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Abstract

Background: Although electronic health record systems have facilitated clinical documentation in health care, they have also
introduced new challenges, such as the proliferation of redundant information through the use of copy and paste commands or
templates. One approach to trimming down bloated clinical documentation and improving clinical summarization is to identify
highly similar text snippets with the goal of removing such text.

Objective: We developed a natural language processing system for the task of assessing clinical semantic textual similarity.
The system assigns scores to pairs of clinical text snippets based on their clinical semantic similarity.

Methods: We leveraged recent advances in natural language processing and graph representation learning to create a model
that combines linguistic and domain knowledge information from the MedSTS data set to assess clinical semantic textual similarity.
We used bidirectional encoder representation from transformers (BERT)–based models as text encoders for the sentence pairs
in the data set and graph convolutional networks (GCNs) as graph encoders for corresponding concept graphs that were constructed
based on the sentences. We also explored techniques, including data augmentation, ensembling, and knowledge distillation, to
improve the model’s performance, as measured by the Pearson correlation coefficient (r).

Results: Fine-tuning the BERT_base and ClinicalBERT models on the MedSTS data set provided a strong baseline (Pearson
correlation coefficients: 0.842 and 0.848, respectively) compared to those of the previous year’s submissions. Our data augmentation
techniques yielded moderate gains in performance, and adding a GCN-based graph encoder to incorporate the concept graphs
also boosted performance, especially when the node features were initialized with pretrained knowledge graph embeddings of
the concepts (r=0.868). As expected, ensembling improved performance, and performing multisource ensembling by using
different language model variants, conducting knowledge distillation with the multisource ensemble model, and taking a final
ensemble of the distilled models further improved the system’s performance (Pearson correlation coefficients: 0.875, 0.878, and
0.882, respectively).

Conclusions: This study presents a system for the MedSTS clinical semantic textual similarity benchmark task, which was
created by combining BERT-based text encoders and GCN-based graph encoders in order to incorporate domain knowledge into
the natural language processing pipeline. We also experimented with other techniques involving data augmentation, pretrained
concept embeddings, ensembling, and knowledge distillation to further increase our system’s performance. Although the task
and its benchmark data set are in the early stages of development, this study, as well as the results of the competition, demonstrates
the potential of modern language model–based systems to detect redundant information in clinical notes.
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Introduction

Electronic health records (EHRs) have introduced efficiencies
in clinical documentation via the automatic insertion of
commonly used documentation phrases and the use of the copy
and paste command, which copies the content of one day’s notes
into that of the next day’s notes, but at the same time, these
tools have resulted in notes becoming increasingly bloated with
sometimes outdated, irrelevant, and even erroneous information
[1]. To trim down bloated clinical documentation, one approach
of interest is to identify highly similar text snippets for the goal
of removing such text. Wang et al [2,3] created the MedSTS
data set—a clinical analogue of the natural language
understanding benchmark task of assessing semantic textual
similarity (STS)—to be a resource for this line of study. In this
paper, we show the model, as well as subsequent improvements,
that was used in the August 2019 National NLP Clinical
Challenges (n2c2)/Open Health Natural Language Processing
(OHNLP) Consortium semantic similarity shared task challenge
[2], which featured the MedSTS data set.

In the broader natural language processing (NLP) community,
STS assessment is a task in which the similarity of semantic
meanings and content among natural language texts is calculated
[3], and at the time of its release in late 2018, the bidirectional
encoder representation from transformers (BERT) language
model had the best published performance on the commonly
used general English STS Benchmark (STS-B) data set [4]. For
the MedSTS data set, it was shown that a BERT model that was
fine-tuned to the biomedical domain also outperformed most
prior state-of-the-art models [5]. The first iteration of the
MedSTS challenge in 2018 (ie, prior to the release of BERT)
saw 4 submissions involving the mixed use of traditional
machine learning models, like random forests, and more recent
deep learning architectures, like recurrent neural networks and
convolutional neural networks. The 2019 MedSTS challenge
saw over 30 submissions, and the majority of these submissions
used BERT in some capacity. The increased number of
submissions, as well as the increased average performance of
submissions, can be attributed in large part to the recent progress
in the development of language models, of which BERT is a
popular example.

