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Abstract

Background: In the era of artificial intelligence, event prediction models are abundant. However, considering the limitation of
the electronic medical record–based model, including the temporally skewed prediction and the record itself, these models could
be delayed or could yield errors.

Objective: In this study, we aim to develop multiple event prediction models in intensive care units to overcome their temporal
skewness and evaluate their robustness against delayed and erroneous input.

Methods: A total of 21,738 patients were included in the development cohort. Three events—death, sepsis, and acute kidney
injury—were predicted. To overcome the temporal skewness, we developed three models for each event, which predicted the
events in advance of three prespecified timepoints. Additionally, to evaluate the robustness against input error and delays, we
added simulated errors and delayed input and calculated changes in the area under the receiver operating characteristic curve
(AUROC) values.

Results: Most of the AUROC and area under the precision-recall curve values of each model were higher than those of the
conventional scores, as well as other machine learning models previously used. In the error input experiment, except for our
proposed model, an increase in the noise added to the model lowered the resulting AUROC value. However, the delayed input
did not show the performance decreased in this experiment.

Conclusions: For a prediction model that was applicable in the real world, we considered not only performance but also temporal
skewness, delayed input, and input error.

(JMIR Med Inform 2021;9(11):e26426) doi: 10.2196/26426
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Introduction

Since intensive care resources are always limited, and better
resource allocation leads to better outcomes [1], conventional
scores such as Acute Physiology And Chronic Health Evaluation
(APACHE) [2], Simplified Acute Physiology Score (SAPS)
[3], and Mortality Probability Models (MPMs) [4] have been
used to predict the outcome of patients admitted to the intensive
care unit (ICU). However, because the status of patients in the
ICU changes rapidly, predicting adverse events and clinical
complications, which are a major cause of mortality and poor
outcomes, can buy some time to intervene and change the natural
disease course [5,6]. Although conventional scores are widely
used, these scores use only the features of patients at admission,
and there have been many attempts to develop prediction models
using time-series data.

With the increased use of electronic medical records (EMRs)
[7] and artificial intelligence (AI), many AI models have been
developed to predict events in the health care domain [8], and
the intensive care domain is no exception. Additionally, the
ICU generates many different kinds of frequently measured
data. Thus, many models have been developed with a focus on
ICU data [9-13].

Previous models were developed using retrospective EMR data.
To apply these models in the real world, two points should be
considered. The model should know more than whether an event
will occur within the predicted time frame. In most studies, the
distribution of event occurrence within the follow-up time is
skewed to one side [5,9]. We defined this phenomenon as
“temporal skewness,” which means more true-positive samples
occur when the prediction time is getting closer to the actual
event onset time. In particular, the performance metrics of a
rapid response team are directly linked to a guarantee of
temporal dependence regarding treatment intervention
feasibility, similar to the 1-hour bundle suggested by sepsis
treatment guidelines. Second, medical record data are often
entered incorrectly, delayed, or even frequently missed in the
field during patient care [14]. These errors should affect any
real-time prediction model. Even if humans were replaced by
an internet of medical things (IoMT) sensor [15], these sensors
can generate noise in the data and transactions can be delayed.
Thus, the model should be robust in consideration of these input
errors.

Therefore, the prediction model using EMRs should achieve
the following: (1) correction of temporal skewness and (2)
robustness against delayed input and data input errors. Herein,
we developed a novel prediction model using deep learning
techniques that can be clinically applied to achieve the two
abovementioned points.

Methods

Study Participants and the Development Cohort
We retrospectively enrolled adult patients who were admitted
to the ICU from 2013 to 2017 at the Severance Hospital, a
tertiary academic medical center in South Korea that includes
medical, medicosurgical, neurological, cardiac surgery recovery,

coronary care units, and has a total of 200 ICU beds. Patient
information was anonymized by replacing the in-hospital patient
ID with a surrogate key and shifting time-related information,
such as birth date and chart input time, by randomly chosen
periods before the analysis. The study was approved by the
institutional review board of Severance Hospital, Yonsei
University Health System, Seoul, Korea (IRB 4-2017-0939)
and Ilsan Hospital (NHIMC 2018-06-004-001). All methods
were performed following the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis (TRIPOD) guidelines.

