
Original Paper

A Neural Network Approach for Understanding Patient
Experiences of Chronic Obstructive Pulmonary Disease (COPD):
Retrospective, Cross-sectional Study of Social Media Content

Tobe Che Benjamin Freeman1,2, BSc, DPhil; Raul Rodriguez-Esteban1, PhD; Juergen Gottowik1, PhD; Xing Yang3,

PhD; Veit Johannes Erpenbeck4, MD; Mathias Leddin1, PhD
1Roche Pharma Research and Early Development, Pharma Research and Early Development Informatics, Roche Innovation Center Basel, F. Hoffmann–La
Roche Ltd, Basel, Switzerland
2wordup development AG, CH-8006, Zurich, Switzerland
3Roche Pharma Research and Early Development, Pharma Research and Early Development Informatics, Roche Innovation Center Little Falls, F.
Hoffmann–La Roche Ltd, Little Falls, NJ, United States
4Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology Discovery and Translational Area, Roche
innovation Center Basel, F. Hoffmann–La Roche Ltd, Basel, Switzerland

Corresponding Author:
Tobe Che Benjamin Freeman, BSc, DPhil
Roche Pharma Research and Early Development
Pharma Research and Early Development Informatics
Roche Innovation Center Basel, F. Hoffmann–La Roche Ltd
Grenzacherstrasse 124
Basel, CH-4070
Switzerland
Phone: 41 793778595
Email: tobefreeman@gmail.com

Abstract

Background: The abundance of online content contributed by patients is a rich source of insight about the lived experience of
disease. Patients share disease experiences with other members of the patient and caregiver community and do so using their own
lexicon of words and phrases. This lexicon and the topics that are communicated using words and phrases belonging to the lexicon
help us better understand disease burden. Insights from social media may ultimately guide clinical development in ways that
ensure that future treatments are fit for purpose from the patient’s perspective.

Objective: We sought insights into the patient experience of chronic obstructive pulmonary disease (COPD) by analyzing a
substantial corpus of social media content. The corpus was sufficiently large to make manual review and manual coding all but
impossible to perform in a consistent and systematic fashion. Advanced analytics were applied to the corpus content in the search
for associations between symptoms and impacts across the entire text corpus.

Methods: We conducted a retrospective, cross-sectional study of 5663 posts sourced from open blogs and online forum posts
published by COPD patients between February 2016 and August 2019. We applied a novel neural network approach to identify
a lexicon of community words and phrases used by patients to describe their symptoms. We used this lexicon to explore the
relationship between COPD symptoms and disease-related impacts.

Results: We identified a diverse lexicon of community words and phrases for COPD symptoms, including gasping, wheezy,
mucus-y, and muck. These symptoms were mentioned in association with specific words and phrases for disease impact such as
frightening, breathing discomfort, and difficulty exercising. Furthermore, we found an association between mucus hypersecretion
and moderate disease severity, which distinguished mucus from the other main COPD symptoms, namely breathlessness and
cough.

Conclusions: We demonstrated the potential of neural networks and advanced analytics to gain patient-focused insights about
how each distinct COPD symptom contributes to the burden of chronic and acute respiratory illness. Using a neural network
approach, we identified words and phrases for COPD symptoms that were specific to the patient community. Identifying patterns
in the association between symptoms and impacts deepened our understanding of the patient experience of COPD. This approach
can be readily applied to other disease areas.
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Introduction

Online content made public by patients in blogs and on forum
platforms provides detailed first person accounts of the lived
experience of disease [1,2]. These communications from patients
use a diverse vocabulary of words and phrases for disease
symptoms [3]. Online content is conveyed in the patient’s own
voice and is contributed in the ecological context of day-to-day
life [4], namely in the sharing of experiences with other
members of the patient and caregiver community. Analysis of
these online communications enables a patient-centric approach
to understanding disease impact.

A systematic understanding of the language used by patients to
describe their symptoms has important clinical implications,
not least being the need to acquire accurate patient anamneses
and respond to care needs [5]. Dreisbach et al [6] note that the
use of normalized medical vocabularies supports a systematic
approach to identify terms for clinical and subclinical symptoms.
This approach enables the identification of community terms
that, while not belonging to a traditional medical lexicon, denote
respiratory dysfunction unambiguously.

