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Abstract

Background: Adverse drug events (ADEs) are unintended side effects of drugs that cause substantial clinical and economic
burdens globally. Not all ADEs are discovered during clinical trials; therefore, postmarketing surveillance, called pharmacovigilance,
is routinely conducted to find unknown ADEs. A wealth of information, which facilitates ADE discovery, lies in the growing
body of biomedical literature. Knowledge graphs (KGs) encode information from the literature, where the vertices and the edges
represent clinical concepts and their relations, respectively. The scale and unstructured form of the literature necessitates the use
of natural language processing (NLP) to automatically create such KGs. Previous studies have demonstrated the utility of such
literature-derived KGs in ADE prediction. Through unsupervised learning of the representations (features) of clinical concepts
from the KG, which are used in machine learning models, state-of-the-art results for ADE prediction were obtained on benchmark
data sets.

Objective: Due to the use of NLP to infer literature-derived KGs, there is noise in the form of false positive (erroneous) and
false negative (absent) nodes and edges. Previous representation learning methods do not account for such inaccuracies in the
graph. NLP algorithms can quantify the confidence in their inference of extracted concepts and relations from the literature. Our
hypothesis, which motivates this work, is that by using such confidence scores during representation learning, the learned
embeddings would yield better features for ADE prediction models.

Methods: We developed methods to use these confidence scores on two well-known representation learning methods—DeepWalk
and Translating Embeddings for Modeling Multi-relational Data (TransE)—to develop their weighted versions: Weighted
DeepWalk and Weighted TransE. These methods were used to learn representations from a large literature-derived KG, the
Semantic MEDLINE Database, which contains more than 93 million clinical relations. They were compared with Embedding of
Semantic Predications, which, to our knowledge, is the best reported representation learning method using the Semantic MEDLINE
Database with state-of-the-art results for ADE prediction. Representations learned from different methods were used (separately)
as features of drugs and diseases to build classification models for ADE prediction using benchmark data sets. The methods were
compared rigorously over multiple cross-validation settings.

Results: The weighted versions we designed were able to learn representations that yielded more accurate predictive models
than the corresponding unweighted versions of both DeepWalk and TransE, as well as Embedding of Semantic Predications, in
our experiments. There were performance improvements of up to 5.75% in the F1-score and 8.4% in the area under the receiver
operating characteristic curve value, thus advancing the state of the art in ADE prediction from literature-derived KGs.

Conclusions: Our classification models can be used to aid pharmacovigilance teams in detecting potentially new ADEs. Our
experiments demonstrate the importance of modeling inaccuracies in the inferred KGs for representation learning.
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Introduction

The Challenge of Detecting Adverse Drug Events
Adverse drug events (ADEs) are unintended side effects of
drugs that often lead to emergency visits, prolonged hospital
stays, and worse patient outcomes [1]. They pose substantial
clinical and economic burden—in the United States alone,
morbidity and mortality costs associated with ADEs were
estimated to be approximately US $528 billion in 2016 [2], and
1 in 3 drugs approved in the period from 2000 to 2010 had
safety-related issues after release, some of which led to their
withdrawal from the market [3].

Patients may be prescribed multiple drugs together when they
have multiple coexisting ailments or for combination therapies,
for example, in cancer [4]. In such cases, it is also possible for
ADEs to occur because of a combination of drugs, also termed
polypharmacy. Polypharmacy poses a higher risk of ADEs
because of drug-drug interactions [5,6]. Polypharmacy is also
an increasing burden to health care; estimates suggest that they
cause nearly 74,000 emergency room visits and 195,000
hospitalizations annually in the United States [7].

In general, detecting ADEs is a challenging problem. Clinical
trials are limited by the number and characteristics of patients
tested as well as the duration of the observation period, and they
may not detect all ADEs, especially those with long latency or
those that affect only certain patient groups [8]. Detecting
polypharmacy ADEs is even harder—although it is possible to
test for a few drug interactions [9], it is computationally
infeasible to test for all possible drug combinations [10].
Postmarketing drug safety surveillance, called
pharmacovigilance, is routinely conducted to continuously
update our knowledge of potential ADEs.

Spontaneous reporting systems, which collect voluntary reports
of ADEs, have been the primary data source for
pharmacovigilance. Mining these databases presents several
challenges because of inherent reporting bias and
incompleteness. Methods to detect ADE signals from other data
sources such as social media and clinical data are being actively
developed, but problems of quality and reliability limit the utility
of these sources; the study by Ventola [1] provides a detailed
survey. Biomedical literature, which forms another source of
ADE signals, is also consulted during ADE mining from other
sources. An advantage of these data over others is the presence
of information relevant to potential causal assessment in the
studies described. Furthermore, as biomedical knowledge grows,
this source continues to expand and update itself systematically.

However, the scale is both an advantage and a hurdle.
MEDLINE, the largest index of medical literature, contains
more than 24 million articles, with more than a million new
articles published annually [11]. This enormous scale makes it

challenging to mine the data; therefore, to facilitate knowledge
discovery from such unstructured data, standardized
vocabularies and ontologies have been created. Furthermore,
natural language processing (NLP) techniques have been
developed to automatically infer both clinical concepts and their
relations found in the literature. Such ontologies are also massive
and continue to evolve with growing biomedical literature. An
ontology can be viewed as a heterogeneous knowledge graph
(KG) comprising multiple kinds of vertices (clinical concepts,
eg, drugs and diseases) and edges (relations, eg, Treats and
Is-A-Side-Effect).

Previous literature-based knowledge discovery systems—for
ADE detection as well as for other applications—have mainly
used text and graph mining or supervised learning methods
[12-14] that require careful design of the features from text or
graphs. For instance, certain patterns of relations (edges) among
clinical concepts (vertices) may be used to mine ontologies for
a potential ADE. Finding the right set of patterns can be
challenging—for a given pair of concepts, evidence of an
association, or lack thereof, cannot be discerned from the
presence or absence of a single edge: two clinical concepts may
be indirectly connected and, by multiple paths, be composed of
several relations. Such manual feature engineering is
cumbersome, time consuming, and does not scale with the
rapidly evolving literature and literature-derived KGs.

To enable reasoning on such large and complex KGs and to
automate feature engineering, most recent approaches use graph
embeddings that encode the global structural properties of a
given graph into vectorial representations of its vertices. With
such representations, relations among clinical concepts can be
computed algebraically using vectorial measures of similarity.
Furthermore, these representations can be used as features
directly in machine learning models for tasks such as association
prediction or cluster detection (see Figure 1 for a schematic).
Such approaches have yielded state-of-the-art results in many
tasks, including ADE prediction from KGs [15].