Model Development
We developed prediction models for 3 events: mortality, sepsis,
and acute kidney injury (AKI). These are considered major
events in the ICU, and prediction of and interventions for these
events will help change the clinical course of the patients. The
model used 19 features: 6 vital signals, 11 laboratory tests, the
Glasgow Coma Score (GCS), and age (see Multimedia Appendix
1). Two of the authors, who are intensive care specialists (KSC
and CH), selected features that are widely and routinely used
in general ICUs. We excluded any patients who were under the
age of 18 years, who did not have at least one valid record with
1 of 5 vital signs (ie, pulse rate, systolic blood pressure, diastolic
blood pressure, respiratory rate, and body temperature), and
whose event time was after their ICU stay.

The events were identified by the following working definitions.
Mortality was defined as an in-ICU death recorded in the EMR.
According to the clinical surveillance definition [16], sepsis
was defined as patients who had at least one concurrent acute
organ dysfunction. Sepsis was indicated by the initiation of
vasopressors or mechanical ventilation; elevated lactate level;
or significant changes in the baseline creatinine level, bilirubin
level, or platelet count within the 48 hours before or 24 hours
after suspected serious infection. Suspected serious infections
were defined by blood culture and sustained administration of
new antibiotics. AKI, according to the Kidney Disease:
Improving Global Outcomes (KDIGO) clinical practice
guideline [17], was defined as follows: increase in serum
creatinine level by 0.3 mg/dL within 48 hours, increase in serum
creatinine level to 1.5 times the baseline level that was known
or presumed to have occurred within the prior 7 days, or a

decrease of 0.5 mL·kg-1·h-1 in the urine volume for 6 hours. The
onset time of the AKI defined the time point at which the
creatinine level was elevated.

Each prediction model was based on bidirectional long
short-term memory (biLSTM) and designed as a binary
classification model, which answers yes or no questions. The
model used 2 types of data: (1) a dynamic feature, which is
time-series data, and (2) a static feature. The sampling frequency
of the dynamic feature was 1 hour. We used biLSTM for
dynamic features and fully connected layers for static features.
We connected the outputs from LSTM and fully connected
layers and used them as an input for classification layers (Figure
1). The biLSTM layer has 20 hidden nodes. To train, we use
Adam optimizer, a learning rate of 0.001, a batch size of 32,
and maximum epochs of 300 (see Multimedia Appendix 2 for
details). Additionally, to consider the time interval in which
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future events will occur, we set 3 future time points: T1 (near
future), T2 (mid-term future), and T3 (distant future).
Considering the clinical circumstances and shift schedule of
medical staff, each event has different time points: mortality
and AKI were predicted 3, 6, and 12 hours in advance, and
sepsis was predicted 2, 4, and 6 hours in advance. For the model
predicting the event within Ti (i Î {1, 2, 3}), we preprocessed
the data as positive and negative instances. Specifically, we
randomly chose some of the time points within Ti from the event
onset for positive instances and some of the time points within
Ti from randomly chosen time points for negative instances.

After selecting the prediction times, we collected input features
from the admission time to the prediction time. Since EMR data
have missing data, to impute the missing data, we applied the
carry-forward method if valid data existed before the missing
time point. If there were no valid data before the missing time
point, but valid data existed after the missing time point, we
filled the missing value with normal values of the features. To
reduce overfitting, we used L2 regularization to the weights of
each layer and stopped the model early when the performance
of the model for validation set did not improve 60 epochs in a
row after the 100th epoch while training each model. To correct
the imbalance in outcomes, we used balanced minibatch training.