Many researchers use interviews, focus groups, and patient
advisory boards with a goal of observing patient experiences.
These approaches enable direct observation of the patient;
however, they tend to be a burden to patients [7]. Moreover,
interviews and focus groups are generally limited to cohorts of
just a few patients, and the results are qualitative in nature.

In contrast, machine learning and related computational
techniques offer a means to analyze online content at scale.
Current state-of-the-art approaches using neural network
architectures are being deployed to map patient community
terms onto controlled medical [8] and pharmaceutical
vocabularies [3]. However, these approaches are anchored in a
defined lexicon of scientific terms, thus compromising patient
centricity. In a patient-centric approach, our understanding of
disease should instead be anchored to patients’ self-reported
topics [7], as observed in the ecological context of daily life
[4], and not exclusively anchored to expert medical thinking,
as expressed in a scientific lexicon.

We address this limitation with a novel approach based on a
neural network, specifically a word embedding [9], to identify
words and phrases that patients with chronic obstructive
pulmonary disease (COPD) use to describe their experiences
of living with the disease. Unlike traditional neural network
approaches, a word embedding is not trained on any specific
set of scientific keywords [10,11].

We use the word embedding to identify a diverse lexicon of
hundreds of COPD-related words and phrases from the context
in which words appear in a text. Next, we use that lexicon to
extract all mentions of words and phrases relating to COPD

symptoms and disease impacts from a large corpus of social
media text. Once extracted, we can analyze the relationship
between COPD symptoms and disease impacts at scale.

The quantitative analysis of this diverse community lexicon
reveals insights [6] about the lived experience of COPD. These
insights can contribute positively to the development of effective
medical treatments that are, from the patient’s perspective, fit
for purpose [12].

Methods

Ethics
This work is compliant with ethical guidelines for the collection
and analysis of user-generated content on open internet
platforms. Data were downloaded only from open health social
networking sites and communities. No information from
restricted data areas has been downloaded (ie, content that
requires an ID or password for access). No aggregation or
enrichment of data on an individual has been performed.
Extracts used for exemplary purposes were carefully paraphrased
to protect the privacy of individuals.

Data Availability
All social media content included in our analysis was sourced
from open social networking sites and communities. Terms and
conditions apply to the availability of the original social media
data. The sources used in this study can be made available upon
request. Example texts shown in this manuscript have been
rephrased to prevent de-anonymization of the individuals
included in our analysis.

Neural Network Methodology
We trained the neural network on a corpus of 1.1 million words
sourced from 22 individual blogs and online forums (Multimedia
Appendix 1). We used the skip-gram negative sampling variant
of the word2vec neural network algorithm described by Mikolov
et al [9] to discover community words and phrases for disease
symptoms. Briefly, the neural network model was trained to
predict context words that appear in close proximity with
symptom keywords in the corpus text.

The resulting word embedding captured semantic and syntactic
features of each unique word in the text corpus. Neighboring
vocabulary items in the embedding will likely share semantic
and syntactic features in common. We then used cosine
similarity as a metric to probe the word embedding model for
words and phrases that share common meanings. This makes
it possible to build and expand a lexicon of community terms
for each main COPD symptom type in a systematic and
repeatable manner (Table S1 in Multimedia Appendix 1).

We started our search for community words and phrases for
COPD symptoms with a small seed lexicon that included
breathlessness, cough, and sputum. This seed lexicon was
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sourced from MeSH terms from the US National Library of
Medicine (NLM) [13] and from the NLM health information
website for the layperson, MedlinePlus [14]. These 3 seed terms
correspond to key pathophysiological manifestations of COPD,
namely small airway fibrosis, emphysema, which refers to a
destruction of the lungs’ alveoli, and mucus hypersecretion
[15-17].