Most representation learning methods have been designed for
graphs from the internet, for example, social media or
e-commerce, where the graph itself is assumed to have very
few or no errors. In contrast, errors are common in
literature-derived biomedical KGs because of the large and
complex clinical vocabulary, which often contains inconsistently
used abbreviations and features frequent use of synonyms and
homonyms, as well as the need to use and link multiple
expert-curated ontologies and insufficient labeled data sets for
the underlying NLP tools used [16-18]. The best previous
embeddings, Embedding of Semantic Predications (ESP;
detailed in the section ESP Method), which was designed for
such literature-derived graphs, does not account for such noise
due to NLP inference.
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Figure 1. Knowledge graphs are obtained through natural language processing on biomedical literature. Clinical concept representations learnt from
such graphs are used as features for machine learning tasks. ISA: is a.

NLP algorithms quantify the confidence in their inference of
extracted concepts and relations from the literature. Our
hypothesis, which motivated this work, is that by using such
confidence scores during representation learning, the learned
embeddings would yield better features for predictive models.
In this study, we developed techniques to use these confidence
scores during representation learning to model inaccuracies in
literature-derived KGs due to NLP inference. We illustrate the
use of our technique on two well-known representation learning
methods: DeepWalk [19] and Translating Embeddings for
Modeling Multi-relational Data (TransE) [20]. We show how
confidence scores can easily be incorporated in both these
methods as weights that bias the methods to choose higher
confidence edges and nodes over lower confidence edges and
nodes during representation learning. Thus, we developed the
weighted versions of these methods: Weighted DeepWalk and
Weighted TransE.

We rigorously evaluated these methods on benchmark data sets
for drug-ADE prediction and polypharmacy prediction. In both
tasks, our weighted versions were able to learn representations
that yielded more accurate predictive models than ESP and the
unweighted versions of DeepWalk and TransE, with
improvements of up to 5.75% in the F1-score and 8.4% in the
area under the receiver operating characteristic curve (AUC)
value. Thus, our experimental results demonstrate the benefit
of modeling inaccuracies in the inferred KGs for representation
learning. Better representations, in turn, lead to better
classification models for ADE prediction.

Background and Related Work

Biomedical KGs
The primary source of scientific clinical knowledge is
biomedical literature, which records details of clinical trials
conducted, case studies, and systematic reviews. To facilitate
knowledge discovery from such unstructured data, standardized
vocabularies and ontologies have been created; for example,
the Unified Medical Language System Metathesaurus [21]
contains more than 5 million clinical concepts—identified by
controlled unique identifiers—that have been organized into
structured ontologies.

NLP techniques that have been designed to infer both clinical
concepts and their relations found in the literature automatically
create ontologies from the rapidly growing body of biomedical
literature. Data sources such as molecular databases, drug banks,
or social media may also be used as additional inputs. Examples
include the Semantic MEDLINE Database (SemMedDB) [22]
and KnowLife [23]. These automatically generated ontologies

have been found to be immensely useful to support hypothesis
generation [12], literature-based knowledge discovery [24], and
predictive modeling [25].

In this work, we used the SemMedDB, where clinical concepts
are identified in PubMed abstracts through entity recognition
algorithms and then mapped to their controlled unique
identifiers. Various heuristics are used to infer the relations
between concepts (see the study by Rindflesch and Fiszman
[18] for details). The SemMedDB infers 30 different kinds of
relations such as Treats, Causes, Predisposes, and Prevents
among clinical concepts of various types that include diseases,
drugs, procedures, and biological structures. These relations are
organized into [subject-predicate-object] triplets (eg, [drug
A-Treats-disease B]), where both the subject and object are
clinical concepts and the predicate is a relation. There are more
than 96 million such triplets extracted in the SemMedDB.

The SemMedDB contains useful information about each triplet
including the following:

1. Co-occurrence scores of [subject-predicate-object] triplet:
the number of times the triplet is inferred from the
literature—higher number indicates higher confidence in the
association.

(2) Subject-score and object-score: confidence score of the
mapping found by NLP recognition algorithms between a text
string and the subject or object concept. These scores were used
in the methods we developed.

The collection of such triplets can be viewed as a heterogeneous
graph comprising multiple vertex types (clinical concepts) and
multiple edge types (predicates). This graph-based view enabled
us to mine the KG using graph analytics tools. For instance,
predicates only show direct relations between two concepts,
whereas the graph illuminates indirect relations through various
paths connecting the two concepts.

Learning Clinical Concept Representations From KGs

Graph Embeddings
Statistical machine learning models typically assume inputs as
feature vectors. To obviate the need for manual extraction of
features from text and graph inputs, representation learning aims
to learn features or representations from the input directly, in
an unsupervised manner. Representation learning from graphs
is an active research area; see the studies by Goyal and Ferrara
[26] and Yang et al [27] for general surveys and the study by
Wang et al [28] for a survey on representation learning on KGs.
The representations are vectorial representations of the vertices
of the graph. They are also called graph embeddings because
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of the similarities in both the representation learning algorithms
and their uses to the word embeddings in NLP.

Formally, for any given graph G = (V, E), with vertex set V and
edge set E, a graph representation learning algorithm learns a

d-dimensional latent representation xvi ∈ d, d « |V| for each
vertex vi ∈ V that captures global structural and semantic
relations (as described below) in the graph. We first outline
skip-gram negative sampling (SGNS), a widely used neural
architecture for obtaining word embeddings in NLP, and later
describe how SGNS is used or adapted to obtain graph
embeddings.

SGNS Approach
SGNS is a neural approach to learn word representations from
text data [29]. The key idea is to train a neural network to predict
the context of each word in the input text corpus, where context
is defined as a window of neighboring words. Usually,
preprocessing steps remove uninformative words such as
stop-words (a, an, the...) before training, and one-hot encoding
is used for input and output of the network. The window size
is a parameter set during training. For each word, context words
for every occurrence in the text corpus are extracted to form the
training data (Figure 2). After the network is trained using
gradient descent, the learned weights are used as word
embeddings. The model can use negative samples—where words
not found in the neighborhood are used—during training.

Figure 2. Skip-gram negative sampling: A window of words around a term constitutes its context. Word embeddings are obtained from the weights
of a neural network trained to predict context words of a term. K-dim: K dimensions; M-dim: M dimensions; N-dim: N dimensions; SGNS: skip-gram
negative sampling.

ESP Method
To obtain embeddings of clinical concepts using
[subject-predicate-object] triplets, also called predications,
Cohen and Widdows [30] designed the ESP method based on
the SGNS architecture. In ESP, the context of a subject concept
is defined as the set of objects that it relates to through one or
more predicates. In addition, their model was explicitly trained
to enable analogical reasoning, with respect to biomedical
relations, by defining binding operators (eg, exclusive OR

[XOR], denoted by ⊕) on the representations of concepts and
predicates. Thus, if there is a predicate such as drug
A-Treats-disease B, then from the corresponding representations,
they aim to have drug A⊕treats≈disease B. This is learned
during training by modifying the SGNS architecture to predict
the object (eg, disease B) from the XOR of the predicate and
subject (drug A⊕treats; Figure 3). With these modifications,
ESP obtains embeddings of both clinical concepts and predicates
using a gradient descent–based optimization similar to that of
SGNS.

