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Abstract

Background: Data science offers an unparalleled opportunity to identify new insights into many aspects of human life with
recent advances in health care. Using data science in digital health raises significant challenges regarding data privacy, transparency,
and trustworthiness. Recent regulations enforce the need for a clear legal basis for collecting, processing, and sharing data, for
example, the European Union’s General Data Protection Regulation (2016) and the United Kingdom’s Data Protection Act (2018).
For health care providers, legal use of the electronic health record (EHR) is permitted only in clinical care cases. Any other use
of the data requires thoughtful considerations of the legal context and direct patient consent. Identifiable personal and sensitive
information must be sufficiently anonymized. Raw data are commonly anonymized to be used for research purposes, with risk
assessment for reidentification and utility. Although health care organizations have internal policies defined for information
governance, there is a significant lack of practical tools and intuitive guidance about the use of data for research and modeling.
Off-the-shelf data anonymization tools are developed frequently, but privacy-related functionalities are often incomparable with
regard to use in different problem domains. In addition, tools to support measuring the risk of the anonymized data with regard
to reidentification against the usefulness of the data exist, but there are question marks over their efficacy.

Objective: In this systematic literature mapping study, we aim to alleviate the aforementioned issues by reviewing the landscape
of data anonymization for digital health care.

Methods: We used Google Scholar, Web of Science, Elsevier Scopus, and PubMed to retrieve academic studies published in
English up to June 2020. Noteworthy gray literature was also used to initialize the search. We focused on review questions
covering 5 bottom-up aspects: basic anonymization operations, privacy models, reidentification risk and usability metrics,
off-the-shelf anonymization tools, and the lawful basis for EHR data anonymization.

Results: We identified 239 eligible studies, of which 60 were chosen for general background information; 16 were selected for
7 basic anonymization operations; 104 covered 72 conventional and machine learning–based privacy models; four and 19 papers
included seven and 15 metrics, respectively, for measuring the reidentification risk and degree of usability; and 36 explored 20
data anonymization software tools. In addition, we also evaluated the practical feasibility of performing anonymization on EHR
data with reference to their usability in medical decision-making. Furthermore, we summarized the lawful basis for delivering
guidance on practical EHR data anonymization.

Conclusions: This systematic literature mapping study indicates that anonymization of EHR data is theoretically achievable;
yet, it requires more research efforts in practical implementations to balance privacy preservation and usability to ensure more
reliable health care applications.

(JMIR Med Inform 2021;9(10):e29871) doi: 10.2196/29871
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Introduction

Background
Digital health [1] encompasses several distinct domains,
including but not limited to automatic visual diagnostic systems
[2], medical image segmentation [3], continuous patient
monitoring [4], clinical data–driven decision support systems
[5-7], connected biometric sensors [8,9], and
expert-knowledge–based consultations [10,11] using personal
electronic health records (EHRs) [12-14]. Of late, pervasive
health care has become the central topic, attracting intensive
attention and interest from academia [2-4], industry [5,10,11],
and the general health care sector [13-15]. Developments
achieved in the industry [5] and the health care sector [12-14,16]
reveal the huge potential of data science in health care because
of the common availability of medical patient data for secondary
use (secondary use, also dubbed as reuse, of health care data
refers to the use of data for a different purpose than the one for
which the data were originally collected). However, such
potential could be hindered by legitimate concerns over privacy
[17].

The United Kingdom’s Human Rights Act 1998 defines privacy
as “everyone has the right to respect for [their] private and
family life, [their] home and [their] correspondence” in Article
8 [18]. However, it is difficult to explicitly define true privacy
because of the discrepancies among target problems, for
example, human-action recognition from videos [19],
camera-pose estimation from images [20], and next-word
prediction from articles [21]. In general, privacy can be treated
as any personally identifiable information [22,23]. In the context
of digital health care, the secondary use of patients’ clinical data
requires both the data controller (responsible for determining
the purpose for which, and the means by which, health care data
are processed) and data processor (responsible for processing
health care data on behalf of the data controller) to comply with
the lawful basis and gain direct consent from the data owner
[24]. Recently, privacy invasion became an increasing concern
in digital health care [25-28]. In 2014, the UK charity
Samaritans (ie, data processor) released the app Radar [29] to
identify potential distress and suicidality using the words and
phrases of approximately 2 million Twitter (ie, data controller)
users (ie, data owners). This app raised severe concerns among
Twitter users, including those with a history of mental health
issues, and thus it was pulled within weeks [26]. In 2015, the
Royal Free London National Health Service (NHS) Foundation
Trust (ie, data controller) shared 1.6 million complete and
identifiable medical records of patients (ie, data owners) with
DeepMind Technologies (Alphabet Inc; ie, data processor) to
support further testing of the app Stream in assisting the
detection of acute kidney injury [30]. This collaboration came
under fire [27] for the inappropriate sharing of confidential
patient data [24,31] and failure to comply with the United
Kingdom’s Data Protection Act (DPA), as was ruled [32] by
the Information Commissioner’s Office (ICO), which cited
missing patient consent as well as lack of detailed purpose of

use, research ethics approval, and the necessary process
transparency [25]. Thus, a prerequisite for secondary use of
clinical patient data is to guarantee patient privacy through data
anonymization [33]. This is supported by legislation established
in different countries that states that secondary use of clinical
patient data is permitted if, and only if, the exchanged
information is sufficiently anonymized in advance to prevent
any possible future association with the data owners (ie, patients)
[28,34]. For instance, researchers from academia pointed out
the importance of patient-specific health data, which became
the impetus for updating the United States’ Health Information
Portability and Accountability Act (HIPAA) in 2003 [35,36].