Figure 1. Overview of the model structure. AKI: acute kidney injury; T1: near future; T2: mid-term future; T3: distant future.

Performance Measurements
We compared the model performance with other widely used
scores and models. Model performance for mortality was
compared to that of the APACHE-II and Sequential Organ
Failure Assessment (SOFA) scores, and model performance for
sepsis prediction was compared to that for the SOFA score.
Although these scores are not gold standards for predicting
events, the physician’s decisions have been based on these
scores. Therefore, we compared our models with these scores,
as in previous studies [18-20]. Additionally, we compared our
model with other popular machine learning models (eg, logistic
regression and XGBoost) (see Multimedia Appendix 2 for
details). However, there are no gold standard scores for AKI;
therefore, we compared the model only with other machine
learning models for AKI events. The prediction performance
of the individual models was measured as the area under the
receiver operating characteristic curve (AUROC), area under
the precision-recall curve (AUPRC), specificity, and F1 score
with a fixed sensitivity of 0.85, as considered in a previous study
[21].

Validation
The model was validated in two ways: First, 5-fold
cross-validation was performed using the development
cohort—the standard for evaluation of a machine learning
algorithm. Then, the model was externally validated in the
independent validation cohort. The validation cohort included
patients who were admitted to the ICU of the National Health

Insurance Corporation Ilsan Hospital, a secondary hospital run
by the national insurance company, between January and
December 2017.

Error and Delayed Input Experiment
The model robustness against entry error and delayed inputs
was compared with the two machine learning models by
measuring how much the AUROC and SD values were affected
by adding noise. To test the robustness to error input, we added
Gaussian noise at normalized features with specific ranges (ie,
1/1000, 1/200, 1/100, 1/20, 1/10, 1/2, and one of each feature
scale) to randomly chosen data for two vital signs within 10%
of the time sequence. Next, to compare with other machine
learning models, we added noise on two randomly chosen vital
signs. Additionally, we tested the robustness to the delayed
input. To make delayed input errors, we deleted the data within
specific hours (ie, 0-10 hours) for two randomly chosen vital
signs; then, the deleted data were imputed with the carry-forward
method.

All analyses were performed using Python (version 3.6.7) [22],
and the model was built using the TensorFlow 1.14 [23] deep
learning framework.

Data Availability
The datasets generated during and/or analyzed in this study are
not publicly available owing to hospital regulations for
electronic medical data but can be made available from the
corresponding author upon reasonable request.
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Results

Demographic Characteristics
A total of 21,732 and 2487 patients were included in the
development and validation cohorts, of which 57.13%
(n=12,416) and 56.49% (n=1405) were male participants,

respectively. The mean participant age was 60.97 (SD 15.2)
and 69.05 (SD 14.13) years in the development and validation
cohorts, respectively. The prevalence of mortality, sepsis, and
AKI was 783 (3.6%), 679 (3.12%), and 1978 (9.15%) in the
development cohort and 209 (8.4%), 243 (9.77%), and 287
(11.54%) in the validation cohort Table 1.

Table 1. Demographic characteristics of the study cohorts.

Validation cohort (n=2487)Development cohort (n=21,732)Characteristic

2362 (94.97)20,053 (92.27)Patients, n (%)

69.05 (14.13)60.97 (15.2)Age in years, mean (SD)

1405 (56.49)12,416 (57.13)Sex, male, n (%)

209 (8.40)783 (3.6)Death, n (%)

243 (9.77)679 (3.12)Sepsis, n (%)

287 (11.54)1,978 (9.1)Acute kidney injury, n (%)

2.99 (3.65)3.23 (19.15)Length of ICUa stay (days), mean (SD)

16.21 (7.25)11.57 (5.04)APACHE IIb score, mean (SD)

4.11 (1.04)3.66 (3.01)SOFAc score, mean (SD)