Despite such advances, researchers have noted that although
language models demonstrate a small degree of commonsense
reasoning and basic knowledge, such models are very limited
in terms of their ability to generate factually correct text or even
recall explicit facts from training data [6]. The attempts to
mitigate these shortcomings of language models have often
involved the use of graph representation learning techniques
[7-9], which provide a natural way for working with knowledge
in the form of graphs.

Recent progress in graph representation learning has given rise
to 2 promising classes of methods that can be used in
conjunction with NLP models to incorporate knowledge (either
domain knowledge or commonsense knowledge)—graph
convolutional networks (GCNs) [10] and knowledge graph
embeddings (KGEs) [11].

GCNs generalize the notion of convolution from images to
graph-structured data, thereby enabling the application of deep
learning techniques on graphs. KGE methods are used to encode
entities (nodes) and relationships (edges) in a knowledge graph
into dense vector representations, much like word embeddings.
KGEs provide a way of obtaining embeddings of concepts, and
GCNs provide a natural way of using that information in the
context of graph-based learning. For instance, GCNs can be
used to initialize node features with pretrained KGEs.

In this study, we leveraged these recent advances in NLP and
graph representation learning to develop a more
knowledge-aware approach to assessing the MedSTS benchmark
data set. We further investigated the benefits of other techniques,
such as data augmentation, multisource ensembling, and
knowledge distillation, and they resulted in competitive
performance values for the 2019 n2c2/OHNLP Consortium
semantic similarity shared task challenge.

Methods

Data Set
MedSTS is a data set of sentence pairs that were gathered from
the clinical EHRs at Mayo Clinic. Deidentified sentences were
selected based on their frequency of appearance and an
assumption that frequently appearing sentences tend to contain
less protected health information. Sentence pairings were
arranged so that they had at least some degree of surface-level
similarity. This was based on a combination of surface lexical
similarity metrics. Broadly speaking, sentences generally fell
into the following four categories: signs and symptoms,
disorders, procedures, and medications. Further details are
discussed in the original MedSTS paper [3]. For the 2019
n2c2/OHNLP competition and this study, a subset of annotated
sentence pairs was examined; of the 2054 sentence pairs in this
subset, 1652 (80.4%) were included in the training set, and 412
(20.1%) were included in the test set [2]. This subset was
independently scored by 2 medical experts for semantic
similarity. A 6-point (range: 0-5) rubric was provided to the
annotators; 0 denotes complete dissimilarity, 1 indicates that 2
sentences are topically related but are otherwise not equivalent,
and 5 represents complete similarity. The agreement between
the two annotators received a weighted Cohen κ score of 0.67.
The average of the two scores served as the gold standard against
which STS systems would be evaluated [3].
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Concept Graph Construction
For each sentence in the MedSTS data set, we constructed a
corresponding concept graph to represent the domain knowledge
aspect of the data set. The concept graphs consisted of concepts
that were tagged with a domain-specific tagger called MetaMap
[12] and were mapped to a specified medical terminology. The
idea was that such a graph would provide an additional
representation of data containing explicit domain knowledge
in the form of mapped concepts and their connections.

The Unified Medical Language System (UMLS) [13] is an
important resource in biomedical and health care research that
integrates many health and biomedical vocabularies and
terminologies under a unified, interoperable system. MetaMap
[12] is a widely used NLP tool that maps concepts in biomedical
and clinical text to the UMLS Metathesaurus. We applied
MetaMap on the MedSTS data set to extract biomedical and
clinical entities that belonged to the Systematized Nomenclature
of Medicine Clinical Terms (SNOMED CT) terminology of the

UMLS. Thus, for each sentence, we obtained a corresponding
list of extracted concepts, their concept unique identifiers, and
semantic type information.

We then constructed a graph of SNOMED CT terminology from
the raw UMLS files by using the concepts (MRCONSO.RRF
files) as nodes and by using the relationships (MRREL.RRF
files) among them as edges. For simplicity, we only considered
the connectivity information among the concepts and left the
semantic information in the relation types for future work. Once
we had a full SNOMED CT graph, we induced subgraphs for
each sentence from MedSTS by taking the shortest paths
between the concepts that were extracted from the sentences.
More concretely, this was done by using the shortest path
method via the Dijkstra algorithm in the Networkx [14] library.
Although there are many possible ways of constructing such
sentence graphs, we decided to use the simple and heuristic
shortest path method to obtain a connected graph that represents
each sentence. Examples of such concept graphs, along with
their original sentences, are shown in (Figure 1).