On January 30, 2020, a declaration [37] by the World Health
Organization named the COVID-19 [38] outbreak a Public
Health Emergency of International Concern. At present (as of
April 18, 2021), there are a total of 140,835,884 and 4,385,938
confirmed cases and 3,013,111 and 150,419 deaths, respectively,
throughout the world [39] and the United Kingdom [40]. As
COVID-19 spread to every inhabitable continent within weeks
[41], data science research relating to digital health care through
large-scale data collection [42,43] and crowdsourcing [44,45]
has been highly recommended to curb the ongoing pandemic,
including virus tracing [46,47] and contact tracing [48,49].
Public concern with respect to privacy has significantly
increased amid the COVID-19 pandemic [50,51]. For instance,
mobile apps have been adopted to make contact tracing and
notification instantaneous upon case confirmation [52,53], for
example, the latest NHS COVID-19 app [54]. This is typically
achieved by storing a temporary record of proximity events
among individuals and thus immediately alerting users of recent
close contact with diagnosed cases and prompting them to
self-isolate. These apps have been placed under public scrutiny
over issues of data protection and privacy [48].

Currently, the lack of more intuitive guidance and a deeper
understanding of how to feasibly anonymize personally
identifiable information in EHRs (it should be noted that data
from wearables, smart home sensors, pictures, videos, and audio
files, as well as the combination of EHR and social media data,
are out of the scope of this study) while ensuring an acceptable
approach for both patients and the public leave the data
controller and data processor susceptible to breaches of privacy.
Although several diligent survey papers [55-58] have been
published to ensure privacy protection and suppress disclosure
risk in data anonymization, sensitive information still cannot
be thoroughly anonymized by reducing the risk of
reidentification while still retaining the usefulness of the
anonymized data—the curse of anonymization (Figure 1).
Concretely, the gaps in the existing survey studies are four-fold:
(1) there does not exist a single data anonymization survey that
considers lawful aspects such as the European Union’s General
Data Protection Regulation (GDPR) as well as the DPA, ICO,
and health care provider regulations; (2) most existing survey
studies do not focus on digital health care; (3) the existing
privacy models are usually incomparable (particularly for the
values of parameters) and have been proposed for different
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problem domains; and (4) the most recent trends of privacy
model–based and machine learning–based data anonymization
tools have not been summarized with adequate discussions in
terms of their advantages and disadvantages. Motivated by these

observations, we aim to deliver a clear picture of the landscape
of lawful data anonymization while mitigating its curse in
pervasive health care.

Figure 1. The curse of anonymization. Blue hue indicates an increase in data anonymity, which, in turn, reveals the decrease in usability of the
anonymized data, very likely reaching minimum usability before reaching full anonymization (red hue).

A Brief Overview of the Problem Domain

Private Data and Their Categorization
In line with the updated scope of the GDPR and its associated
Article 9 [59,60], private (ie, personal) data are defined as any
direct or indirect information related to an identified or
identifiable natural person. In general, based on the definition
and categorization presented in chapter 10 of Guide to the
De-Identification of Personal Health Information by El Emam
[61], there are 5 types of data: relational data, transactional data,
sequential data, trajectory data, and graph data. In addition,
inspired by the survey study by Zigomitros et al [62], we also
included image data because an EHR is essentially a 2D data
matrix and thus could be viewed as a 2D image and anonymized
using statistical and computer vision techniques.

Relational data [62] are the most common type of data. This
category usually contains a fixed number of variables (ie,
columns) and data records (ie, rows). Each data record usually
pertains to a single patient, with that patient appearing only
once in the data set. Typical relational data in health care can
include clinical data in a disease or population registry.
Transactional data [63] have a variable number of columns for
each record. For instance, a data set of follow-up appointments
from a hospital may consist of a set of prescription drugs that
were prescribed to patients, and different patients may have a
different number of transactions (ie, appointments) and
prescribed drugs in each transaction. Sequential data [64] are
similar to transactional data, but there is an order to the items
in each record. For instance, a data set containing Brachytherapy

planning time would be considered sequential data because
some items appear before others. Sequential data can also be
termed relational-transactional data. Trajectory data [65]
combine sequential data with location information. For instance,
data on the movement of patients would have location and
timestamp information. Trajectory data can also be termed
geolocational data. Graph data [66] encapsulate the relationships
among objects using techniques from graph theory. For instance,
data showing telephone calling, emailing, or instant messaging
patterns between patients and general practitioners (GPs) could
be represented as a graph, with patients and GPs being
represented as nodes and a call between a given patient and
their GP represented as an edge between their respective nodes.
Graph data are also commonly used in social media [67]. Image
data, as tabular medical records (ie, EHRs), can be treated as a
grayscale image in 2D space. It should be noted that, in this
study, the term image data does not refer to medical images
such as computed tomography scans.