ICU admissiond

606 (24.37)3138 (14.44)MICUe

1141 (45.88)4604 (21.19)SICUf

740 (29.75)5172 (23.79)CCUg

—i3335 (15.35)HICUh

—5483 (25.23)NCUj

aICU: intensive care unit.
bAPACHE: Acute Physiology and Chronic Health Evaluation.
cSOFA: Sequential Organ Failure Assessment.
dPatient could have multiple admissions to the ICU; the sum of the types of ICU admissions exceeds 100%.
eMICU: medical intensive care unit.
fSICU: surgical intensive care unit
gCCU: critical care unit.
hHICU: high intensity care unit.
iNot available.
jNCU: neonatal care unit.

Model performance
For the development cohort, the AUROC values of the death
prediction model 3, 6 and 12 hours in advance were 0.990,
0.984, and 0.982, respectively. For the validation cohort, the
model achieved AUROC values of 0.960, 0.964, and 0.938 to
predict mortality 3, 6, and 12 hours in advance, respectively.
The AUPRC values of the death prediction model 3, 6, 12 hours
in advance were 0.887, 0.794, and 0.727, respectively, in the
development cohort, and 0.728, 0.786, and 0.645, respectively,
in the test cohort. The model compared with APACHE-II,
SOFA, logistic regression, and XGBoost models. Our model
yielded a higher AUROC and AUPRC value than the other
models, except a few points. Moreover, the AUROC values of
sepsis prediction models 2, 4, and 6 hours in advance were

0.768, 0.739, and 0.761, respectively, in the development cohort
and 0.766, 0.751, and 0.738, respectively, in the test cohort.
The AUPRC values of sepsis prediction models 2, 4, and 6
hours in advance were 0.105, 0.092, and 0.103, respectively, in
the development cohort and 0.294, 0.270, and 0.318,
respectively, in the test cohort. These performances were
significantly higher than those using the SOFA score (the gold
standard medical score), logistic regression, and XGBoost
models, except AUPRC values in the development cohort.
Although the AUROC values of our models were higher than
SOFA scores, AUPRC values were lower than SOFA scores.
Finally, the AUROCs of the AKI prediction model 3, 6, and 12
hours in advance were 0.838, 0.836, and 0.802, respectively, in
the development cohort and 0.804, 0.766, and 0.760,
respectively, in the test cohort. The AUPRC values of AKI
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prediction model were 0.385, 0.356, and 0.307, respectively,
in the development cohort and 0.372, 0.342, and 0.340,
respectively, in the test cohort; these values were higher than

those using the other two machine learning models (logistic
regression and XGBoost; see Figure 2 and Multimedia
Appendices 3 and 4).

Figure 2. AUROC and AUPR values of each model at each prediction hour. APACHE: Acute Physiology And Chronic Health Evaluation; area under
the receiver operating characteristic curve; AUPR: area under the precision-recall curve; SOFA: Sequential Organ Failure Assessment; xgb: XGBoost.

Sensitivity to Error and Delayed Input
The individual models were evaluated by adding data errors as
noise. AUROCs of all models except our proposed model were
decreased by increasing the added noise. For example, in the
mortality prediction model, when adding Gaussian noise with
a feature range, the AUROC of our model dropped to 0.0004
(SD 0.002), whereas it was 0.270 (SD 0.0530) for the logistic
regression model, and 0.0732 (SD 0.0442) for the XGBoost
model, respectively. Other models show similar results.
However, in the delayed input experiments, the mean differences
in the AUROC between the original and delayed input data

were almost 0 in the validation cohort (see Figure 3 and
Multimedia Appendix 5).