Figure 3. Embedding of Semantic Predications embeddings from [subject-predicate-object] triplets: the objects of a subject term form its context, and
the skip-gram negative sampling architecture is modified to predict each context from the term and the predicate. ISA: is a.

ESP has not been developed by viewing the collection of triplets
as a KG. When viewed from the KG perspective, we recognize
that ESP trains its embeddings by using only its immediate
neighbors in the graph. It is possible to learn embeddings that
can explicitly incorporate more distant information, that is, by
using a context for training that includes not just neighboring
vertices but also vertices that are two or more hops away on the
KG, for instance, through walk-based approaches that we
describe next.

DeepWalk Method
There are many graph embedding algorithms based on random
walks. Although the details differ, they share the underlying

idea of using random walks on the graph to define a context for
a vertex and to generate training data similar to those for
learning word embeddings. Then a neural architecture can be
used to obtain vertex representations. We outline DeepWalk
[19], one such walk-based algorithm. DeepWalk obtains training
data through random walks from each vertex on the input graph
and uses SGNS to obtain vertex representations (Figure 4). Note
that DeepWalk assumes a homogeneous input graph;
information regarding multiple vertex types and edge labels is
not used and, hence, is not shown in Figure 4. The random walk
generator randomly selects the next vertex to walk to from its
neighborhood, that is, vertices that are connected by an edge.
For each vertex in the input graph, select N sequences of L
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vertices each. In each sequence, at the kth step, the k+1st vertex
is randomly sampled with probability:

where H(vj) denotes the neighborhood of vj. Additional
implementation details can be found in the study by Perozzi et
al [19].

The simple idea of DeepWalk has been extended in many ways
for homogeneous graphs. Relatively fewer walk-based

approaches have been developed for heterogeneous graphs.
Among them, Metapath2Vec is an effective method that uses
metapath schemes to predefine the types of edges to be selected
during random walk selection [31], an approach that works well
in sparse graphs with relatively few edge types. However, the
generation of such metapath schemes is difficult for biomedical
KGs that are typically very dense and have many edge types.
There are approaches, which are different from walk-based
approaches, that have been designed directly for KGs, such as
TransE, which we describe next.

Figure 4. DeepWalk: Random walks generate contexts for a vertex, which are used as training data in skip-gram negative sampling to obtain embeddings
for each vertex. SGNS: skip-gram negative sampling.

TransE Method
We briefly describe the intuition behind TransE and refer the
reader to the study by Bordes et al [20] for more details. For a
set of clinical entities E, given a training set S of triplets (h, l,
t)—composed of two clinical entities head h and tail t where h,
t ∈ E—and a relationship (or predication) l, the TransE model
learns k-dimensional vector representations of the entities and

the relationships (where k is a hyperparameter). The idea behind
the TransE model is that the relationship induced by the l-labeled
edges corresponds to a translation of the vector representations.
That is, we want that the vectors obey h + l ~ t when the
predicate (h, l, t) is present in the KG. If the triplet (h, l, t) is
not present, then the vector h + l should be far away from the
tail concept t in vector space (Figure 5).

Figure 5. Schematic of TransE: Triplet (antibiotic, treats, conjunctivitis) is preserved in the vector sum of their representations in 2 dimensions:
h[antibiotic] + l[treats] ~ t[conjunctivitis]. The vector sum h + l is much further from the vector for pain than from the vector for conjunctivitis. TransE:
Translating Embeddings for Modeling Multi-relational Data.

Note that the input of TransE is similar to that of ESP: both use
[subject-predicate-object] triplets. However, ESP generates
binary representations and has a different scheme for the
composition of representations, whereas TransE obtains
real-valued distributed representations with the usual operations
defined on the vector space. Furthermore, TransE does not use

SGNS for training and has a different energy-based framework
for optimization as described below.

Following an energy-based framework, the energy of a triplet
is given by d(h + l, t), where d is a dissimilarity function (eg,
L1 or L2 norm); lower energy triplets are preferred because
they preserve the required vector relationship. Therefore, to
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learn the vector representations, a margin-based ranking
criterion, given below, is minimized over the set of triplets in
the KG:

where [x]+ denotes the positive part of x and y>0 is a margin
hyperparameter and S'(h,l,t) = {(h', l, t)|h' ∈ E} ∪ {(h, l, t')|t' ∈
E} is the set of corrupted triplets. The set S' is composed of
training triplets with either the head diseases or tail diseases
replaced by a random entity (but not both at the same time).
The loss function L favors lower values of the energy for training
triplets than for corrupted triplets and is thus a natural
implementation of the intended criterion. The model uses
stochastic gradient descent optimization to minimize the loss.

Methods

Model 1: Extending DeepWalk to Weighted DeepWalk
We made two modifications to DeepWalk. The first modification
enabled us to sample edges in a heterogeneous graph without
requiring fixed predefined metapath schemes. We then
introduced a bias over the walks that was informed by simple
statistics of the inferred clinical concepts and relations and, thus,
accounted for inaccuracies during NLP inference. Both these
approaches change the sampling strategy in the procedure for
generating random walks of DeepWalk. Other steps involving
SGNS for training remain the same.

We modified the random walk procedure such that an (edge,
vertex) pair was selected for traversal at each step instead of
just a vertex. Thus, if the same vertex could be reached through
two different predicates (edges), they were considered two
separate neighbors during the next step selection in the random
walk. We viewed a subject vertex as one that was connected to
not just another vertex, but also to a pair (predicate, object).
Formally, we defined the set E' = {((p, o), s) iff [s, p, o] is a
valid triplet}. This defines the neighborhood of a vertex vj as a
set of (predicate, vertex) pairs: H'(vj) = {(p, vi)|((p, vi), vj) ∈ E'}.
We incorporated information on the confidence scores from the
SemMedDB using a scoring function in the sampling
distribution at each step of the walk. As a result, the walks were
biased toward vertices and edges with higher confidence. The
selection of the next (edge, vertex) pair was performed by
sampling from the distribution:

where fijp is a score for the corresponding triplet and σN'(vj) is a
softmax function over all the predicates from vertex vj. The

triplet score was computed as a weighted product, 
where Wijp = (wjsvj × wisvi × wpcp) and sv represents the score
for the (subject and object) vertices and cp represents the
co-occurrence score of the predicate.

The normalization, using the maximum value, was carried out
to avoid numerical errors due to very large numbers. Each score
had a multiplicative effect that resulted in triplets, with all 3
high scores being highly favored (for the next vertex selection
in a walk) over triplets with any of the 3 scores being low. The
weights were optimized through hyperparameter search. The
softmax function was used to convert the scores to probabilities
at each step of the walk. We performed L2 normalization on
the learned representations to ensure that their L2 norms were
equal to 1. We implemented both the random walk generators
in Python (Python Software Foundation) and used the script
from the study by Mikolov et al [29] for SGNS.

