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Abstract

Background: Myocardial injury after noncardiac surgery (MINS) is associated with increased postoperative mortality, but the
relevant perioperative factors that contribute to the mortality of patients with MINS have not been fully evaluated.

Objective: To establish a comprehensive body of knowledge relating to patients with MINS, we researched the best performing
predictive model based on machine learning algorithms.

Methods: Using clinical data from 7629 patients with MINS from the clinical data warehouse, we evaluated 8 machine learning
algorithms for accuracy, precision, recall, F1 score, area under the receiver operating characteristic (AUROC) curve, and area
under the precision-recall curve to investigate the best model for predicting mortality. Feature importance and Shapley Additive
Explanations values were analyzed to explain the role of each clinical factor in patients with MINS.

Results: Extreme gradient boosting outperformed the other models. The model showed an AUROC of 0.923 (95% CI 0.916-0.930).
The AUROC of the model did not decrease in the test data set (0.894, 95% CI 0.86-0.922; P=.06). Antiplatelet drugs prescription,
elevated C-reactive protein level, and beta blocker prescription were associated with reduced 30-day mortality.

Conclusions: Predicting the mortality of patients with MINS was shown to be feasible using machine learning. By analyzing
the impact of predictors, markers that should be cautiously monitored by clinicians may be identified.

(JMIR Med Inform 2021;9(10):e32771) doi: 10.2196/32771
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Introduction

Myocardial injury after noncardiac surgery (MINS) is associated
with cardiovascular events and fivefold increased postoperative

mortality, affecting up to the first 2 years after surgery [1].
Recently, MINS is accepted as the leading cause of
postoperative mortality [2,3]. Along with the increased risk of
mortality, the prevalence is also high, reported to be above 20%
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[2,3]. Many previous studies have reported risk factors for the
occurrence of MINS [4-7], but relatively less attention has been
given to perioperative factors that are associated with mortality
in patients who were diagnosed with MINS. We reported
perioperative factors that affect mortality after MINS [8-11].
However, our previous studies evaluated variables independently
and not in a comprehensive manner.

In this study, we trained and evaluated machine learning models
by leveraging the risk factors of patients with MINS and aimed
to find a model with the best performance. Furthermore, we
validated the performance of the model with the test data set
that was curated by the same method with the training data set.
By quantifying and comparing the effect of each variable on
the predictive performance of the model, we developed a mobile
app that predicts mortality in patients with MINS. Our findings
may benefit a comprehensive understanding of patient
characteristics related to mortality in patients with MINS.

Methods

The Institutional Review Board at Samsung Medical Center
forwent the approval for this study and the necessity to obtain
informed consent for access to the Samsung Medical Center
Troponin in Noncardiac Operation (SMC-TINCO) registry
(SMC 2019-08-048) and the test data set for validation (SMC
2021-03-187), considering that both data sets were curated in
deidentified form.

Study Population and Data Curation
Samsung Medical Center is a tertiary referral center with nearly
2000 beds and more than 49,000 cases of surgeries performed
every year. Additionally, they provide the clinical data
warehouse called “Darwin-C,” which allows any researcher in
the institution to automatically extract the deidentified data from
this electronic medical record archive system (Multimedia
Appendix 1). Using the “Darwin-C” system, we generated the
SMC-TINCO registry (KCT0004244) and used it in this study.
The SMC-TINCO contains consecutive data of 43,019 patients
who had at least one inspection of cTn-I before or within 30
days after noncardiac surgery from January 2010 to June 2019.

The medical history was summarized by reviewing the
preoperative assessment sheet, and the names and meanings of
44 features in the data sets are listed in Multimedia Appendix
2. The death state of the clinical data warehouse is consistently
validated and updated from the National Population Registry
of the Korea National Statistical Office.

The routine cTn-I assay of SMC was institutionally updated to
high-sensitivity cTn-T from July 2019. Based on this change,
we generated a data set for testing the model. The data set
consists of 6246 adult patients who had postoperative
high-sensitivity cTn-T measured within 30 days after noncardiac
surgery between July 2019 and January 2021.