Figure 1. An example sentence pair, its similarity score, and a visualization of the corresponding concept graphs constructed from the concepts in the
sentences.

Data Augmentation
Given the small size of the data set, we decided to augment it
by including additional domain knowledge from the MetaMap
output files. Notably, there were 2 pieces of information that
we chose to use—the preferred name of the mapped concept in
the source terminology and the semantic type of the concept
within the UMLS Semantic Network. The preferred name of a

mapped concept can often be the same as how the concept
appears in the text, but the preferred name sometimes provides
potentially valuable information in the form of synonyms or
abbreviation expansions. For example, in the text snippet “the
patient was taken to the pacu in stable condition,” the term pacu
is mapped to the UMLS concept postoperative anesthesia care
unit (PACU), thereby providing the full description of the
abbreviated term. The strings of the preferred names of mapped
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concepts were simply appended to the original sentences in the
data set. Likewise, the semantic types of the mapped concepts
(eg, Health Care Related Organization for the term pacu) were
appended to the original sentences. Another method we used
was doubling the data set size by simply feeding the model a
copy of the data set that included sentences formatted in the
reverse order (ie, “sentence2:sentence1”). This yielded slightly
better results than those that were obtained by simply doubling
the number of training epochs, suggesting that feeding the model
the reverse copy of the data set might have given it more explicit
hints that the task was agnostic to the order of the sentences.
Although the data augmentation techniques we used were simple
and yielded moderate improvements in performance, a recent
paper [15] provides more interesting approaches to data
augmentation. In the paper [15], the authors used
back-translation and performed segment reordering to augment
the MedSTS data set.

The BERT Model
The BERT model is a widely used NLP model that is part of
the recently emerging class of language models that use
transformers [16] as the building blocks. The BERT model
stacks multiple layers of transformer-based modules that
primarily use the multiheaded self-attention mechanism to
encode text into dense embeddings. The model is trained by
using the masked language modeling objective and the next
sentence prediction objective, and pretrained models for BERT
(and other similar models) are readily available on the
HuggingFace Transformers library [17]. Shortly after the BERT
model dominated the general NLP field, several variations of
the BERT model that were adapted to the biomedical and
clinical domains also became available [5,18,19]. These
domain-adapted versions of the BERT model were trained on
some combination of the Medical Information Mart for Intensive
Care version 3 [20], PubMed [21], and PubMed Central [22]
databases, and these versions have been shown to outperform
the original BERT model in several clinical NLP tasks,
suggesting that they are more appropriate for working with
clinical text data sets like MedSTS.

The GCN Method
Kipf et al [10] contributed to the popularization of graph neural
networks by providing an efficient implementation method for

GCNs and demonstrating their effectiveness in analyzing several
benchmark graph data sets for graph classification, node
classification, and link prediction. Variants of GCNs were soon
applied successfully to various domains and problems, including
the modeling of interactions in physical systems [23], drug-drug
interactions [24], and text classification [25]. GCNs have
become a popular deep learning model for working with
graph-structured data, and we used GCNs to encode the concept
graphs.

KGE Methods
KGEs are a relatively novel class of methods for learning dense
vector representations of entities and relations in
multi-relational, heterogeneous knowledge graphs. Essentially,
a KGE model maps entities and relations to embedding spaces
by using a predefined scoring function. Due to their growing
popularity and the availability of implementation methods,
KGEs have recently been applied to various domains, including
biomedical knowledge graphs [26]. Chang et al [26] showed
that using KGEs for learning concept embeddings from medical
terminologies and knowledge graphs is arguably a more
principled and effective approach than using previous methods
based on skip-gram–based models like Cui2Vec [27] or network
embedding–based models like Snomed2Vec [28]. Although we
initially used Cui2Vec for our entity vectors at the time of
submission, we later used SNOMED CT KGEs after they
became available in recent months.