Types of Identifiers
How the attributes are handled during the anonymization process
depends on their categorization [61]. All attributes contained
in a table X are usually grouped into 4 types: direct identifying
attributes I, indirect identifying attributes (ie, quasi-identifiers
[QIs]) Q, sensitive attributes S, and other attributes O [61]. Refer
to Multimedia Appendix 1 for the mathematical symbols and
definitions used throughout this study.

Direct identifiers I, which are also termed direct identifying
attributes, provide explicit links to data subjects and can be used
to directly identify patients [68]. In practice, one or more direct
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identifying attributes can be assigned to uniquely identify a
patient, either by themselves or in conjunction with other
information sources. Typical examples of the former case
include NHS number, national insurance number, biometric
residence permit number, and email address. Suppose there are
2 patients with the same full name within a single NHS
foundation trust, the attribute full name cannot be a direct
identifier by itself. However, a combination of full name and
living address will be a direct identifier.

Indirect identifiers Q, or QIs, are identifiers that, when used
with background knowledge of patients in the anonymized data
set, can be used to reidentify a patient record with a high
probability. Note that if someone, say, an adversary, does not
have background knowledge of patients at hand, then this
attribute cannot be deemed a QI. In addition, a common choice
of QI also considers the analytical utility of the attribute. That
is, a QI is usually useful for data analysis, whereas a direct

identifier is not [61]. Typical QIs include gender, date of birth,
postcode, and ethnic origin.

Sensitive attributes S are not useful with respect to the
determination of the patient’s identity; yet, they contain sensitive
health-related information about patients, such as clinical drug
dosage. Other attributes O represent variables that are not
considered sensitive and would be difficult for an adversary to
use for reidentification.

Among the 4 categories of identifiers, it is particularly difficult
to differentiate between direct identifiers I and QIs Q In general,
there are 3 determination rules used for this purpose [61], which
are depicted in Figure 2: (1) an attribute can be either I or Q if
it can be known by an adversary as background knowledge; (2)
an attribute must be treated as Q if it is useful for data analysis
and as I otherwise; and (3) an attribute should be specified as I
if it can uniquely identify an individual.

Figure 2. Logical flow of distinguishing direct identifiers I from quasi-identifiers Q. F: false; T: true.

In Multimedia Appendix 2 [69,70], we summarize the features
that are commonly listed as direct and indirect identifiers by
health care bodies [71] that guide, inform, and legislate medical
data release. All listed features may lead to personal information
disclosure, and the list is by no means exhaustive. As more
varied health care data are released and explored, more
identifiers will be added to the lists of those featured in common
data attack strategies, such as those in the studies by
Hrynaszkiewicz et al [69] and Tucker et al [70], 18 HIPAA
identifiers [72], and policies published by the NHS [73] and its
foundation trusts, for example, Kernow [74] and Solent [75].

Data Anonymization Versus Data Pseudonymization
Given the definition in Recital 26 [76] of the most recent GDPR
update, data anonymization (the term is common in Europe,
whereas deidentification is more commonly used in North
America) is a useful tool for sharing personal data while
preserving privacy. Anonymization can be achieved by changing
identifiers through removal, substitution, distortion,
generalization, or aggregation. In contrast, data
pseudonymization is a data management and deidentification
procedure by which personally identifiable information fields
within a data record are replaced by one or more artificial
identifiers or pseudonyms.
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It should be noted therefore that the relationship between data
anonymization and pseudonymization techniques is
characterized as follows:

• Anonymized data are not identifiable, whereas
pseudonymized data are identifiable.

• Pseudonymized data remain personal based on Recital 26
of the GDPR and the conclusion [77] provided by the ICO.

• Solving the problem of data anonymization necessarily
means solving pseudonymization.

Concretely, given an anonymization function A and raw data
X, we have the anonymized data X’=A(X) such that there does
not exist another function R that reidentifies the raw data X
from the anonymized data X’, that is, R(X’)=R(A(X))=X. If
such a function does exist, this is pseudonymization. The
difference between these 2 operations can be generalized as
follows: X→X’ for anonymization and X→X’.

In a real-world scenario, efficient data anonymization is
challenging because it is usually problem dependent (ie,
solutions vary across problem domains) and requires substantial
domain expertise (eg, to specify the direct and indirect identifiers
present in raw data) and effort (eg, user involvement in
specifying the privacy model before the data anonymization
process). Fundamentally, it is very challenging and nontrivial
to define what true anonymization is or, equivalently, to
determine whether the raw data have been adequately
anonymized (as well as to agree upon the definition of adequate
anonymization). In practice, as visualized in Figure 1, we
observe that as the level of data anonymity increases, the
usability of the anonymized data decreases and very likely
reaches minimum usability before reaching full anonymization.
This fact combined with the need for more accurate models in
health care provides sufficient motivation for continued research
into methods of data anonymization. For this study, we believe
that how anonymization is defined is problem dependent. We
reiterate that there is no clear-cut line between pseudonymization
and anonymization because even anonymized data can
practically have different reidentification risks [78,79]
(depending on the type of anonymization performed).