Definitions and Study End Points
MINS was defined as peak postoperative cTn elevation above
the 99th percentile of the normal limit within 30 days after
surgery, but those with evidence of nonischemic etiology such
as sepsis, pulmonary embolus, atrial fibrillation, cardioversion,

or chronic elevation were not regarded as MINS based on the
recent diagnostic criteria [12]. High-risk surgery was identified
based on the 2014 European Society of
Cardiology/Anesthesiology guidelines [13].

The primary end point was the predictability of 30-day mortality
of patients with MINS based on perioperative factors. For the
secondary outcome, we also evaluated the predictability of
1-year mortality.

Perioperative Management and cTn Measurements
According to the institutional guidelines, postoperative cTn
measurement is not an institutional routine practice. It is
performed selectively on patients with one or more of the
following major cardiovascular risk factors: heart failure, history
of ischemic heart disease, stroke including transient ischemic
attack, chronic kidney disease, diabetes mellitus on insulin
therapy, or high-risk surgery, but symptoms may be determined
at the discretion of the clinician [13].

An immunoassay (Advia Centaur XP, Siemens Healthcare
Diagnostics, Erlangen, Germany) with high sensitivity was used
for cTn-I. The lower detection limit was 6 ng/L, and 40 ng/L
of the 99th percentile was the reference upper limit, as reported
by the manufacturer [14]. In the test data set, a high-sensitivity
assay of cTn-T (Elecsys, Roche, Basel, Switzerland) was
analyzed using cobas e801 (Roche). The 99th percentile
reference upper limit for hs-cTn-T was 14 ng/L.

Development of Prediction Models
To compare the performance of prediction models, we
investigated the eight widely used machine learning algorithms:
extreme gradient boosting (XGB), generalized boosted
regression model (GBM), random forests (RF), support vector
machines (SVM), classification and regression trees (CART),
linear discriminant analysis (LDA), lasso/ridge/elastic net
(GLMNET), and k-nearest neighbors (kNN). The
hyperparameters of each model were optimized based on a grid
search using the area under the receiver operating characteristic
(AUROC). Fivefold cross-validation was used in the model
development. We evaluated each model according to the
accuracy, precision, recall, F1 score, AUROC, and area under
the precision and recall curve (AUPRC) values (Multimedia
Appendix 3). We validated the performance of the trained model
using a new test data set.

Feature importance and Shapley Additive Explanations (SHAP)
values were used to present the impact of each feature on the
performance of the prediction model. SHAP values show the
characteristic of deriving a marginal distribution and weighted
average by fixing all variables except one and randomly
predicting that one to determine its importance [15]. Features
are sorted in descending order by which the model contributes
to classifying the data. Each patient was represented by one dot
on each variable line. The horizontal location of each dot
indicated whether the effect of a variable was associated with
a higher or lower probability of death. The area on the right
indicates the point where SHAP value is greater than zero.
Variable-specific SHAP values >0 indicate an increased risk
of death.
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Statistical Analysis
Differences were compared using t tests and presented as means
and SDs in two-group comparisons. Categorical features were
presented as numbers with percentages and compared using
chi-square or Fisher exact tests. Statistical analyses were
performed using R 3.6.3 (R Foundation for Statistical
Computing). All tests were two-tailed, and P<.05 was considered
to indicate statistical significance.

Results

Patient Characteristics
In accordance with the definition of MINS, patients younger
than 18 years were excluded from the data sets. Patients who

did not have troponin measured after surgery or had abnormal
levels and nonischemic etiology, such as chest compression,
were also excluded (Figure 1). The baseline characteristics of
the study patients with MINS are presented in Table 1. The age
and gender of the patients in the training and test data sets
showed a similar distribution (Multimedia Appendix 4), but the
distribution of surgical types was slightly different. The number
of patients in gynecology and urology in the test data set was
increased, and other surgeries such as donor transplantation and
bronchial dilation also varied (Multimedia Appendix 5). The
type of surgery performed on patients in each data set and their
mortality are presented in Multimedia Appendix 6.