Augmenting BERT With KGEs for MedSTS
We combined the components of GCNs and KGEs into a single
model in the following way: we used a BERT-based model as
our text encoder for the sentence pairs in MedSTS, used a
GCN-based model as our graph encoder for the concept graphs
that corresponded to the sentence pairs, initialized the node
embeddings in the graphs by using pretrained SNOMED CT
KGEs, concatenated the outputs of the text and graph encoders,
and passed the final concatenated vector to a fully connected
layer to obtain a semantic similarity score. We also tested the
benefits of using the SNOMED CT KGEs by comparing this
method to random initialization and initialization with Cui2Vec
embeddings. A visualization of the pipeline is shown in Figure
2.
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Figure 2. A simplified diagram of our pipeline. We passed the sentences through MetaMap to extract concepts belonging to the SNOMED CT and
induced concept graphs by using the relationships among the terminology. We then passed the augmented sentence pairs to the text encoder and passed
the concept graphs to the graph encoder. The outputs from the encoders were concatenated and passed to a fully connected layer to obtain an S. BERT:
bidirectional encoder representation from transformers; FFN: feed-forward network; GCN: graph convolutional network; S: similarity score; S1: sentence
1; S2: sentence 2; SNOMED CT: Systematized Nomenclature of Medicine Clinical Terms.

Ensemble and Knowledge Distillation
After training our model, we took an ensemble to further
improve the model’s performance. In accordance with Xu et al
[29], we performed multisource ensembling with the following
variants of BERT: BERT_base [4], SciBERT [30],
ClinicalBERT [18], multi-task deep neural networks
(MT-DNNs) [31], and BlueBERT [32]. Afterward, we
performed knowledge distillation—an effective model
compression method in which a smaller model is trained to
mimic a larger model (ie, the ensemble). We used the predictions
of the multisource ensemble model as soft labels in a teacher
bounded regression loss function, in accordance with Chen et
al [33], to train more individual models and obtain a final
ensemble of the knowledge-distilled models.

Results

We split the provided training set of MedSTS into 1313 training
examples and 329 validation examples and reported the Pearson

correlation coefficient for the held-out test set of 412 examples.
The Pearson correlation coefficient was the chosen metric for
the competition. We used the HuggingFace Transformers library
for implementations related to language models, and we used
PyTorch Geometric [34] for implementations of GCNs. Many
of the default training and fine-tuning hyperparameters were
used, while the following hyperparameters were tuned on the

validation set: a learning rate of 1e−4 for BERT-based models

(chosen from 5e−5, 1e−4, and 5e−4), a learning rate of 1e−3 for

GCNs (chosen from 1e−2, 1e−3, and 1e−4), and 4 epochs (chosen
from 3, 4, and 5 epochs).

Table 1 shows the contributions of the different components in
the pipeline. Simply using the off-the-shelf BERT_base model
and fine-tuning it on MedSTS yielded higher performance values
compared to those of the 2018 submissions. Using ClinicalBERT
and using our previously described data augmentation technique
each yielded moderate gains.
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Table 1. The results for the base model and each model version (an additional component was added to each system). The columns under Pearson
correlation analysis show the scores for the test set (all) and the four subsets of the test set, which included sentences regarding patients’ conditions or
statuses (status), patients’ education or interactions (education), patients’ medications (meds), and miscellaneous topics (miscellaneous).

Pearson correlation analysisModel name

Miscellaneous, rMeds, rEducation, rStatus, rAll, r

0.4140.5220.7210.6430.842BERT_base

0.4250.5410.7350.6620.848ClinicalBERT

0.4320.5530.7370.6710.855ClinicalBERT-DAa

0.4270.5320.7420.6750.861ClinicalBERT-DA + GCN_rand

0.4420.5360.7530.6820.863ClinicalBERT-DA + GCN_cui2vec

0.4630.5620.7610.6930.868ClinicalBERT-DA + GCN_snomedkge

aThe ClinicalBERT-DA model refers to the ClinicalBERT model after data augmentation.

Adding a graph encoder, in addition to our other modifications,
to incorporate the concept graphs resulted in minor
improvements when the node embeddings were either initialized
randomly or initialized with pretrained Cui2Vec embeddings.
However, using SNOMED CT KGEs as the node features in
the GCN resulted in an increase in performance, that is, an
increase of 1.3% above the performance of ClinicalBERT (ie,
after data augmentation), suggesting that SNOMED CT KGEs
served as better starting representations of the concepts. It is
worth noting that since the BERT-based text encoder is
initialized with a pretrained checkpoint, it might be especially
important to initialize the graph encoder with decent pretrained
embeddings to allow the graph encoder to “catch up” with the
text encoder. We called this best performing setting
ClinicalBERT_all.