Aims of the Study

Objectives
To minimize bias and deliver up-to-date studies related to data
anonymization for health care, we organized this survey in a
systematic literature mapping (SLM) manner. In general, there
are 2 main approaches to conduct literature reviews: systematic
literature review (SLR) and SLM [80-82]. SLRs aim to identify,
classify, and evaluate results to respond to a specific review
question (RQ), whereas SLMs seek to investigate multiple RQs.
In addition, SLRs synthesize evidence and consider the strength
of such evidence [83], whereas an SLM provides an overview
of a research area by reviewing the topics that have been covered
in the literature [84]. Concretely, we combined high-quality
systematic review studies—provided in the Cochrane Database
of Systematic Reviews [85], Manchester; Centre for Reviews
and Dissemination [86], York; and Health Technology
Assessment [87], National Institute for Health Research—to

explain this work explicitly and concisely with respect to the
validity, applicability, and implication of the results.

Our overall objective is to alleviate the issues introduced toward
the end of the previous section by reviewing the landscape of
data anonymization for digital health care to benefit practitioners
aiming to achieve appropriate trade-offs in leveraging the
reidentification risk and usability of anonymized health care
data. In other words, we evaluate the evidence regarding the
effectiveness and practicality of data anonymization operations,
models, and tools in secondary care from the perspective of data
processors.

Defining RQs
The aims of the study are to evaluate the potential of preserving
privacy using data anonymization techniques in secondary care.
Concretely, we, as data processors, are highly motivated to
investigate the best possible way of anonymizing real-world
EHRs by leveraging the privacy and usability concerns
visualized in Figure 1. Therefore, our RQs were defined as
follows:

• RQ 1: Do best practices exist for the anonymization of
realistic EHR data?

• RQ 2: What are the most frequently applied data
anonymization operations, and how can these operations
be applied?

• RQ 3: What are the existing conventional and machine
learning–based privacy models for measuring the level of
anonymity? Are they practically useful in handling
real-world health care data? Are there any new trends?

• RQ 4: What metrics could be adopted to measure the
reidentification risk and usability of the anonymized data?

• RQ 5: What are the off-the-shelf data anonymization tools
based on conventional privacy models and machine
learning?

The knowledge generated from this SLM, especially the answer
to our driving question, RQ 1, will build on the study’s evidence
on the future of the development of data anonymization toolkits
for data processors such as the companies and organizations in
which they are situated. The evidence gained may also
contribute to our understanding of how data anonymization
tools are implemented and their applicability to anonymizing
real-world health care data. Finally, we intend to identify the
major facilitators and barriers to data anonymization in
secondary care in relation to reidentification risk and utility.

Methods

Research Design

Data Sources and Search Strategy
In keeping with our RQs, we built up our search strategy using
keywords and indexing terms and Boolean operators; the former
refers to the general terms used when searching, and the latter
represents the restrictions on these terms. Example keywords
and indexing terms used included domain-specific terms such
as healthcare, digital health, digital healthcare, health
monitoring, and eHealth; problem-specific terms such as data
anonymization, anonymizer, de-identification,
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privacy-preserving, and data protection; data-specific terms
such as electronic medical records, electronic health records
(EHR), DICOM/CT images, and videos; disease-specific terms
such as brain tumor, cervical cancer, breast cancer, and
diabetes; organization-specific terms such as NHS, ICO, NIHR,
and MRC; and law-specific terms such as DPA, GDPR, and
HIPAA. Example Boolean operators are AND and OR. Next, to
avoid bias and ensure reliability, 2 researchers (ZZ and MW)
used Google Scholar, Web of Science, Elsevier Scopus, and
PubMed for searching academic studies up to June 2020; these
services were used because they encompass a wide spectrum
of databases such as IEEE Xplore, SpringerLink, ACM Digital
Library, Elsevier Science Direct, arXiv, The BMJ, Lancet, and
the New England Journal of Medicine. In addition, to maximize
search coverage, we conducted forward and backward snowball
sampling [88] (snowball sampling refers to using the reference
list of a selected paper [backward snowballing] or the citations
of a selected paper [forward snowballing]) on the selected
studies. In particular, because gray literature is an important
source of SLRs and SLMs [89] and they play a primary role in
health care [90,91], gray literature was used to initialize our
search in this study. Concretely, preprints from
non–peer-reviewed electronic archives (eg, arXiv) or early-stage
research were examined and distinguished in the follow-up
study selection phase.

Inclusion and Exclusion Criteria
Articles were eligible for inclusion based on the criteria defined
in Textbox 1. ZZ and MW assessed articles independently for
inclusion eligibility. Inclusion is relatively straightforward in
comparison with exclusion which can be more sweeping.
Therefore, further clarification regarding some of the exclusion
criteria is required. For instance, without Experiment section
denotes that the article does not report on any evaluation of the
ideas it contains using real-word clinical data sets. Insights not
suitable for EU/UK indicates observations delivered by articles
that treat personally identifiable data as a commercial
commodity, as is the practice in, for example, the United States
[92]. Preprints (tier 2 gray literature [93]) were carefully
considered for selection in line with the inclusion and exclusion
criteria summarized in Textbox 1. For duplicate articles (eg, a
conference article that extended to a journal paper or a preprint
paper accepted by either a conference or a journal), including
those with a different title but essentially the same content, we
only retained the publication with the highest quality to avoid
double counting. To this end, we preferred to retain the article
published by the journal with the highest impact factor. In the
worst case, none of the duplicates would have been selected if
they were all conference papers because this would have been
a breach of research ethics.