Figure 1. A flowchart of our retrospective study design. peri-op hs cTn I: perioperative high-sensitivity cTn-I; peri-op hs cTn T: perioperative
high-sensitivity cTn-T; Pts: patients; SMN-TINCO: Samsung Medical Center Troponin in Noncardiac Operation.
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Table 1. Baseline characteristics of patients with myocardial injury after noncardiac surgery according to 30-day mortality.

Test data setTraining data set

P value30-day mortality
(n=153)

No 30-day mortal-
ity (n=2350)

P value30-day mortali-
ty (n=625)

No 30-day mor-
tality (n=4501)

.100.6 (3.4)0.1 (0.7)<.0017.2 (31.7)2.3 (19.7)Peak cardiac troponin level (ng/L), mean (SD)

.1289 (58.2)1526 (64.9).09394 (63.0)2673 (59.4)Male, n (%)

<.00163.3 (13.6)68.2 (12.8)<.00163.1 (14.2)65.7 (13.8)Age (years), mean (SD)

<.00122.7 (3.9)24.0 (3.8)<.00122.9 (3.5)23.7 (3.8)BMI, mean (SD)

.0234 (22.2)752 (32.0).17363 (58.1)2480 (55.1)Diabetes, n (%)

<.00155 (35.9)1209 (51.4).003378 (60.5)2994 (66.5)Hypertension, n (%)

.1921 (13.7)429 (18.3).6185 (13.6)575 (12.8)Chronic kidney disease, n (%)

.387 (4.6)159 (6.8).0247 (7.5)231 (5.1)Dialysis, n (%)

.1116 (10.5)157 (6.7).7558 (9.3)396 (8.8)Current smoking, n (%)

.7315 (9.8)260 (11.1).8389 (14.2)660 (14.7)Current alcohol, n (%)

.00111 (7.2)430 (18.3).002111 (17.8)1059 (23.5)Coronary artery disease, n (%)

Previous disease

.6912 (7.8)215 (9.1).4660 (9.6)388 (8.6)Old myocardial infarction, n (%)

.0310 (6.5)304 (12.9)<.00136 (5.8)530 (11.8)History of coronary intervention, n (%)

>.994 (2.6)66 (2.8)>.9917 (2.7)120 (2.7)History of coronary artery bypass graft, n (%)

.945 (3.3)66 (2.8).0614 (2.2)174 (3.9)Heart failure, n (%)

>.9917 (11.1)253 (10.8).0178 (12.5)415 (9.2)Stroke, n (%)

.458 (5.2)169 (7.2).4955 (8.8)356 (7.9)Atrial fibrillation, n (%)

.5312 (7.8)229 (9.7)>.9963 (10.1)453 (10.1)Arrhythmia, n (%)

>.998 (5.2)117 (5.0).228 (1.3)95 (2.1)Valvular heart disease, n (%)

.205 (3.3)145 (6.2).3414 (2.2)136 (3.0)Aortic disease, n (%)

.837 (4.6)91 (3.9).0611 (1.8)146 (3.2)Peripheral arterial disease, n (%)

.289 (5.9)206 (8.8).3032 (5.1)282 (6.3)Chronic pulmonary disease, n (%)

.00434 (22.2)798 (34.0).16262 (41.9)1751 (38.9)Active cancer, n (%)

<.0011.6 (1.7)2.1 (2.1)<.0013.8 (2.3)3.2 (2.2)Charlson score, mean (SD)

Operative variables

.5338 (24.8)524 (22.3).03143 (22.9)1216 (27.0)ESCa/ESAb surgical high risk, n (%)

<.00183 (54.2)483 (20.6)<.001318 (50.9)1167 (25.9)Emergency operation, n (%)

.27128 (83.7)2047 (87.1).03528 (84.5)3947 (87.7)General anesthesia, n (%)