We also manually categorized the sentence pairs into the
following four categories: sentences related to patients’
conditions and statuses (status), education or interactions with
patients (education), medications (meds), and miscellaneous or
clearly dissimilar topics (miscellaneous). The columns in Table
1 (those under Pearson correlation analysis) show the scores
for the test set (all) and for the four categories described.
Sentence pairs in the status and education categories received
relatively higher scores, as expected, since many of the sentences
and text snippets in these categories often repeated. Specifically,

text snippets beginning with “patient arrives...,” “discussed the
risks...,” or “identified illness as a learning need...” recurred
noticeably in these two categories. Further, the medication and
miscellaneous categories received relatively low correlation
scores. For the miscellaneous category, this was expected, since
many of the sentence pairs in this category were more difficult
for the model to learn due to their greater variability. For the
medication category, the gold-standard scores assigned by the
annotators proved to be rather inconsistent and challenging to
predict, even upon manual review by a medical expert.

Table 2 shows the results for ensembling and knowledge
distillation. First, we took the ensemble of 10 ClinicalBERT_all
models with slightly varied hyperparameters and saw a moderate
increase in performance, as expected of ensembles. Second, in
accordance with Xu et al [29], we took an ensemble of 10
models consisting of a variety of model types (BERT_base,
SciBERT, ClinicalBERT, MT-DNNs, and BlueBERT), along
with the graph encoder, based on their validation performance
and saw a slight improvement. Finally, by using a teacher
bounded regression loss function [33], we used the outputs of
the multisource ensemble model as soft labels to train more
best-setting models of different types and took an ensemble
consisting of 10 such knowledge-distilled models for slight
performance gain.

Table 2. Results for the ensembling of the best performing models from (ClinicalBERT_all), the ensembling of multiple language models (LMs; each
with a graph convolutional network), and the ensembling of knowledge-distilled (KD) multisource ensembles.

Performance, %Ensemble type

87.5Ensemble of ClinicalBERT_all

87.8Ensemble with multiple LMs

88.2Ensemble of KD models

90.1IBM-N2C2a

aThe best performing model from the IBM team at the time of the competition was included for reference.

Discussion

Main Findings
We implemented a list of techniques in our pipeline for the
clinical MedSTS benchmark task and reported slight to moderate

improvements in performance for each technique. Using a
pretrained, off-the-shelf, BERT-based model and fine-tuning it
alone served as a strong baseline that outperformed all
pre-BERT systems in the task. We found that our data
augmentation technique helped slightly, but again, Wang et al
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[15] has provided more interesting and effective data
augmentation approaches for MedSTS.

Adding a graph encoder to incorporate concept graphs into the
pipeline yielded decent gains, especially when the graph encoder
was initialized by using pretrained SNOMED CT KGEs. We
stress that since the graph encoder was trained jointly with a
pretrained text encoder, it is important to consider providing
the graph encoder with pretrained embeddings as well, so that
it does not fall too far behind in training.

As expected, ensembling leads to improved performance.
Further improvements can be achieved by using language
models from different sources as well as by performing
knowledge distillation, which can be followed by the ensembling
of the distilled models.

We also attempted to use several other techniques that did not
yield any performance gains. First, we tried multi-task learning
by using different general and clinical domain NLP data sets,
including the Medical Natural Language Inference [35],
Recognizing Question Entailment [36], and English STS-B [37]
data sets, following an implementation of multi-task learning
for MT-DNNs, but this approach did not result in any
improvements and substantially increased the training time.
Second, we tried manually annotating the MedSTS data for
different sentence categories (medication, status, education, and
miscellaneous). This was done as an auxiliary classification
task (also an example of multi-task learning), but this did not
lead to noticeable gains in performance. Lastly, we tried
experimenting with different variants of GCNs, but we found
that training multiple types of graph neural networks jointly
with a large language model was difficult in terms of
hyperparameter tuning and decided to limit our analysis to basic
GCNs.

Limitations of the Method
Although the results show that the strategies for data
augmentation and the incorporation of domain knowledge
through concept embeddings and GCNs do confer some benefit,
we address some of the limitations in this section.