Textbox 1. Inclusion and exclusion criteria for article selection.

Inclusion criteria

• Related to anonymization or privacy-preserving techniques

• Related to privacy-preserving techniques in health care

• Presented privacy concerns in health care

• Proposed methods for privacy preservation in electronic health records

• Proposed methods for using private information, for example, biometric data

• Proposed methods partially related to protected health care

Exclusion criteria

• Written in language other than English

• Without Abstract or Experiment section

• About other health care issues, for example, clinical trials

• Insights not suitable for European Union or United Kingdom

• Out of our research scope

• Duplicate articles (case dependent)

Article Selection Phases
Article selection (Figure 3) consisted of 5 phases: (1) initially,
we searched Google Scholar, Web of Science, Elsevier Scopus,
and PubMed; (2) next, we applied the inclusion-exclusion
criteria to the returned results from the initial search, including
the qualifying preprints; (3) we then read the included articles
and removed the irrelevant articles; (4) next, we conducted

forward and backward snowball sampling on highly related
articles; (5) finally, we double-checked the excluded articles
and added relevant ones. In addition, we used the GL+D
Checker mechanism shown in Figure 3, which refers to a
combination of a Gray Literature Checker and a Duplicates
Checker, each of which could also be used separately, depending
on the situation.
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Figure 3. Systematic literature mapping process for articles. GL+D: gray literature and duplicates.

Data Anonymization Toolkit Selection Phases
As mentioned at the beginning of this section, the phases
involved in selecting data anonymization software tools are
difficult because of the limited tools available in the existing
studies. Thus, the initially included tools were selected from
the qualified articles without considering whether their source
code was publicly accessible, maintainable, and extensible. The
only criterion was whether the tool could be downloaded and
executed. Furthermore, to guarantee that the selection process
was less biased, we decided that in each of the 2 (ie, privacy
model–based and machine learning–based) categories of
privacy-preserving software tools, the number of tools chosen
from outside of the selected articles would be no more than 30%
of the total.

Conduct of the Study

Qualified Articles
In keeping with the five-phase article selection strategy
described in the previous section, ZZ and MW independently
selected articles for eligibility in phase 2. Articles were moved

forward to the Article reading phase or excluded after a full
agreement was reached. In addition, NAM served as an arbitrator
for any unresolved disagreement. The selection process was
conducted using 3 consecutive steps: (1) the title and abstract
of each article were screened for relevance; (2) full article
contents were reviewed for those without certainty for inclusion;
and (3) forward and backward snowballing was applied to the
remaining articles to maximize search coverage. The full
reference list of the included articles and the related systematic
review or mapping studies were also screened by hand for
additional articles. There were a total of 13 preprints among the
192 selected articles (Figure 4) after phase 1. Before beginning
phase 2, by applying the Gray Literature Checker mechanism,
we observed that 4 of the 13 preprints had been successfully
published in either peer-reviewed conferences [94-96] or
journals [97]. Next, the Duplicates Checker was applied
consecutively to remove their preprint versions. Using the same
process in each phase, we accumulated a total of 239 articles
to include in this SLM study, including 9 preprints. Details of
the 239 selected research articles are grouped in categorical
order and chronological order in Table 1 and Figure 5,
respectively.

Figure 4. Number of selected articles during the study selection process.

Table 1. An overview of the 239 selected research articles grouped in categorical order.

Selected research articles, n (%)Category

60 (25.1)Background knowledge

16 (6.7)Data anonymization operations

104 (43.5)Privacy models

4 (1.7)Risk metrics

19 (7.9)Utility metrics

36 (15.1)Data anonymization tools
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Figure 5. An overview of the 239 selected research articles grouped in chronological order.

Qualified Software Tools
In accordance with the strategy of selecting qualified
privacy-preserving software tools described in the previous
section, there were 5 out of a total of 15 privacy model–based
data anonymization tools that were not derived from the
qualified (ie, selected) articles. Of these 5 tools, 3 (Amnesia,
OpenAIRE; Anonimatron, realrolfje; and Anonymizer, Divante
Ltd) were obtained by searching GitHub [98], and the remaining
2 (OpenPseudonymiser, Julia Hippisley-Cox and NLM-Scrubber
from the US National Library of Medicine) were found through
Google Search. Of the 5 machine learning–based tools, only
one (CrypTen, Facebook Inc) was obtained from GitHub.

Results

Four Categories
To add structure to this SLM, we grouped the results of the
reviewed articles into four categories: Basic Data Anonymization
Operations (for RQ 2), Level of Anonymity Guarantees and
Evaluations (for RQ 3), Disclosure Risk Assessments and
Usability Measurements (for RQ 4), and Existing Privacy
Model–Based Data Anonymization Tools, Existing Machine
Learning–Based Data Anonymization Tools, and Legal
Framework Support (for RQ 5). RQ 1, as the leading RQ, is
answered in Results Summary for RQs.