.122.7 (2.3)3.0 (2.2)<.0013.1 (2.8)3.7 (2.8)Operation duration (hours), mean (SD)

<.0011.1 (2.0)0.5 (1.5).13112 (17.9)695 (15.4)Packed red blood cell transfusion, n (%)

Postoperative in-hospital events

.242 (1.3)8 (0.3).8116 (2.6)104 (2.3)Type I myocardial infarction, n (%)

>.992 (1.3)28 (1.2).0411 (1.8)151 (3.4)Coronary revascularization, n (%)

>.992 (1.3)27 (1.1).028 (1.3)134 (3.0)Percutaneous coronary intervention, n (%)

<.00110.1 (8.7)3.6 (4.4)<.0019.7 (8.8)3.6 (4.0)C-reactive protein level at discharge, mean
(SD)

Medication at discharge, n (%)

.0015 (3.3)294 (12.5)<.00113 (2.1)1031 (22.9)Beta blocker

<.00118 (11.8)800 (34.0)<.00121 (3.4)1224 (27.2)Calcium channel blocker
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Test data setTraining data set

P value30-day mortality
(n=153)

No 30-day mortal-
ity (n=2350)

P value30-day mortali-
ty (n=625)

No 30-day mor-
tality (n=4501)

.021 (0.7)125 (5.3)<.00114 (2.2)384 (8.5)Diltiazem

<.0019 (5.9)933 (39.7)<.00112 (1.9)1165 (25.9)Stain

<.0017 (4.6)474 (20.2)<.00126 (4.2)497 (11.0)Metformin

<.00173 (47.7)636 (27.1)<.001335 (53.6)1127 (25.0)Insulin

<.0019 (5.9)798 (34.0)<.00110 (1.6)1515 (33.7)Antiplatelet

<.0019 (5.9)677 (28.8)<.00120 (3.2)1105 (24.6)Renin angiotensin aldosterone system in-
hibitor

>.990 (0.0)6 (0.3)<.0013 (0.5)211 (4.7)Direct oral anticoagulant

aESC: European Society of Cardiology.
bESA: European Society of Anaesthesiology

Development of a 30-Day Mortality Prediction Model
The probability of developing a 30-day mortality prediction
model was explored using 8 machine learning algorithms. The
hyperparameters optimized using grid search are summarized
in Multimedia Appendix 7. The performance of each model is
displayed using AUROC and AUPRC plots (Multimedia
Appendix 8) along with various indexes (Multimedia Appendix
9). The performance of the kNN, CART, LDA, SVM,
GLMNET, and GBM models was lower than that of the RF and

XGB models. The RF and XGB models showed comparable
performances. The AUROC of the RF model (0.927) was higher
than that of the XGB model (0.923) in the training phase.
However, the AUPRC of the RF model (0.747) was lower than
that of the XGB model (0.763). Additionally, the F1 score and
balanced accuracy of the XGB model (0.678 and 0.784) were
higher than those of the RF model (0.549 and 0.695). When the
models were comprehensively evaluated, the XGB model was
selected as the best performing model for predicting the 30-day
mortality of patients with MINS (Figure 2).
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Figure 2. Performance comparison of each 30-day mortality prediction model with the range of (A) AUROC and (B) F1 score. AUROC: area under
the receiver operating characteristic; CART: classification and regression trees; GBM: generalized boosted regression model; GLMNET: lasso/ridge/elastic
net; kNN: k-nearest neighbors; LDA: linear discriminant analysis; RF: random forests; SVM: support vector machines; XGB: extreme gradient boosting.

XGB 30-Day Mortality Prediction Model
Interpretation
We tried to enable models to be actively accommodated by
securing an interpretability and transparency. The importance
of features in the XGB model is based on an algorithm that
reduces based on the impurity index of the binary tree. The
feature importance plot of the XGB 30-day mortality prediction
model is shown in Multimedia Appendix 10. The top 5 features
were C-reactive protein (CRP) level at discharge, antiplatelet

prescription at discharge, peak cardiac troponin levels (ng/L),
insulin prescription at discharge, and operation duration (hours).