We used the same approach to search for community words and
phrases describing the impact of COPD on daily life. The seed
terms for disease impacts include anxiety, depression, fatigue,
pain, and exercise. We then scanned the entire corpus to detect
posts in which COPD symptoms co-occur with mentions of
disease-related impacts. Our analysis explored the relationship
between specific symptoms and each of the main disease impact
topics.

Results

Using the cosine similarity metric to probe the word embedding
model, close neighbors of the symptom seed term breathlessness
included gasping, wheezy, and the phrase pursed-lip (Table S1
in Multimedia Appendix 1). The phrase pursed-lip is noteworthy
as it refers to a technique, called pursed-lip breathing, used in
pulmonary rehabilitation. Specifically, pursed-lip breathing is
used to manage anxiety associated with breathlessness [18].
Words and phrases neighboring the seed term sputum include

mucus-y, phlegm, clear mucus, and muck, as well as common
misspellings of phlegm.

Probing the word embedding model with the seed term exercise,
we found walk and the phrases low impact and difficulty
exercising (Table S1 in Multimedia Appendix 1). These
community terms are, as we might expect, for a relatively aged
and exercise-limited patient cohort [19]. Manual inspection of
individual excerpts from the corpus featuring symptom
keywords further confirmed the relevance of these keywords
(Table S4 in Multimedia Appendix 1).

Summing the number of mentions corresponding to each
symptom lexicon across the entire corpus (Table S2 in
Multimedia Appendix 1), the breathlessness lexicon was
mentioned most frequently (mentioned in 10.49% [413/3938]
of posts), followed by the lexicon for cough (270/3938, 6.86%)
and, finally, mucus hypersecretion (159/3938, 4.04%).

Leveraging these distinct lexicons of symptoms and disease
impacts (Table S3 in Multimedia Appendix 1), we were able
to explore the relationship between specific symptoms and each
of the main disease-impact topics. Figure 1 examines posts in
which COPD symptoms co-occurred with mentions of
disease-related impacts. The analysis shows that breathlessness
was the symptom most frequently mentioned in association with
the 4 main topics and impacts considered. The most frequent
disease impact associated with COPD symptoms was fatigue,
followed closely by self-reports of anxiety and depression.

Figure 1. Topics co-occurring with symptom mentions in the same post.

Breathlessness and cough followed a broadly similar trend,
while the trend in the co-occurrence between mucus and the 3
disease severity levels was distinctive (Figure 2). The
co-occurrence between mucus and mild severity was lower than
that between mucus and moderate disease severity, inverting

the relationships observed for breathless and for cough. Taken
together, it was apparent that there was an association between
mucus and moderate disease severity that distinguished mucus
from the symptoms breathlessness and cough.
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Figure 2. Relationship between the symptoms of chronic obstructive pulmonary disease and disease severity.

By applying principal component analysis (PCA), we visualized
semantic relationships [20,21] between each symptom lexicon
and a mapping of the psychological salience of these symptoms.
PCA arranged data points corresponding to individual words
and phrases on a 2D map [20] (see Multimedia Appendix 1 for
further details). Our PCA results showed that words and phrases
belonging to the 3 symptom lexicons were arranged in 3 distinct
clusters on this map (Figure S1 in Multimedia Appendix 1).

By adding a lexicon of affective states such as feel depressed
and be embarrassing to the PCA map, we could explore the
psychological salience of these symptoms. The lexicon of
affective states also appeared as a distinct cluster on the map
and was positioned closest to the cough symptom cluster. The
mucus cluster was displaced further away from the cluster of
affective states than the cough cluster. Note, however, that the
cough and mucus clusters were aligned along a single axis with
respect to the cluster of affective states.

Discussion

Principal Findings
Our findings demonstrate the potential to deploy advanced
analytics in the search for disease-related insights from hundreds
of patients and many thousands of self-reports published online.

By probing a word embedding model trained on a corpus of
online content contributed by COPD patients, we found a
lexicon of community terms expressing a broad range of topics
and meanings (Table S1 in Multimedia Appendix 1). Many
terms found this way were related to COPD in a direct and
intuitive fashion. And some terms revealed associations with
unexpected, yet highly relevant topics (eg, pursed-lip) [18].
This term relates to the pursed-lip technique for managing
anxiety associated with breathlessness.