Model 2: Extending TransE to Weighted TransE
Incorporating confidence scores in TransE is relatively
straightforward. As described earlier, the loss function is
designed in such a way that true triplets have lower energy than
corrupted triplets. Using the weight function of the subject,
object, and co-occurrence scores—fijp, defined earlier for
Weighted DeepWalk—we can simply reweight the energy of
the true triplets in such a way that the higher-confidence triplets
have lower energy than the lower-confidence triplets. As fijp
lies between 0 and 1, we can divide the energy of the true triplets
to achieve this reweighting. Thus, the modified loss function
becomes

where [x]+ denotes the positive part of x and y>0 is a margin
hyperparameter and S'(h,l,t) = {(h', l, t)|h' ∈ E} ∪ {(h, l, t')|t' ∈
E} is the set of corrupted triplets as described above.

Drug-ADE Prediction
Our first set of experiments followed the procedure described
in the study by Mower et al [15] for ADE prediction. Figure 6
shows a schematic of the experiment setting, with details
described in the following.
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Figure 6. Experiment setting for drug–adverse drug reaction prediction. ADE: adverse drug reaction; CV: cross-validation; ESP: Embedding of Semantic
Predications; EU-ADR: Exploring and Understanding Adverse Drug Reactions; KNN: k-nearest neighbors; LR: logistic regression; OMOP: Observational
Medical Outcomes Partnership; RF: random forest; TransE: Translating Embeddings for Modeling Multi-relational Data.

Data
We used 2 curated reference data sets that contain drug, disease
pairs: Observational Medical Outcomes Partnership (OMOP)
[32] and Exploring and Understanding Adverse Drug Reactions
(EU-ADR) [8]. OMOP contains 4 ADEs: myocardial infarction,
gastrointestinal bleeding, liver injury, and kidney injury for 180
drugs. The drugs for which embeddings from the SemMedDB
could not be obtained were removed: 5 in OMOP (corresponding

to the drugs darunavir and sitagliptin) and 1 in EU-ADR (for
the drug nimesulide). Statistics of both the data sets used in our
experiments are presented in Table 1.

ESP embeddings have been empirically evaluated for ADE
prediction on these data sets. For each drug and ADE pair, a
composite feature vector was obtained by binding the
corresponding ESP embeddings. The use of these feature vectors
in a logistic regression (LR) classifier was found to outperform
previous literature-based methods [15].

Table 1. Exploring and Understanding Adverse Drug Reactions (EU-ADR) and Observational Medical Outcomes Partnership (OMOP) data set statistics.

Non-ADE pairsADEa pairsDiseasesDrugsData set

50431065EU-ADR

2301644180OMOP

aADE: adverse drug event.

Unsupervised Representation Learning
To compare the performance of the representation learning
methods, we generated embeddings of all clinical concepts
(nodes) in the SemMedDB using DeepWalk, TransE, Weighted
DeepWalk, Weighted TransE, and ESP. We used the available
implementation of DeepWalk [33] and TransE [34]. We
experimented with multiple hyperparameter sets and selected
the ones that yielded the best loss value during representation
learning. In Weighted TransE and TransE, we set the α value
to .001, batch size to 256 triplets, epochs to 100, and the number
of corrupted triplets for each positive triplet to 1. The embedding
dimension was 100 in both these models. For the DeepWalk

and Weighted DeepWalk models, we set the walk length to 500,
the number of walks to 20, window size to 4, α value to .025,
and an embedding size of 256. For ESP, we used the embeddings
provided by the authors [35], which had a dimension of 8000.

Classification Task and Algorithms
We used supervised binary classification to classify relationships
consisting of (drug, disease) pairs. If a drug could cause a
particular disease as a side effect, the label assigned to the pair
was positive (+1); otherwise, the label assigned was negative
(–1). In ESP, the XOR operator is used on each (drug, disease)
pair’s vector representations (embeddings) to form a single
8000-dimensional input feature vector, which has also been
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provided by the authors [35]. For all the other embedding
algorithms, for each (drug-disease) pair, we concatenated the
vector representations (embeddings) learned from the
SemMedDB KG of the drug and disease to form the input
feature vectors. The performance of each representation learning
technique was evaluated by their classification performance in
this task.

To evaluate the downstream effect of the learned representations
on classification performance, we used 3 different classifiers.
LR is a commonly used linear model. For nonlinear classifiers,
we used two different techniques: k-nearest neighbors (KNN)
and random forest (RF). KNN classifies a test feature vector
based on its distance from the k-nearest training data vectors.
RF is an ensemble-based technique that uses multiple decision
trees to make predictions. All the experiments in this study were
conducted using the scikit-learn library (version 0.24.2) [36].
L1 regularization was used for the LR, information gain
(entropy) criterion was used for the RF, and k=5 neighbors was
used for the KNN classifier. All other parameters were retained
at their default values.

Evaluation
Following the study by Mower et al [15], we evaluated the
classifiers using leave-one-out (LOO) cross-validation and
stratified 5-fold (S5F) cross-validation on the following data
sets:

1. EU-ADR
2. OMOP
3. Combined EU-ADR+OMOP

In LOO cross-validation, the number of folds is equal to the
number of instances in the data; in each fold, there is a single
test instance, and the remaining instances are used as training
data for the classifier. S5F cross-validation is an extension of
regular 5-fold cross-validation, where the folds are made by

preserving the percentage of samples for each class. In addition,
we used two other settings (for a total of 5 settings) to evaluate
the generalization performance:

• The classifiers were trained on EU-ADR data and tested
on OMOP data.

• The classifiers were trained on OMOP data and tested on
EU-ADR data.

Standard metrics to evaluate binary classification were used:
the F1-score and the AUC value. Averages (over all the folds
in case of S5F) are reported along with the SD. In the last two
settings, we evaluated the trained model on the same 5 folds
used in settings 1 and 2, respectively, to have performance
values that could be compared.

Visualization of Embeddings
To visually inspect the embeddings, we used the dimensionality
reduction technique: t-distributed stochastic neighbor embedding
(t-SNE) [37]. Embeddings from all 5 methods—for all 487
(drug, disease) pairs in both the OMOP and EU-ADR reference
data sets—were plotted in 2 dimensions. The implementation
used was from the sklearn library [36]. t-SNE was run with a
learning rate of 600. To select the perplexity parameter, we
empirically evaluated randomly chosen values and selected
those that yielded the best cluster visualization. Perplexity was
set to 30 to visualize ESP embeddings and to 5 for all other
embeddings. In our plots, we represented the false drug-ADE
pairs with an o sign and the true drug-ADE pairs with an x sign.
Each disease was represented by a different color, and there
were 10 diseases in total in the data sets.

Polypharmacy Prediction
In this experiment, we evaluated the efficacy of our
representation learning methods for polypharmacy prediction.
Figure 7 shows a schematic of the experiment setting with
details described in the following.
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Figure 7. Experiment setting for polypharmacy prediction.

Data
We used the benchmark data set for polypharmacy prediction
from the study by Zitnik et al [38], which was also used in the
study by Burkhardt et al [39]. We used the same data set,
including the exact train-test splits, and called it the
polypharmacy data set.