The SHAP summary plot for the XGB models is shown in
Figure 3. The XGB models determined that antiplatelet
prescription at discharge was the most important variable,
followed by CRP level at discharge, insulin prescription at
discharge, beta blocker prescription at discharge, and peak
cardiac troponin level (ng/L). According to the SHAP values
of each feature, antiplatelet prescription at discharge was
associated with a lower probability of death (left side of the
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vertical dotted lines). Higher CRP levels at discharge were
associated with a higher probability of death. Insulin prescription
at discharge was associated with higher probability of death.

Additionally, a SHAP dependence plot was used to explain how
a single feature affects the output of the XGB prediction model
(Multimedia Appendix 11).

Figure 3. SHAP summary plot of 30-day mortality prediction extreme gradient boosting model. According to the SHAP values of each feature,
antiplatelet prescription at discharge (ie, purple dots) was associated with a lower probability of death (ie, the left side of the vertical dotted line). Higher
C-reactive protein levels at discharge (ie, purple dots) were associated with a higher probability of death (ie, the right side of the vertical dotted line).
Insulin prescription at discharge (ie, purple dots) was associated with a higher probability of death (ie, the right side of the vertical dotted line). CABG:
coronary artery bypass graft; COPD: chronic obstructive pulmonary disease; ESA: European Society of Anaesthesiology; ESC: European Society of
Cardiology; SHAP: Shapley Additive Explanations.

Lightening the Model Using Feature Selection
By reducing the number of variables required to use predictive
models, we tried to make the model more acceptable in clinical
practice. We used the recursive feature elimination (RFE)
method to explore the relation between the number of features
and performance. According to the RFE method, the accuracy
of the model is best when the top 28 variables were used.
However, the performance of the model was almost the same

as when the top 10 variables were used (Multimedia Appendix
12). To minimize the number of variables input into the model,
we observed the changes in performance while reducing the
number of variables to 28, 10, and 5.

Light Model With 28 Variables
The list of the top 28 predictor variables chosen by the RFE
method is shown in Multimedia Appendix 12. When the top 28
variables were used to train the model, the performance of the
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XGB model had an accuracy of 0.926, AUPRC of 0.754, and
F1 score of 0.652 (Multimedia Appendix 13). The AUROC was
0.925 (95% CI 0.919-0.931) in the training phase and 0.908
(95% CI 0.877-0.932) in the test phase. The AUROC of the
model did not significantly decrease on the test data set (P=.22;
Multimedia Appendix 14).

Light Model With 10 Variables
The top 10 variables used to train the XGB model were
“crp_predc,” “insulin_dc,” “x_antiplt_dc,” “peaktro,” “ccb_dc,”
“emergencyop,” “opduration,” “statin_dc,” “bb_dc,” and
“optype.” The XGB model had an accuracy of 0.920, AUPRC
of 0.708, and F1 score of 0.616 (Multimedia Appendix 13). The
AUROC was 0.911 (95% CI 0.904-0.918) in the training phase
and 0.904 (95% CI 0.874-0.93) in the test phase. The AUROC
of the model did not significantly decrease on the test data set
(P=.65; Multimedia Appendix 14).

Light Model With 10 Variables Chosen for Clinical
Prediction
We made another model using 10 variables chosen for clinical
prediction. Currently used treatments for MINS include
dabigatran, a type of direct-acting oral coagulant [16], and
potential treatments include antiplatelet agents and statins. We
aimed to create a predictive model after excluding these drugs
from the variables. The 10 chosen variables used were
“crp_predc,” “insulin_dc,” “peaktro,” “ccb_dc,” “ccb_dc,”
“emergencyop,” “opduration,” “bb_dc,” “optype,” “x_raas_dc,”
and “metformin_dc.” The XGB model had an accuracy of 0.916,
AUPRC of 0.672, and F1 score of 0.587 (Multimedia Appendix
13). The AUROC was 0.894 (95% CI 0.887-0.902) in the
training phase and 0.895 (95% CI 0.867-0.923) in the test phase.
The AUROC of the XGB model did not significantly decrease
on the test data set (P=.99; Multimedia Appendix 14).