Basic Data Anonymization Operations

Perturbation
This technique is implemented by modifying the original data
in a nonstatistically significant fashion. As described in the code
of practice [99] provided by the ICO, the alteration of values
within the data set should decrease the vulnerability of that data
set to data linkage. The benefit of this method is that it
anonymizes the raw data while guaranteeing that the statistical
usefulness of the data remains unchanged. On this basis, the

possible drawback of such a method is the accuracy of the
anonymized data.

This technique can be achieved through, for instance,
microaggregation [100], data swapping [101] (equivalent to
permutation [102]), rank swapping [103]), postrandomization
[104], adding noise [105], and resampling [106], all of which
are described, with real-world health care examples to explain
each operation, in Multimedia Appendix 3 [100,101,104-109].
For microaggregation, an observed value is replaced with the
average value calculated over a small group of units. The units
belonging to the same group are represented by the same value
in the anonymized data. This operation can be applied
independently to a single variable or to a set of variables with
the original column or columns removed. For data swapping,
the data records are altered through the switching of variable
values across pairs of records in a fraction of the raw data.
Equivalently, permutation rearranges the values (either randomly
or systematically) and is useful where mapping to alternate
configurations of alphanumeric values is problematic or
redundant. To this end, the raw data can be efficiently perturbed
by permuting the sensitive attribute and the value of a similar
record. This operation not only guarantees the statistical
significance of the anonymized data but also reduces the risk
of the record-wise reidentification. For postrandomization,
categorical variables are perturbed based on a prescribed
probability mechanism such as a Markov matrix. For raw
numerical data with low variance, adding noise, that is, adding
a random value, is commonly adopted. Alternatively, resampling
is also frequently used on raw numerical data by drawing
repeated samples from the original data.

Generalization
Generalization [107] relies on an observable attribute having
an underlying hierarchy. This is an example of such a typical
hierarchy:

Full postcode → street → city or town → county (optional) →
country
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with a possible instance being as follows:

DH1 3LE → South Road → Durham → UK

and

DH → Durham → UK

Typically, generalization is used to reduce the specificity of the
data and thereby the probability of information disclosure. Given
the examples above, the degree of generalization is fully
controlled by the granularity defined in the hierarchy.

Suppression
Suppression [110] refers to local suppression in data
anonymization research. This is usually achieved by replacing
the observed value of one or more variables with missing or NA
or -. This method helps to address problems where rows would
be dropped because of the difficulty of successfully applying
perturbation or other generalization methods to guarantee their
inclusion in the anonymized data set. By suppressing categorical
values that render the rows identifiable, useful data from those
rows will not be lost. This method can only be used when the
raw data are varied enough that they prevent the suppressed
value from being inferred.

Data Masking
Data masking [108] is a technique frequently used for creating
a structurally similar yet inauthentic version of the raw data.
This technique helps to protect the original sensitive data while
providing a functional substitute and should be used in settings
in which the original raw data are not required.

Differential Privacy
Differential privacy (DP) [109] aims to help organizations better
understand the requirements of end users by maximizing the
accuracy of search queries while minimizing the probability of
identifying personal data information. This is achieved in
practice by performing techniques such as data filtering, adaptive
sampling, adding noise by fuzzifying certain features, and
analyzing or blocking intrusive queries. Essentially, a DP
algorithm updates values, leaving some intact while replacing
others such that a potential attacker is unable to determine
whether a value is fake or genuine. For details about practical

DP and related techniques, please refer to section 1.4 of
Multimedia Appendix 4 [57,66,111-165].

Homomorphic Encryption
Homomorphic encryption (HE) [166] is a technique that enables
calculations to be performed on encrypted data directly, without
the need to decrypt the data. The drawbacks of such a method
are slow execution speeds. To the best of our knowledge, and
in accordance with the definitions used in this paper, a technique
that uses an encryption method cannot be treated as
anonymization. The presence of the key makes the data
theoretically reversible and therefore constitutes data
pseudonymization. A well-known extension of HE is termed
additive HE, which supports secure addition of numbers given
only the encrypted data [167].

Compressive Privacy
Compressive privacy (CP) [168] is a technique that proposes
to perform privatization by mapping the original data into space
with a lower dimension. This is usually achieved by extracting
the key features required for the machine learning model before
sending the data to the cloud server. To this end, data owners
(eg, NHS trusts and authorized companies) have control over
privacy [169]. Alternatively, this technique could be performed
before applying the chosen privacy models. Essentially, CP can
be treated as a dimensionality reduction technique that also
preserves privacy. Privacy models related to CP are presented
in the following section.

Level of Anonymity Guarantees and Evaluations

Measurement and Evaluation

Two Models

The objective of satisfying different levels of anonymity is
usually achieved through 2 consecutive steps: measurement and
evaluation. The former refers to the use of either conventional
or machine learning–based privacy models to perform data
anonymization, and the latter is the process of evaluating the
reidentification risk and degree of usability of the anonymized
data. The anonymization operations are usually adopted by
conventional privacy models or machine-learning–based models.
Figure 6 provides a way to quickly locate content of interest.
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Figure 6. Categorizations of measurements and evaluations for achieving different levels of anonymity. ML: machine learning; RT: relational-transactional
privacy model.

Conventional Privacy Models

The attributes contained in a table are usually divided into direct
identifiers I, QIs Q, and sensitive identifiers S. The direct
identifiers I are usually removed at the very beginning stage of
data anonymization. Thus, a table X required to be anonymized
is denoted as X(S, Q).