The data consist of 3 types of interactions: drug-drug,
drug-protein, and protein-protein interactions. Drug-drug
interactions contain triplets of the form drug A-SE-drug B where
consuming drug A and drug B together would cause the side
effect (SE) mentioned in the triplet, for example,
aspirin-Kidney-Failure-warfarin. These data were curated from
two databases: Side Effect Resource (SIDER) [40] and Twosides
[6]. We used the preprocessed data of the study by Burkhardt
et al [39], downloaded from the Zenodo website [41], where
triplets for side effects that occurred in fewer than 500 drug

interactions are not used. There are 963 side effects in total.
Protein-protein interactions, which were curated from multiple
databases, indicate physical interactions that have been
experimentally found in humans. Drug-protein interactions
contain experimentally verified small chemicals (drugs) that
target specific proteins. More details can be found in the study
by Zitnik et al [38].

The drug-drug interaction data were divided into 80% training,
10% validation, and 10% test sets. Furthermore, along with
valid interactions, that is, where the 2 drugs cause the reported
side effect, the study by Zitnik et al [38] also provides an equal
number of invalid interactions by using randomly selected drugs
and side effects that do not occur in the valid interactions. There
are 22,89,960 protein-protein interactions and 29,756
drug-protein interactions that were used only during training.
Textbox 1 shows the number of interactions provided in the
benchmark data set.

Textbox 1. Polypharmacy data set statistics.

Number of interactions provided in the benchmark data set

• Train

• Drug-drug interactions: 73,23,790

• Protein-protein interactions (only used during training): 22,89,960

• Drug-protein interactions (only used during training): 29,756

• Test

• Valid drug-drug interactions (label 1): 4,57,196

• Invalid drug-drug interactions (label 0): 4,57,196
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The previous best results published on this data set, to our
knowledge, are those of ESP in the study by Burkhardt et al
[39]. The authors’ approach first learns ESP embeddings from
drug-drug, drug-protein, and protein-protein interactions of the
polypharmacy training data set. Given a test triple—drug 1,
drug 2, and side effect—they bind the embeddings of the drugs,
and if the similarity of the obtained composite vector to the side
effect embedding is more than a fixed threshold, they predict
the triple to be valid. This simple approach was found to
outperform Decagon, a more complex graph neural
network–based approach [38].

Unsupervised Representation Learning
We generated embeddings in two different ways. First, we used
the training data provided to learn embeddings using TransE,
Weighted TransE, DeepWalk, and Weighted DeepWalk. We
used the available implementations of DeepWalk [33] and
TransE [34]. We experimented with multiple hyperparameter
sets and selected the ones that yielded the best loss value during
representation learning. Both DeepWalk and Weighted
DeepWalk embeddings were generated by setting the number
of walks to 25, walk length to 500, window size to 10,
embedding size to 256, and α value to .025. TransE and
Weighted TransE embeddings were generated by setting batch
size to 512, number of corrupted triplets for each positive triplet
to 1, epochs to 100, α value to .001, and embedding size to 100.
In the weighted versions, the occurrence score for a triplet drug
A-SE-drug B is the number of triplets containing the same drug
A (subject) and drug B (object) with no restrictions on the side
effect (ie, they may have different side effects), and subject,
object scores were set to 1.

Second, to evaluate the utility of the SemMedDB as another
auxiliary data source (in addition to protein-protein interaction
and drug-protein interaction networks), we augmented the
training data with 93,974,376 triplets from the SemMedDB.
The subject, object scores and co-occurrence scores of the
SemMedDB were reused as such for the SemMedDB; for the
polypharmacy data set, the subject, object scores and
co-occurrence scores were set to the highest values found in the
SemMedDB (which were 1000, 1000, and 33,478, respectively).
As this was a much larger graph, different hyperparameters
were used to obtain embeddings. DeepWalk embeddings were
generated by setting the number of walks to 375, walk length
to 500, window size to 10, embedding size to 256, and α value
to .025. TransE and Weighted TransE embeddings were
generated by setting batch size to 512, number of corrupted

triplets for each positive triplet to 2, epochs to 1500, α value to
.001, and embedding size to 100.

Classification Task and Settings
The binary classification task was to distinguish the valid and
invalid drug-drug interactions (in the test set provided). After
the embeddings were learned (separately in the two settings),
we trained an RF classifier from sklearn—with the number of
decision trees set to 100 and maximum depth of each tree set
to 20 (all other settings were unchanged from the default)—for
this task. For each drug-SE-drug interaction, the embeddings
of both the drugs and the side effect were concatenated and used
as a feature vector in the classifier. This concatenation yielded
a 300-dimensional feature vector for each triplet in the case of
TransE and Weighted TransE and a 768-dimensional feature
vector in the case of DeepWalk and Weighted DeepWalk.

As there were no invalid interactions in the training set, we
randomly generated 73,23,790 pairs of drug-drug interactions
such that they did not occur in either the training set or test set
provided in the benchmark data.

Evaluation Metrics
The evaluation metrics used were the same as the ones used in
the studies by Zitnik et al [38] and Burkhardt et al [39]: AUC,
area under the precision-recall curve (AUPRC), and average
precision at 50 (AP@50) for each of the 963 side effects, which
were then averaged. We compared our results with the published
results reported on the same data set in the study by Burkhardt
et al [39], which used ESP-based embeddings, and in the study
by Zitnik et al [38], which used Decagon, a graph convolutional
network developed for this task.

Results

Drug-ADE Prediction
Tables 2-4 show the F1-scores on the LOO and S5F
cross-validation configurations obtained by the algorithms for
the data sets OMOP, EU-ADR, and the combined
OMOP+EU-ADR data set, respectively. In most cases, we
observed that ESP outperformed TransE and DeepWalk.
However, both the weighted versions—Weighted TransE and
Weighted DeepWalk—outperformed ESP in most cases. Among
the 3 classifiers, for the same embeddings, RF outperformed
LR and KNN in most cases. Overall, Weighted TransE with RF
had the best performance in most cases, with improvements of
up to 5.75% over ESP.
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Table 2. F1-scores from leave-one-out (LOO) and stratified 5-fold (S5F) cross-validation (CV) configurations on the Observational Medical Outcomes
Partnership data set.

Increase (%)cWeighted TransEWeighted DeepWalkDeepWalkTransEbESPaModel

2.230.915e (0.0178)0.899 (0.0186)0.813 (0.024)0.861 (0.0185)0.895 (0.02)LRd S5F, mean (SD)

2.440.923e0.9120.8280.8890.901LR LOO-CV

2.690.838e (0.0155)0.814 (0.0167)0.784 (0.0173)0.793 (0.0163)0.816 (0.016)KNNf S5F, mean (SD)

2.630.859e0.8370.7960.8040.837KNN LOO-CV

1.870.923e (0.0069)0.91 (0.0077)0.82 (0.0091)0.865 (0.0078)0.906 (0.008)RFg S5F, mean (SD)

1.690.936e0.9310.8340.8770.921RF LOO-CV

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications (in each row).
dLR: logistic regression.
eBest result in each row.
fKNN: k-nearest neighbors.
gRF: random forest.