As shown in Figure 4, each graph shows how each model works.
In the mortality prediction model, 12 hours before the event,
the alarm is turned on with only the 12-hour model. As the event
nears its time, the alarm is turned on with the 6-hour and 3-hour
models, sequentially. Other events show similar results. Because
each event model predicts different time windows, the models’
prediction can overcome temporal skewness, although there
were slight time differences between actual events and
predictions.
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Figure 3. Changes in AUROC when data errors and delayed inputs were simulated. AKI: acute kidney injury; AUROC: area under the receiver operating
characteristic curve; LR: logistic regression; T1: near future; T2: mid-term future; T3: distant future; XGB: XGBoost.
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Figure 4. An illustrative example of the prediction of the models. The solid line indicates each model’s score. The dotted line indicates the threshold
of each model which set by a sensitivity of 0.85 in (A) Mortality (B) Sepsis (C) AKI. AKI: acute kidney injury.

Deployment
These models have been implemented in tertiary and secondary
hospitals in Korea. Figure 5 shows a screenshot of the
application used to deploy the models.
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Figure 5. Screenshot of the application on which the model was deployed.

Discussion

Principal Findings
This study demonstrated the prediction models for events in the
ICU that consider not only whether the event occurs but also
in which time intervals it would occur. By considering all three
models that predict the event at different time intervals,
physicians can infer when the event would occur. Additionally,
the robustness of the model was tested by simulated data errors
and delayed input. All models showed similar robustness to
delayed input; however, only our proposed model was deemed
robust to input errors.

The labeling of the outcomes events is one of the most important
things in supervised learning, such as these models. Mortality
was defined by the EMR-recorded mortality data. However, for
sepsis, according to the Sepsis-3 definition [24], the time point
at when the infection was suspected, and organ failure began
needs to be known. To overcome this issue, Rhee et al [16]
proposed a definition of sepsis for clinical surveillance. Nemati
et al [21] defined sepsis similarly except for some time intervals
because all the definitions were based on the Sepsis-3 definition.
The AKI definition depends on serum creatinine levels. In
addition to mortality, since AKI and sepsis were defined by a
laboratory test, the event label could be incorrect. This point

could make the performance of the two models poorer than that
of the mortality prediction model.

Because of this working definition, there was a difference in
sepsis prevalence in the two cohorts: the mortality rate was
3.12% and 10.04%, and the sepsis prevalence was 3.12% and
11.17% in the development and validation cohorts, respectively.
This is probably because the surgical ICU patients comprised
a larger proportion in the development cohort than in the
validation cohort. This resulted in the APACHE and SOFA
scores of the validation cohort being higher than those of the
development cohort.

Many studies have attempted to predict events in the ICU. For
instance, Hyland et al [9] developed a model to predict
circulatory failure in the ICU. Additionally, circulatory failure
in the ICU was assessed using a gradient boosting method with
the Shapley Additive Explanations (SHAP) value. The model
calculates scores every 5 minutes to predict the risk of
circulatory failure within the next 8 hours, and it has an AUROC
of 0.90. However, because the model was developed as a
within-setting model, it is not clear how long it will take for the
event to occur. The model only predicts whether the event will
occur within 8 hours, even though the event could occur after
only 1 hour. Meyer et al [10] predicted mortality, bleeding, and
the need for renal replacement therapy 24 hours after
cardiothoracic surgery; the AUROCs for these events were 0.87,
0.95, and 0.96, respectively. Even though the model predicted
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real-time events, the outcome was fixed-time events. Nemati
et al predicted sepsis in the ICU using 65 features, including
EMR and high-resolution bedside monitoring data; their model
yielded AUROCs of 0.82, 0.81, 0.80, and 0.79 for predicting
sepsis 4, 6, 8, and 12 hours in advance, respectively. The model
was based on the Weibull-Cox regression model, considering
within-setting timepoints. To overcome the temporal skewness
of the model, Kim et al [11] developed a model that predicts
the time point of in-hospital cardiac arrest using a character-level
gated recurrent unit with a Weibull distribution. They assumed
that the temporal skewness conformed to the Weibull
distribution and then predicted the time point at which the
distribution indicated the maximum value. Our data also showed
temporal skewness of the positive events. When plotted the
event-prediction time with each group, most of the predicted
true event was found to occur near the real event occurrences
(Multimedia Appendix 6). This phenomenon can be shown in
other time prediction models. The temporal skewness is
important when the model is applied in the real world. When
physicians receive an alarm from the model, the working
time—that is, the time between the alarm alert and the real
event—should be enough to intervene disease progression.