Light Model With 5 Variables
Multimedia Appendix 12 shows that the prediction accuracy
decreased by approximately 1.9% when the model used 5
variables compared to when the model used 28 variables. For
users who have only a small amount of information about
patients with MINS, we made a lighter model by selecting 5
variables based on the RFE’s feature order. The top 5 variables
used were “crp_predc,” “insulin_dc,” “x_antiplt_dc,” “peaktro,”
and “ccb_dc.” The XGB model had an accuracy of 0.907,
AUPRC of 0.640, and F1 score of 0.505 (Multimedia Appendix
13). The AUROC was 0.890 (95% CI 0.882-0.898) in the
training phase and 0.885 (95% CI 0.856-0.915) in the test phase.
The AUROC of the model did not significantly decrease on the
test data set (P=.80; Multimedia Appendix 14).

Development of a 1-Year Mortality Prediction Model
The AUROC of the 1-year mortality prediction XGB model
was evaluated using the optimized hyperparameters eta=0.1,
gamma=0, max tree depth=4, nround=100, colsample
bytree=0.6, min child weight=1, and subsample=1. The AUROC
of the model was 0.857 (95% CI 0.85-0.864) on the training
data set and 0.794 (95% CI 0.756-0.826) on the test data set
(Multimedia Appendix 15). The AUROC decreased on the test
data set, and a statistically significant difference was observed
compared to the AUROC of the training data set (P<.001).
However, the prediction of the model is still valuable because
the accuracy (0.95) on the test data set was above the no
information rate (P=.001; Multimedia Appendix 16).

The feature importance plot of the 1-year mortality prediction
model is shown in Multimedia Appendix 17. The top five
features were the CRP level at discharge, peak cardiac troponin
level (ng/L), operation duration (hours), antiplatelet prescription
at discharge, and ucharlson score.

The SHAP summary plot for the models is shown in Multimedia
Appendix 18. The XGB models determined that the CRP level
at discharge was the most important variable, followed by the
ucharlson score, antiplatelet prescription at discharge, insulin
prescription at discharge, and operation duration (hours).
According to the SHAP values of each feature, a higher CRP
level at discharge and ucharlson score were associated with a
higher probability of death. Antiplatelet prescription at discharge
was associated with a lower probability of death, and insulin
prescription at discharge was associated with a higher
probability of death.

Development of an App With 30-Day Mortality
Prediction XGB Model
The app, Leveraging R Shiny, was developed for practical use
of the 30-day mortality prediction XGB model (Figure 4). Users
can download the app for free via the public link [17]. Three
versions of light models developed in this study are incorporated
in the app: the top 10 features model, chosen 10 features model,
and top 5 model. Each model was explored to find the optimal
threshold for predicting patients at high risk of death. The
optimized thresholds were applied to each model: 0.65 for the
top 10 model; 0.53, chosen 10 model; and 0.68, top 5 model
(Multimedia Appendix 19). Each user can choose a model type
according to the type of variables that can be entered in a
medical situation. A value for each variable corresponding to
the target patient is entered and the Action button is pressed for
probability output of the patient’s demise in 30 days. After
adjusting certain variable values, clinicians can observe changes
in mortality and apply them to treatment decisions.
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Figure 4. Internet app for predicting 30-day mortality of patients with MINS. CCB: calcium channel blockers; MINS: myocardial injury after noncardiac
surgery.

Discussion

In this observational cohort study, we demonstrated the
predictability of mortality in patients with MINS based on
perioperative variables using a machine learning method.

Analysis of Model Performance Considering the
Asymmetry of Data
To avoid overestimating the performance of the model, an
imbalanced data set should be treated carefully when training
a supervised classification machine learning model [18,19].
Along with accuracy, we wanted to interpret the performance
of the model using indicators such as precision, recall, F1 score,
AUPRC, and no information rate. In addition, for calibrating
imbalanced data, four methods including oversampling,
undersampling, both-sampling, and Random Over-Sampling
Examples–sampling were carried out on the training data set,
but the model’s performance was significantly reduced when
the model was applied in the test data set; therefore, these
methods were not accepted (data not shown).