Table 3. F1-scores from leave-one-out (LOO) and stratified 5-fold (S5F) cross-validation (CV) configurations on the Exploring and Understanding
Adverse Drug Reactions data set.

Increase (%)cWeighted TransEWeighted DeepWalkDeepWalkTransEbESPaModel

2.760.857e (0.0635)0.832 (0.068)0.769 (0.089)0.823 (0.073)0.834 (0.066)LRd S5F, mean (SD)

2.730.864e0.8430.7830.8270.841LR LOO-CV

4.020.643 (0.0732)0.639 (0.079)0.646e (0.076)0.55 (0.096)0.621 (0.085)KNNf S5F, mean (SD)

3.740.6630.665e0.6590.6510.641KNN LOO-CV

2.510.855 (0.0162)0.856e (0.0157)0.77 (0.035)0.824 (0.022)0.835 (0.017)RFg S5F, mean (SD)

3.170.877e0.8740.7850.8260.85RF LOO-CV

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications.
dLR: logistic regression.
eBest result in each row.
fKNN: k-nearest neighbors.
gRF: random forest.
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Table 4. F1-scores from leave-one-out (LOO) and stratified 5-fold (S5F) cross-validation (CV) configurations on combined Observational Medical
Outcomes Partnership+Exploring and Understanding Adverse Drug Reactions data set.

Increase (%)cWeighted TransEWeighted DeepWalkDeepWalkTransEbESPaModel

2.030.904e (0.0203)0.897 (0.025)0.843 (0.039)0.855 (0.033)0.886 (0.021)LRd S5F, mean (SD)

2.520.934e0.9280.8560.8710.911LR LOO-CV

2.320.836e (0.032)0.831 (0.047)0.755 (0.049)0.768 (0.043)0.817 (0.035)KNNf S5F, mean (SD)

2.290.848e0.8420.7760.790.829KNN LOO-CV

4.420.898e (0.0208)0.892 (0.021)0.845 (0.025)0.86 (0.024)0.86 (0.021)RFg S5F, mean (SD)

5.750.92e0.8980.8620.8680.87RF LOO-CV

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications.
dLR: logistic regression.
eBest result in each row.
fKNN: k-nearest neighbors.
gRF: random forest.

Tables 5-7 show the AUC values for the LOO and S5F
cross-validation configurations obtained by the algorithms for
the data sets OMOP, EU-ADR, and the combined
OMOP+EU-ADR data set, respectively. We observed the same
trend that was observed with the F1-scores. After accounting
for the weights, the results for both DeepWalk and TransE

improved over those of ESP. On the OMOP data set, LR with
Weighted TransE obtained the highest improvement of 3.85%.
On the EU-ADR data set, KNN performed the best and with
both the weighted versions improved over ESP by approximately
8%. On the combined data set, KNN with Weighted TransE
had the highest improvement over ESP.

Table 5. Area under the receiver operating characteristic curve values from leave-one-out (LOO) and stratified 5-fold (S5F) cross-validation (CV)
configurations on the Observational Medical Outcomes Partnership data set.

Increase (%)cWeighted TransEWeighted DeepWalkDeepWalkTransEbESPaModel

3.850.971e (0.023)0.932 (0.0287)0.892 (0.026)0.935 (0.022)0.935 (0.024)LRd S5F, mean (SD)

2.660.965e0.9630.9010.9380.94LR LOO-CV

3.170.911e (0.027)0.891 (0.021)0.841 (0.0267)0.858 (0.024)0.883 (0.023)KNNf S5F, mean (SD)

2.440.924e0.8940.8570.8750.902KNN LOO-CV

2.750.971e (0.0069)0.958 (0.0077)0.888 (0.0078)0.931 (0.0091)0.945 (0.008)RFg S5F, mean (SD)

1.140.972e0.9710.8810.9430.961RF LOO-CV

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications.
dLR: logistic regression.
eBest result in each row.
fKNN: k-nearest neighbors.
gRF: random forest.
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Table 6. Area under the receiver operating characteristic curve values from leave-one-out (LOO) and stratified 5-fold (S5F) cross-validation (CV)
configurations on the Exploring and Understanding Adverse Drug Reactions data set.

Increase (%)cWeighted TransEWeighted DeepWalkDeepWalkTransEbESPaModel

4.970.929e (0.0743)0.901 (0.096)0.825 (0.0732)0.897 (0.076)0.885 (0.085)LRd S5F, mean (SD)

1.770.919e0.9020.8430.8990.903LR LOO-CV

8.660.712e (0.087)0.702 (0.083)0.753 (0.074)0.634 (0.072)0.693 (0.076)KNNf S5F, mean (SD)

8.740.7520.784e0.7780.7340.721KNN LOO-CV

3.360.924e (0.066)0.924e (0.0635)0.826 (0.068)0.897 (0.089)0.894 (0.0164)RFg S5F, mean (SD)

1.190.933e0.9270.8470.9010.922RF LOO-CV

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications.
dLR: logistic regression.
eBest result in each row.
fKNN: k-nearest neighbors.
gRF: random forest.

Table 7. Area under the receiver operating characteristic curve values from leave-one-out (LOO) and stratified 5-fold (S5F) cross-validation (CV)
configurations on the combined Observational Medical Outcomes Partnership+Exploring and Understanding Adverse Drug Reactions data set.

Increase (%)cWeighted TransEWeighted DeepWalkDeepWalkTransEbESPaModel

1.390.945e (0.023)0.93 (0.024)0.901 (0.026)0.925 (0.021)0.932 (0.027)LRd S5F, mean (SD)

2.10.972e0.9690.9230.9350.952LR LOO-CV

2.370.906e (0.039)0.901 (0.0227)0.806 (0.0203)0.823 (0.025)0.885 (0.033)KNNf S5F, mean (SD)

2.780.923e0.90.8370.8550.898KNN LOO-CV

2.170.94e (0.026)0.937 (0.0247)0.9 (0.025)0.93 (0.042)0.92 (0.038)RFg S5F, mean (SD)

–1.10.940.9350.9290.920.951eRF LOO-CV

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications.
dLR: logistic regression.
eBest result in each row.
fKNN: k-nearest neighbors.
gRF: random forest.

Table 8 shows the performance of the methods when the
embeddings and classifiers were trained on OMOP data and
prediction was carried out on EU-ADR data. Table 9 shows the
results of the opposite case: training on EU-ADR data and
prediction on OMOP data. Compared with the values in Tables
2-7, we observed lower F1-scores and AUC values in general.
As the test set was from a different source, it was harder for the

trained models to generalize. The performance trend across the
algorithms remained the same: DeepWalk and TransE did not
outperform ESP, but our weighted versions outperformed ESP.
Weighted TransE had the best performance in most cases, with
improvements of up to 8.4% in AUC value and 3.7% in the
F1-score with LR (as seen in Table 9).
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Table 8. Area under the receiver operating characteristic curve (AUC) values and F1-scores: training on Observational Medical Outcomes Partnership
data and prediction on Exploring and Understanding Adverse Drug Reactions data.