The mortality and AKI predict model showed that the nearer
the prediction time was to the event time, the higher the AUROC
value was. However, the analyses pertaining to sepsis events,
showed the 6 hours in advance prediction model worked better
than the 2 hours in advance prediction model. This might be
because the definition of sepsis is more subjective than that of
other events.

Most robustness assessments of previous models have focused
on generalization to any data input. For example, weight decay
[25] and the early stopping method [26] are well-known
approaches that make the model more robust. However, in this
study, we focused on robustness to error and delayed input. All
the models showed robustness to the delayed input. This may
be because the carry-forward method (used to impute the deleted
data) resulted in the delayed input data not being considerably
different from the original data, unlike the noise-add experiment.
However, the error input experiment showed that our models
were more robust than other models (Figure 3). Although we
randomly selected two vital signs in the error input experiment,
we performed the sensitive analysis by selecting specific pairs
of vital signs and adding noise only to those pairs. The mean
differences between the original model and the noise added
model considered on a scale of 1 were less than 0.003. The
performance was still similar such that vital signs were selected,

and noises were added (Multimedia appendix 7). Moreover,
unlike the time-series model that requires values from time
windows, the non–time-series model needs one abstracted value.
It seems that making values abstract can lead to higher
robustness than the time-series model. However, the non–time
series models yielded lower AUROC values than those of our
models, except the sepsis prediction model with test dataset
(Multimedia Appendix 8). This finding suggested that the
time-series model yielded a higher performance and was more
robust to the error and delayed input (see Figure 3) than the
non–time series models. This can be explained by the fact that
the time-series model learned from all the time-series features
rather than one time-series representative value.

To the best of our knowledge, this is the first attempt to evaluate
the robustness of the model against delayed input and input
error. There was no metric for the robustness of an error and
delayed input. Thus, the AUROC variation—that is, the mean
difference—was used to evaluate robustness when noise was
added, or the input was delayed.

Limitations
There are some limitations to our study. First, we could not
consider the correlation between each event. For example, both
mortality and AKI can be caused by sepsis. However, in this
model, each event was considered an independent outcome.
Further research should be performed to predict these correlated
outcomes. Second, we evaluated input error and delayed input
by adding simulated noise to retrospective data. In addition, the
model works in the real world. To evaluate these points, a
prospective study should be performed. Third, the input features
were selected manually; however, these few variables are
commonly used in ICUs worldwide to predict patient outcomes.
According to survey on sepsis prediction [27], our features have
been included in other models. Additionally, other clinical
complications or adverse events should be expanded in future
studies.

Conclusions
In this study, we developed an outcome prediction model for
real-world applications. We considered not only performance
but also the robustness of the model to temporal skewness and
input delays and errors. By considering temporal skewness,
physicians can more effectively intervene in disease progression.
Additionally, since the models are robust to delayed input and
input error, physicians can trust this model more than those that
are not as robust.
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Abbreviations
AKI: acute kidney injury
APACHE: Acute Physiology And Chronic Health Evaluation
AUPRC: area under the precision-recall curve
AUROC: area under the receiver operating characteristic curve
EMR: electronic medical record
GCS: Glasgow Coma Score
ICU: intensive care unit
IITP: Institute for Information & Communication Technology Planning & Evaluation
IoMT: internet of medical things
MPM: Mortality Probability Model
MSIT: Ministry of Science and Information and Communications Technology
SAPS: Simplified Acute Physiology Score
SOFA: Sequential Organ Failure Assessment
TRIPOD: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
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