The data augmentation techniques we used involved including
additional textual and semantic information from the MetaMap
output and reversing the sentence order to double the data set
size. There are many other potential data augmentation
techniques in the general NLP field that could be useful.
Notably, Wang et al [15] recently performed segment reordering
and back-translation to substantially improve their model’s
performance on a task.

As for the pretrained concept embeddings and GCNs, combining
them with a large pretrained language model is still largely
experimental. This can be improved by using recent
developments in the field of graph representation learning, such
as graph attention networks [38] and graph matching networks
[39].

Limitations of the Data Set
Both the positive and negative findings should be considered
with caution due to the abundance of the potential ways of
implementing each component as well as the size and quality

of the data set, which was relatively smaller and of lower quality
compared to data sets in mainstream, nonclinical NLP domains
that have less complicated access to labeled data.

After working closely with the data set for several months, we
noticed that certain sentence pairs had large irregularities in
terms of their scores from the two annotators of the data set.
This was the most notable in the sentence pairs that discussed
medications; often, these sentence pairs described the
prescribing of medications to patients and differed in terms of
dosing or drug class. At one level of categorization, the
similarity of a sentence pair related to prescribing could be seen
as high, regardless of the medication class or dosing. At another
level of categorization, it appeared that several such pairs were
noted to be of low similarity when the medications or dosing
regimens differed. This discrepancy in scoring also seemed to
differ depending on the drug classes being mentioned. Without
knowing which annotator was responsible for a given score, it
is difficult to speak conclusively, but we speculate that certain
drug classes were of greater salience to each annotator. As an
example, someone with a specialty in a mental health may
subjectively perceive 2 different psychiatric medications of
different classes to be quite different but view cardiology drugs
to be subjectively more similar. In contrast, an individual in the
field of cardiology may perceive various cardiology drugs as
being different but may perceive drugs in the psychiatric
medications category overall as being more similar. Such
differences in perspectives may also be influenced by aspects
of an annotator’s practice, such as whether their practice occurs
in inpatient settings, outpatient settings, the operating room, or
the medical clinic.

Many of the scoring irregularities may have been related to the
nature of the task of rating subjective similarity. One approach
to mitigating annotator bias, as discussed in the original MedSTS
paper [3], is to increase the number of annotators and set the
average score as the gold standard. For example, in the English
STS-B, 5 annotators were used for each sentence, and annotators
were limited to a certain number of sentence pairs that they
could annotate [37]. Although such an approach can be
prohibitively expensive due to the need to hire enough medical
annotators and be very cumbersome to implement for clinical
text due to patient privacy protections, another approach for the
case of having few annotators could be to reveal potentially
biasing factors toward annotation, such as clinical background,
or to assign an annotator ID to each score. Stating the biases or
allowing teams to model the annotator biases may help with
understanding scoring irregularities that may be difficult to
resolve without the use of specifically tailored algorithm designs
or features, which require specific domain knowledge to adapt
to unique annotator biases.

Despite our concerns with the fundamental difficulty of
objectively rating subjective semantic similarity, the high
Pearson correlation coefficient achieved by our model suggests
that the task is still largely tractable. MedSTS also remains one
of the few, if not only, publicly available data sets for studying
clinical STS in EHRs. We hope that our suggestions may
introduce additional strategies for modeling the variance from
subjective elements and provide some insights to future data
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set annotation processes for this important yet challenging
problem.

Conclusions
As participants of the 2019 n2c2/OHNLP shared task challenge,
we developed a system for the clinical MedSTS benchmark task
by combining BERT-based text encoders and GCN-based graph
encoders in order to incorporate domain knowledge into the
NLP pipeline. We also experimented with other techniques
involving data augmentation, pretrained concept embeddings,
ensembling, and knowledge distillation to further increase our
model’s performance. Although our results lagged behind those
of the top scoring model at the n2c2 workshop, the incorporation

of domain knowledge into deep learning NLP models via
graph-based methods was a new advance in clinical NLP. We
highlight our concerns about the impact of specific difficulties
with subjective semantic similarities in data set annotation, but
overall, we believe that clinical semantic similarity remains an
important topic of study, and continued work on the MedSTS
benchmark—one of the few clinical STS data sets
available—will yield advances in processing valuable
unstructured data in EHRs. The MedSTS data set should
continue to be improved and enlarged through the further careful
annotation of the original pool of sentence pairs, and future
work should explore novel methods that can effectively leverage
both linguistic and domain knowledge.
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