Increase (%)c
Weighted TransE,
mean (SD)

Weighted Deep-
Walk, mean (SD)

DeepWalk, mean
(SD)TransEb, mean (SD)ESPa, mean (SD)Model and metric

Logistic regression

3.070.737d (0.027)0.734 (0.037)0.703 (0.031)0.711 (0.026)0.715 (0.023)F1

0.630.802 (0.019)0.803d (0.018)0.769 (0.0164)0.788 (0.023)0.798 (0.017)AUC

KNNe

3.090.734d (0.024)0.729 (0.029)0.698 (0.042)0.702 (0.038)0.712 (0.028)F1

2.420.804d (0.027)0.801 (0.019)0.764 (0.023)0.767 (0.021)0.785 (0.022)AUC

Random forest

3.310.748d (0.021)0.745 (0.022)0.710 (0.041)0.714 (0.039)0.724 (0.036)F1

1.230.825d (0.007)0.818 (0.006)0.783 (0.005)0.800 (0.008)0.815 (0.007)AUC

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications.
dBest result in each row.
eKNN: k-nearest neighbors.

Table 9. Area under the receiver operating characteristic curve (AUC) scores and F1-scores: training on Exploring and Understanding Adverse Drug
Reactions data and prediction on Observational Medical Outcomes Partnership data.

Increase (%)c
Weighted TransE,
mean (SD)

Weighted Deep-
Walk, mean (SD)

DeepWalk, mean
(SD)TransEb, mean (SD)ESPa, mean (SD)Model and metric

Logistic regression

3.760.635d (0.021)0.632 (0.019)0.597 (0.034)0.604 (0.028)0.612 (0.018)F-1

8.670.737 (0.021)0.739d (0.025)0.666 (0.022)0.678 (0.019)0.680 (0.028)AUC

KNNe

3.940.633d (0.0223)0.628 (0.25)0.589 (0.033)0.598 (0.036)0.609 (0.028)F-1

7.310.734d (0.007)0.731 (0.006)0.648 (0.003)0.665 (0.008)0.684 (0.004)AUC

Random forest

3.330.651d (0.0286)0.641 (0.029)0.601 (0.043)0.617 (0.035)0.630 (0.032)F-1

6.410.763d (0.027)0.750 (0.023)0.675 (0.019)0.685 (0.017)0.717 (0.022)AUC

aESP: Embedding of Semantic Predications.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cImprovement in performance of the best method over Embedding of Semantic Predications.
dBest result in each row.
eKNN: k-nearest neighbors.

Visualization
Figure 8 shows the t-SNE visualizations of the embeddings
obtained from each of the methods. The cluster structure with
respect to the diseases is clear in all the embeddings. The
intercluster separation seems to be the best for TransE and its
weighted version, where the clusters (after the t-SNE
dimensionality reduction) are also more compactly distributed.

Within each cluster, the positive and negative instances do not
appear to be well separated, although there is some localization
seen in the ESP, DeepWalk, and Weighted DeepWalk clusters.
The results in the previous sections show that, among the
classifiers we tested, RF and KNN had the best performance.
Both indicated that the boundary between positive and negative
instances was nonlinear.
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Figure 8. t-distributed stochastic neighbor embedding plots of disease-drug embeddings of the combined Exploring and Understanding Adverse Drug
Reactions+Observational Medical Outcomes Partnership data set. Color indicates disease, and the markers x and o indicate presence and absence,
respectively, of a side effect. ESP: Embedding of Semantic Predications; TransE: Translating Embeddings for Modeling Multi-relational Data.

Polypharmacy Prediction
We first used TransE, DeepWalk, and their weighted versions
to obtain embeddings from the data (without the use of the
SemMedDB). As shown in Table 10, the performance of all 4
methods was superior to that of ESP in terms of the mean AUC
value and mean AUPRC value. DeepWalk outperformed TransE.
The weighted versions were not superior presumably because
the underlying graph was not noisy and the weights based on
co-occurrences alone in the drug-drug interaction graph did not
affect the representation learning.

When the SemMedDB was added as an additional data source
from which to learn embeddings, the results improved, as shown
in Table 10. The maximum increase was seen in the AP@50

metric for both TransE and DeepWalk. This shows that the
addition of the SemMedDB during representation learning
improves the precision of the classifier learned. The weighted
versions were not significantly better than the corresponding
unweighted versions because the Decagon graphs had a
significantly higher number of triplets than the SemMedDB,
which dominated the data.

Overall, the representations learned with Weighted DeepWalk
on the SemMedDB and polypharmacy graphs (drug-drug,
drug-protein, and protein-protein interactions), when used in
the RF classifier obtained the best results advancing the state
of the art by 3.5% in the mean AUC value, 4.3% in the mean
AUPRC value, and 5% in the mean AP@50 value.
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Table 10. Mean (SD) area under the receiver operating characteristic curve (AUC), area under the precision-recall curve (AUPRC), and average
precision at 50 (AP@50) values (averaged over 963 side effects) on the polypharmacy data set.

Published resultsSemMedDBa+polypharmacy graphs, mean (SD)Polypharmacy graphs, mean (SD)Metric

DecagonESPc
Weighted
DeepWalkDeepWalk

Weighted
TransETransE

Weighted
DeepWalkDeepWalk

Weighted
TransETransEb

0.8720.903
(0.023)

0.935d

(0.020)
0.935d

(0.020)

0.924
(0.024)

0.926
(0.024)

0.932
(0.019)

0.932
(0.019)

0.921
(0.021)

0.921 (0.021)Mean AUC

0.8320.875
(0.034)

0.913d

(0.031)

0.912
(0.031)

0.904
(0.033)

0.906
(0.033)

0.911
(0.030)

0.91
(0.030)

0.875
(0.038)

0.877 (0.037)Mean
AUPRC

0.8030.865
(0.073)

0.909d

(0.064)

0.906
(0.066)

0.916
(0.061)

0.915
(0.061)

0.896
(0.081)

0.896
(0.082)

0.725
(0.167)

0.73 (0.165)Mean
AP@50

aSemMedDB: Semantic MEDLINE Database.
bTransE: Translating Embeddings for Modeling Multi-relational Data.
cESP: Embedding of Semantic Predications.
dBest result in each row.

Discussion

Principal Findings
Unsupervised representation learning enables us to find useful
features from data without requiring task-specific labels, which
can subsequently be used in multiple applications. This is
particularly useful when labeled data for a specific task are
scarce, such as in ADE prediction, and when the data are
complex, which is the case for KGs. Biomedical KGs such as
the SemMedDB are inferred from the literature through NLP.
This inference process introduces noise in the form of erroneous
or incomplete edges and nodes in the KG. We developed new
techniques to model underlying noise during representation
learning from literature-derived biomedical KGs. During NLP
inference, confidence scores were assigned to the inferred
clinical concepts (vertices) and relations (edges). Our method
effectively used these confidence scores during representation
learning to model the inaccuracies in the graphs due to NLP
inference.