The finding that breathlessness was the most frequently
mentioned symptom accorded with medical consensus. As stated
by the internationally recognized guidelines of the Global
Initiative for Chronic Obstructive Lung Disease (GOLD)

[15,22], a decline in lung capacity, in combination with other
disease-specific symptoms [23,24], forms the basis of a clinical
diagnosis of COPD, and measurements of lung function and
lung volumes are used to monitor disease progression [17].

In agreement with recent social media studies of COPD patients,
our results highlight mucus hypersecretion as an important
COPD symptom [25,26]. Compared with breathlessness and
cough, mucus terms co-occur with mentions of moderate disease
and co-occur less often with mild or severe disease. Similarly,
when compared with breathlessness and cough, mucus
symptoms were mentioned relatively less frequently when
patients reported affective impacts of COPD such as depression.

These distinct associations relating to mucus hypersecretion
were corroborated by a novel analysis using PCA to map the
psychological salience of the 3 COPD symptoms. Relative to
breathlessness and cough, mucus symptoms were mapped
furthest from the affective impacts of COPD, suggesting that
mucus has the weakest association with perceived affective
impacts of the disease.

Mucus symptoms were mentioned at less than half the frequency
that breathlessness was mentioned in the corpus. This finding
is consistent with the GOLD report and reports indicating that
not all COPD patients experience mucus hypersecretion as a
symptom of their disease and that mucin concentrations are
lower in COPD versus other obstructive lung diseases like cystic
fibrosis or bronchiectasis [27]. And yet mucus hypersecretion
is an important clinical factor in COPD. For example, mucus
symptoms can motivate patients to take timely action against
life-threatening respiratory infections [28]. Hypersecretion also
drives cough symptoms and expectoration [15].

Without these advanced analytics, our insights about mucus
symptoms would have been obscured by the overall dominance
of breathlessness and cough symptoms mentioned in the corpus.
Examining the co-occurrences between symptoms and disease
impacts informed a deeper understanding of disease burden.
The approach was able to quickly and accurately identify patient
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populations whose experience was especially impacted by a
particular symptom, adding greater potential for personalization.

This approach can ultimately guide clinical development in
ways that ensure that future treatments are fit for purpose from
the patient’s perspective [12] and from the perspective of
patients’ perceived treatment needs.

Limitations
The forum content we included in the corpus had been posted
anonymously and so we were unable to verify any bias arising
from the demographics of forum contributors. Beyond the
general guidance posted online by forum moderators, we could
not explore biases introduced by a moderator removing posts
from the forum.

We can expect a degree of clinical inaccuracy in the
contributions posted by individuals who may not have formal
medical training. Furthermore, the anonymity of social media
makes it all but impossible to determine whether a post is
authored by a genuine patient or caregiver or by someone merely
posing as one. Taken together, any clinical interpretations we
make from social media must take these uncertainties into

account. However, because every post was manually reviewed,
obviously fraudulent content from bots, scammers, and
marketers was eliminated.

Despite limitations, the societal benefits that may be gained
from large scale analysis of social media content are substantial,
as researchers Gleibs et al [29] and Golder et al [30] have noted.
The research community should ideally work closely with
patients and health care advocates to ensure that people can
continue to contribute to online forums and other social media
platforms in a way that protects their privacy and ensures they
are safe from potentially harmful misinformation.

Conclusions
Using a novel neural network approach, we demonstrate how
online content can be a rich source of insights about the lived
experience of COPD. Our findings demonstrate the potential
of neural networks to gain a quantitative, patient-focused
understanding about how each distinct COPD symptom
contributes to the burden of chronic and acute respiratory illness.
This approach can be readily applied to other disease areas in
which there exists sufficient online content contributed by
patients and caregivers.
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Abbreviations
COPD: chronic obstructive pulmonary disease
GOLD: Global Initiative for Chronic Obstructive Lung Disease
NLM: National Library of Medicine
PCA: principal component analysis
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