Given a class of records G in a table X, we want to create a
single equivalent group C using a function A such that C=A(G)
or C’=A(C). The monotonicity property of privacy models is
defined for a single equivalent group C or class of records G.
This property is required by several models for the purpose of
refining the level of anonymization of C. This property is also
useful for manipulating anonymized data by converting it into
coarse-grained classes with equivalent classes (ie, a set of
anonymized data records that share the same Q). This is a simple
and computationally inexpensive solution. However, it would

be inefficient, particularly in a case where the anonymized data
are released to several organizations, each of which has a
different minimum acceptable degree of anonymity. To this
end, it is always a good practice to first perform the
anonymization and then generate multiple coarser versions of
the data, rather than performing separate anonymization for
each organization [170].

During the process of data anonymization, interpretable and
realistically feasible measurements (ie, privacy models [171])
should be considered to measure the level of anonymity of the
anonymized data. The off-the-shelf privacy models (summarized
as part of Figure 7) are usually independent of any data
deanonymization attack and measure the privacy level using
features of the anonymized data. One step further, 35
conventional privacy models were investigated to support data
with the types grouped into 5 categories (Table 2).
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Figure 7. General pipeline for existing privacy model–based data anonymization tools. F: false; T: true.
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Table 2. A summary of privacy models for relational electronic health record data with respect to parameter interval and degree of privacy of data.

ReferencesPrivacy levelParameter intervalSection in Multimedia
Appendix 4

Privacy modelCategory

Relational

[111-117,172,173]High[1, |X|]1.1κ-anonymity

[114,174]α: low, k: highα ∈ [0, 1], k ∈ [0, +∞]1.1.1(α, k)-anonymity

[112,175]Low[1, |X|]1.1.2k-map

[176]High[0, +∞]1.1.3m-invariance

[57,118,177]High[0, +∞]1.1.4(k, e)-anonymity

[178,179]Highk ∈ [0, +∞], g ∈ [0, 1]1.1.5(k, g)-anonymity

[180]High[0, +∞]1.1.6Multirelational k-anonymity

[181,182]LowN/Aa1.1.7Strict average risk

[119]High[0, +∞]1.2l-diversity

[120]Highl ∈ [0, +∞], θ ∈ [0, 1]1.2.1l+-diversity

[121,122]Low[0, +∞]1.3t-closeness

[123]Lowt ∈ [0, +∞], ε ∈ [0, +∞]1.3.1Stochastic t-closeness

[124]High[0, +∞]1.3.2(c, t)-isolation

[125]High[0, +∞]1.3.3β-Likeness and enhanced β-
likeness

[109]Low[0, +∞]1.4Differential privacy

[126-131]High[0, +∞]1.4.1(k, ε)-anonymity

[132-137]ε: low, δ: lowε ∈ [0, +∞], δ ∈ [0,
+∞]

1.4.2(ε, δ)-anonymity

[118]ε: high, m: highε ∈ [0, 1], m ∈ [1, +∞]1.4.3(ε, m)-anonymity

[138]Low[0, +∞]1.4.4Distributed differential priva-
cy

[139]ε: low, δ: lowε ∈ [0, +∞], δ ∈ [0,
+∞]

1.4.5Distributional differential pri-
vacy

[140]Low[0, +∞]1.4.6d-χ-privacy

[183]ε: low, δ: lowε ∈ [0, +∞], δ ∈ [0,
+∞]

1.4.7Joint differential privacy

[141]Low[0, 1]1.5.1(X, Y)-anonymity

[142]High[0, 1]1.5.2Normalized variance

[143]High[0, +∞]1.5.3δ-disclosure privacy

[144,145]Low[0, 1]1.5.4(d,y)-privacy

[57,146]Low[0, 1]1.5.5δ-presence

[79,147-151]N/AN/A1.5.6 or 1.5.7Population and sample
Uniqueness

[152]N/AN/A1.5.8Profitability

[153]N/AN/A2km-anonymityTransactional

[154]N/AN/A3(k, km)-anonymityRelational-transactional

Graph

[155-158]N/AN/A4.1k-degree

[156]N/AN/A4.2k2 degree

[157,159,160]N/AN/A4.3k-automorphism
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ReferencesPrivacy levelParameter intervalSection in Multimedia
Appendix 4

Privacy modelCategory

[66,161,162]N/AN/A4.4(k, l)-anonymity

[163]N/AN/A5Historical k-anonymityGeolocational

aN/A: not applicable.

Machine Learning–Based Privacy Models

Two Categories

In light of machine learning and its derived subset, deep
learning, there has been an upsurge of interest in machine
learning– or deep learning–based privacy models for
anonymizing patient or general data; we explore these
approaches in this section. We divided related machine
learning–based privacy models into 2 categories in accordance
with the type of data used: raw or synthetic. Of late, the use of
synthetic data has become more popular because these generated
data are both anonymous and realistic; therefore, consent from
data owners is not required [184]. The data in this category can
be generated using techniques such as generative adversarial
networks (GANs) [185] and usually do not have the risk of
reidentification; thus, research works concentrate on improving
the utility of synthetic data.