We illustrated the use of our technique on two well-known
representation learning methods: DeepWalk and TransE. We
showed how confidence scores can easily be incorporated in
both these methods to develop their weighted versions: Weighted
DeepWalk and Weighted TransE. We compared the performance
of these methods with ESP, which is, to our knowledge, the
best-known representation learning method designed for the
SemMedDB, a literature-derived KG. All the experiments were
performed on benchmark data sets for ADE prediction.

In one set of experiments, the drug and disease embeddings
learned from various representation learning methods were used
to train classifiers and predict on held-out test sets in various
cross-validation configurations. In another set of experiments,
the side effects of drug-drug interactions were predicted using
other drug-drug interactions as well as auxiliary data on
drug-protein and protein-protein interactions. In the latter case,
representations were learned both with and without the use of
KGs. In both sets of experiments, our weighted versions learned
representations that yielded more accurate predictive models

than ESP as well as the unweighted versions of DeepWalk and
TransE. Visual inspection of the learned embeddings shows a
clear cluster structure in compressed 2-dimensional view,
indicating that the disease and drug embeddings have been
learned well from the KG.

In the second set of experiments, the use of biomedical KG as
an auxiliary data source was found to considerably improve the
precision. When the KG was not used as an auxiliary source,
our weighted versions did not outperform the unweighted
versions of DeepWalk and TransE for representation learning
from drug-drug, drug-protein, and protein-protein interaction
graphs. These graphs are not literature-derived, and the weights
were based on co-occurrence scores in lieu of confidence scores.
This shows that when the underlying graphs are not noisy, the
weights may not add much value, although the performance
does not deteriorate.

Our weighted versions of DeepWalk and TransE are, by design,
biased toward triplets that have high co-occurrence scores in
literature-derived KGs. This may not favor some relations that
have low co-occurrence scores. The low score may be due to
the triplet being a recently discovered relation or because it may
be mentioned infrequently in the literature. However, the aim
of graph representation learning methods is to use the entire
KG, including indirectly related concepts, to learn the
representation of a clinical concept. Therefore, if there are other
(older or more frequent) relations that strongly indicate the
possibility of the relation with low co-occurrence, then this
signal is captured during representation learning. It is exactly
this ability of graph representation learning that makes it useful
in link prediction for knowledge discovery [20].

To evaluate this in our specific context, we checked the
predictive accuracy of our weighted approach using the
EU-ADR data set for those true drug-ADE pairs that have
relations with low co-occurrence scores in the SemMedDB.
Table 11 lists the predicates and their co-occurrence scores for
3 drug (subject) and disease (object) pairs. Note that these
co-occurrence scores are much smaller than the maximum value
of 33,478.
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Table 11. Drug, adverse drug event (ADE) pairs from the Exploring and Understanding Adverse Drug Reactions data set with low co-occurrence scores
in the Semantic MEDLINE Database.

Predicates (co-occurrence score)ADEDrug

Causes (6), Predisposes (1)AnaphylaxisDiclofenac

Disrupts (2), Augments (2), Affects (2), Causes (7), Treats (1)AnaphylaxisAspirin

Causes (7), Treats (3), Affects (1)AnaphylaxisAcetaminophen

We checked the predictions for each of the aforementioned 3
pairs using classifiers trained on the SemMedDB representations
generated using Weighted DeepWalk. In all, 3 classifiers—RF,
KNN, and LR—were trained on EU-ADR data after excluding
the pair being tested. The features were obtained by
concatenating the corresponding drug and disease
representations, as was done for the experiments on drug-ADE
prediction. All 3 classifiers correctly identified the 3 pairs as
true positives. This strongly suggests that the representations
could learn the indirect relations from the KG despite being
biased through our weighted approach toward relations with
high co-occurrence scores.

To summarize, all our experimental results clearly highlight the
importance of modeling inaccuracies in the inferred KGs for
representation learning.

Limitations
This study has the following limitations. Our weighting
technique relies on the confidence scores provided and thus, in
turn, depends on the accuracy of these scores. Errors in these
scores may be detrimental to representation learning, and their
effects need to be evaluated further. Model designers should be
aware of this limitation when such weighting schemes are used
in other KGs.

We evaluated the use of our weighting scheme on just two
representation learning methods: DeepWalk and TransE. Many
other methods exist, especially for heterogeneous networks; a
recent survey can be found in the study by Yang et al [27].
Despite the simplicity of these approaches, we obtained very
good results, outperforming the state of the art for ADE
prediction. We believe that the underlying idea of our weighting
scheme can be applied to many other representation learning
methods, which can be investigated in the future.

In our experiments, both OMOP and EU-ADR data sets were
not large. Although in our experiments, we rigorously tested
many cross-validation configurations, accuracy values can differ
in other data sets. We also note that the reported performance
was dependent on the KG used to learn representations from,
and the results may vary with other KGs. This is less of a
concern for the second polypharmacy data set, which was much
larger. The relative performances of the methods showed a
consistent trend across both data sets. Comparisons with more

diverse data sets will further our understanding of the strengths
and limitations of these methods.

Future Work
This work can be extended in many ways. Alternative
approaches to designing the scoring function and weighting
scheme used in our weighting function can be investigated. In
large data sets, it may be possible to learn the weights
automatically from the data by suitably modifying the models.
The weighting scheme can be extended to incorporate additional
information in literature-derived KGs. To leverage the
underlying biomedical literature used, techniques to obtain
causal assessment can also be explored.

Additional experiments can be designed to compare our
approach with a fully supervised approach where both the
embeddings and the classifier are learned jointly. Future work
can also evaluate the effects of KG characteristics on the
performance by experimenting with other KGs. Finally, the
utility of our representations in other tasks such as diagnosis
prediction or finding new clinical associations can also be
evaluated.

Conclusions
Literature-derived KGs are an important resource for analyzing
the wealth of knowledge stored in the growing biomedical
literature. These KGs are inferred through NLP techniques, and
their limitations may result in incomplete or erroneous nodes
and edges. KG embeddings provide a scalable and automatic
way of obtaining features from KGs that can be valuable in
multiple biomedical prediction tasks. Our work demonstrates
the need for modeling noise in the underlying KG and makes
an important step toward improved representation learning from
literature-derived KGs and thus toward effectively using
literature-derived KGs for predictive models.

Our experiments show that such noise-aware representations
in turn lead to classifiers for ADE prediction that are more
accurate than representations learned from the best previous
methods. The new models in this work can be used by
pharmacovigilance teams to detect previously unknown ADEs
for further evaluation. Software implementation of our new
methods and all experiments are publicly available at our
website [42].
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ESP: Embedding of Semantic Predications
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XOR: exclusive OR
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