Laplacian method with €=0.1, =0 (Figure 2A).
The original Laplacian method had out-of-range occurrences
that were not present in the bounded L aplacian method. To test
the categorical dataand postdi scretization processing, we created
a set of 100 random integers ranging from O to 9, then
normalized them to range from —1 to 1. The original Laplacian
method had some occurrences that were out of bounds. In the
categorical data, the bounded L aplacian method stayed within
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the datarange, asin the continuous data. However, some of the
categorical values were not initially present in the given data
(Figure 2B), which is similar to the out-of-bounds condition.
Therefore, additional postprocessing discretization was
performed, and the algorithm showed that the discretization
technique ensures that there are no nonexistent values in the
categorical data (Figure 2C).

Figure 2. Comparison of conventional and bounded L aplacian methods using synthetic data. (A) Histogram of randomly generated continuous data
ranging from -1 to 1. (B) Histogram of randomly generated categorical data, which originaly ranged from 0 to 9 and were then normalized to range
from -1 to 1. (C) Histogram obtained after application of discretization postprocessing to the datain (B). In all scenarios, the Laplacian method was

applied with €=0.1, 3=0.
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Validation Using Real-World Data

The el CU Collaborative Research Database [24] was used for
validation. We used M SEs and mi sclassification rates as metrics
for continuous and categorical variables, respectively, to
calculate the differences between the original and perturbed
data. Because of the variance between values in the original
data, the MSE of continuous variables varies extensively in the
case of elCU data. For example, pH and albumin are similar
among different individuals, whereas heart rate and glucose

Bounded Laplacian |

0.5 10 1.5 2.0 20 =15 =10 =05 0.0 0.5 1.0 15

Original Laplacian

have substantial differences (Figure 3A). Regarding the
categorical variables, intubated, ventilation, and dialysis status
areeither Oor 1, and the chancelevel is0.5. Thevaluefor “eye’
rangesfrom 1to 4, that for “verbal” rangesfrom 1to 5, and that
for “motor” rangesfrom 1 to 6. Therefore, there were differences
in the misclassification rates, especialy when € was small
(Figure 3B). As € increased, all perturbed values approached
their original values for both continuous and categorical
variables (Figures 3A and 3B).

Figure 3. € values and degrees of data perturbation for (A) continuous variables and (B) categorical variables. bun: blood urea nitrogen; fio2: fraction
of inspired oxygen; meanbp: mean blood pressure; pao2: partial pressure of oxygen, arterial; pco2: partia pressure of carbon dioxide; wbc: white blood

cells.
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To simulate data utility with respect to €, we constructed a
predictive classifier to predict mortality using the elCU data
set. Note that 3,597 of the 4,740 patients (75.9%) were alive,
yielding achancelevel of 76%. A lower value of € caused severe
data perturbation, resulting in an accuracy that was near the
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chancelevd. Increasing the value of € increased the performance
of the classifiers, and the performance converged to the accuracy
obtained using the original data (shown asdashed linesin Figure
4). This tendency was consistent among the different models,
and the random forest model was the top performer.
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Figure4. Classification accuracies among different machinelearning model s with respect to €. The performance of the models devel oped using original

datais marked with dashed lines. SVM: support vector machine.
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Discussion

Principal Findings

In this study, we developed and validated a local differential
privacy method for the medical domain. We used the bounded
L aplacian method to overcome the out-of-bounds problem. In
addition, we used discretization postprocessing for the
categorical variablesto address nonexistent categorical variables
following perturbation.

Various approaches and metrics are empl oyed when publishing
microdata publicly. k-anonymity [7] is a metric that requires
each cluster (or set of personsin medical data) to have at |east
k records so that there are at least k — 1 individuals that are
indistinguishable. However, this metric is susceptible to
reidentification through linkage attacks and applications of
background knowledge. |-diversity wasintroduced to overcome
these limitations; it requires each equivalent block containing
sensitive information to have at least | appropriately represented
vaues. Thismethod isstill vulnerableto skewness and similarity
attacks [9]. t-closeness [9] mitigates this issue by requiring an
equivalence class to have a distance of less than t (the earth
mover distance) between the distribution of asensitive attribute
and that of the overall data. However, using the earth mover
distance makes it difficult to identify the closeness between t
and the gained knowledge. In addition, in this approach, the
distribution of sensitive attributesin the equivalence class must
be similar to that in the entire data set.

In contrast to these privacy metrics and methods, e-differential
privacy retains the structure of the data while adding noise to
prevent leakage of the original data (Figure 2). There are two
main differential privacy schemas: global and local. Global
differentia privacy requiresthe database owner to trust acurator
that performs data perturbation before sending the data to the
requested user. Our implementation, local differential privacy,
assumes the worst-case scenario by considering an untrusted

https://medinform.jmir.org/2021/11/e26914
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curator. The leakage of a medical data set may have critical
consequences because such a data set may contain sensitive
information, such as disease data, medical history, and insurance
status. Therefore, our method minimizes the risk of data leaks
by not trusting anyone outside the network.

Medica domain data are, by nature, multidimensional and
multimodal. k-anonymity may suffer from severe utility loss if
applied to high-dimensiona data [27]. e-differential privacy
also suffered from severe utility loss under alow €, which was
apparent from the low classification accuracy in predicting the
mortality rate (Figure 4). Despite the fact that the given data set
was multidimensional and multimodal, adjusting the value of
¢ affected all variables uniformly regardless of their data type.

Differential privacy usually has stronger tradeoffs between data
utility, which we mainly focused on, and privacy [28,29]. There
were high variances between variables with regard to the M SEs
and misclassification rates when € was low (Figure 3). As ¢
increased, all variables approached their actual values, enabling
better utility at the cost of privacy; this is apparent from the
accuracy of prediction shown in Figure 4. When publishing
synthetically perturbed datawith e-differential privacy, we may
consider providing the € value along with the data. This
additional information may provide userswith insightsinto the
degree of data perturbation.

According to the results, for our data set, we may heuristically

choose an ¢ value between 10° and 10* and apply differential
privacy methods to send the perturbed data upon the user’s
request. The optimal value of € varies among different data sets
and utility requirements, and choosing this value is beyond the
scope of this study.

A limitation of thisstudy isthat we only applied our algorithms
to synthetic data, and we validated the algorithms on only one
data set. However, it is likely that other data sets can also be
directly employed because we used a relatively small amount
of prior data knowledge in our agorithm. In addition, we
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excluded rows that contained null values in the database.
Because medical data are high-dimensional and sparse, future
studies should be conducted to address null values. The
distributions of data sets affect the normalization and the
perturbation process. It isbetter to share distributionswith each
institute, such as the minimum and maximum values of each
column. The model would be developed from perturbed data,
which can be less accurate than amodel based on original data.
The optima € value, which determines the degree of
perturbation, should be set to apply to the algorithm. In this

Sung et d

study, a value of & between 10° and 10* seemed heuristically
appropriate; this depends on which data or model is used.

Conclusion

We applied local differential privacy to medical domain data,
which is diverse and high-dimensional. Applying bounded
L aplacian noise with discretization postprocessing ensures that
no out-of-bound data are present. Higher noise may offer
enhanced privacy, but it simultaneously hinders utility. Thus,
choosing an appropriate degree of noise for data perturbation

entails a privacy-utility tradeoff, and one should choose such
parameters depending on specific situations.
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