Comparison of 30-Day and 1-Year Preference Model
Performance
We investigated why the 1-year prediction performance was
lower than the 30-day prediction in this study. First, predicting
the distant future is harder than predicting the near future. From
a clinical perspective, although MINS has been reported to be
associated with mortality up to 2 years after surgery, more

clinical events that affect mortality are likely to take place as
the duration of follow-up extends. Additionally, the observation
period of the patients who made up the test data set (1.5 years)
was shorter than that of the training data set (9.5 years). The
observation period of the test data set may have been too short
to reflect the characteristics of a patient who died within 1 year.

Consideration of the SHAP Values of the Charlson
Scores
We observed different relations to SHAP values between the
original Charlson Comorbidity Index (CCI) scores and the
updated CCI scores. The original CCI score shows a moderate
proportional relationship with the SHAP value. However, the
updated CCI score shows that the SHAP value increased rapidly
in the low scores and was then maintained (Multimedia
Appendix 20). It is assumed that the updated CCI score has
changed the weights of cardiomyopathy, peripheral vascular
disease, and cerebrovascular disease from 1 to 0.

Clinical Implications
MINS is the most common medical complication directly related
to mortality [13]. The rapid detection and appropriate
management of MINS affects many patients at risk of mortality.
The only treatment that was established in randomized trials
was direct oral anticoagulants [16]. However, strengthening of
cardiovascular drugs such as aspirin, statins, and few types of
hypertension drugs have been reported to be linked to reduced
mortality in patients with MINS [10,20]. Our results, show that
the prescription of cardiovascular drugs such as antiplatelet
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agents, antihypertensive drugs, and statins at discharge are
effective in predicting MINS mortality. The CRP level as a
degree of inflammation is linked with the prognosis of coronary
artery disease [21] and shows a strong impact on the model,
which is consistent with previous studies. Therefore, our
findings regarding the mortality of patients with MINS may be
predicted based on perioperative variables, suggesting the
possibility of reducing the mortality of patients with MINS by
correction of perioperative variables.

We were able to reduce the number of variables to 5 with
affordable loss in performance. Using only 5 variables, it is
possible to predict the mortality of patients with MINS with
90.7% accuracy. A smaller number of variables in the prediction
model indicates that it is highly likely to be used in other
hospitals. Hence, we see this result as an important clinical
implication.

Limitations of the Study
Our study has a few limitations. First, model validation was
performed using a test data set having a different time window
from that of the data set used for training and internal validation.
As a study using observational data collected in a single
institution, our predictive models may have limited
generalizability. Using a data set of patients with MINS visiting
different institutions over the same period would allow for more
appropriate external validation.

Second, our results might have been affected by selection bias
and confounding factors. Postoperative hs-cTn measurements
were not routine and optionally performed in patients with
specific cardiovascular risks. Consequently, the possibility of
selection bias may exist and should be considered if the user
wants to apply the model in clinical practice.

Third, after confirming that mortality can be predicted using
observational data, we created and released a mobile app for
users. However, the predictive model developed in this study
cannot be immediately used in routine clinical practice. We
plan to conduct further research to measure the applicability of
the model in clinical practice.

Conclusions
We have confirmed that a 30-day mortality prediction model
can be developed for patients with MINS using observational
clinical data. The XGB algorithm outperformed the LDA, kNN,
CART, SVM, GLMNET, RF, and GBM machine learning
algorithms. To maximize the applicability of the prediction
model in clinic settings, we observed that the number of
variables that need to be input into the model can be reduced
to 5 while preserving the performance of the model. For more
robust evidence, a randomized clinical trial is required to address
the variables explored in this study. However, this study is the
first to report mortality predictability in patients with MINS
using machine learning.
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