Models for Raw Data

In the study by D’Acquisto and Naldi [186], conventional
principal component analysis (PCA) was used to anonymize
sensitive data sets to achieve anonymization-utility trade-offs,
that is, maximize both the information loss and utility. Different
from its use in reducing the dimension of the data, where the
smallest principal components are removed, PCA was instead
adopted to remove the largest principal components before data
projection. To measure the usefulness of the data anonymized
through PCA, several utility metrics were presented; these are
discussed in detail in Multimedia Appendix 5
[117,172,186-213]. In the domain of data anonymization, the
first work using PCA is termed as differentially private PCA
[214]. This technique explores the trade-off between the privacy
and utility of low-rank data representations by guaranteeing
DP. The study by Dwork et al [215] suggested that noise be
added directly to the covariance matrix before projection in
PCA.

Many similar PCA techniques rely on results derived from
random matrix theory [216-219]. To reduce the computational
cost of the privacy model, additive HE was used for PCA with
a single data user [217], where the rank of PCA with an
unknown distribution could be adaptively estimated to achieve
(  ,   )-DP [218]. More recently, the concept of collaborative
learning (or shared machine learning) [94,97,220] became very
popular in data anonymization. That is, the data collected from
multiple parties are collectively used to improve the performance
of model training while protecting individual data owners from
any information disclosure. For instance, both HE and secret
sharing were adopted in privacy-preserving PCA [219] for
horizontally partitioned data, that is, data sets share the same
feature space but different sample space. In that work, HE could
be substituted with secure multiparty computation (SMPC)

[221] for industrial use (more details are provided in SMPC
Frameworks under Results).

Despite the great success achieved by PCA and its variants in
data anonymization, traditional clustering algorithms have also
been adopted to deal with the same problem;   -means [222],
fuzzy c-means [223,224], Gaussian mixture model [225,226],
spectral clustering [227,228], affinity propagation [229], and
density-based spatial clustering of applications with noise
[230,231] are some of the algorithms that have been used for
data anonymization. Most recently, anonymization solutions
were proposed for privacy-preserving visual tasks in color
images. For instance, the conventional   -nearest neighbor
algorithm was combined with DP [232] for privacy-preserving
face attribute recognition and person reidentification.
Homomorphic convolution was proposed by combining HE
and secret sharing [233] for visual object detection, and
adversarial perturbation was devised to prevent disclosure of
biometric information in finger-selfie images [234].

Models for Synthetic Data

In the study by Choi et al [95], GANs were adopted to generate
realistic synthetic patient records (medical GAN [medGAN];
[235]) by learning the distribution of real-world multilabel
discrete EHRs. Concretely, medGAN was proposed to generate
multilabel discrete patient records through the combination of
an autoencoder and a GAN. Such a network supports the
generation of both binary and numeric variables (ie, medical
codes such as diagnosis, medication, and procedure codes) and
the arrangement of records in a matrix format where each row
corresponds to a patient and each column represents a specific
medical code. The study by Baowaly et al [236] extended the
original medGAN by using both Wasserstein GANs with
gradient penalty [237] and boundary-seeking GANs [96] to
speed up model convergence and stability. In addition, GANs
have also been used for segmenting medical images (ie, brain
magnetic resonance imaging scans) while coping with privacy
protection and data set imbalances [238]. In other words, GANs
have proven their potential in data augmentation for imbalanced
data sets and data anonymization for privacy preservation. A
conditional GAN framework— anonymization through data
synthesis-GAN [239]—was proposed to generate synthetic data
while minimizing patient identifiability, which is based on the
probability of reidentification given the combination of all data
of any individual patient. In addition, DP has also been used in
conjunction with GANs to generate synthetic EHRs [240-243];
most of these models were summarized in a recent survey [244].
On the basis of the CP technique introduced in the previous
section, the study by Tseng and Wu [245] presented compressive
privacy generative adversarial network to provide a data-driven
local privatization scheme for creating compressed
representations with lower dimensions for cloud services while
removing sensitive information from raw images. Most recently,

JMIR Med Inform 2021 | vol. 9 | iss. 10 | e29871 | p. 13https://medinform.jmir.org/2021/10/e29871
(page number not for citation purposes)

Zuo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the conditional identity anonymization GAN [246] was proposed
for image and video anonymization based on conditional GANs
[247]. Concretely, conditional identity anonymization GAN
supports the removal of identifiable information such as
characteristics of human faces and bodies while guaranteeing
the quality (granularity) of the generated images and videos.

Disclosure Risk Assessments
Given the conventional and machine learning–based privacy
models, a disclosure risk assessment is usually conducted to
measure the reidentification risk of the anonymized EHR data.
In practice, risk values from different combinations of privacy

models could be used when deciding which version of the
anonymized data should be used for data analysis and possible
machine learning tasks such as EHR classification with respect
to treatment planning or distance recurrence identification.

Concretely, there are 3 major types of disclosure that may occur
during the process of data anonymization: identity, attribute,
and membership disclosure (Table 3). For practical guidance,
we have provided a comparative summary in Multimedia
Appendix 6 [248-251] of most of the 35 conventional privacy
models investigated (in terms of parameter value ranges and
privacy levels).

Table 3. Categorization of data reidentification risk metrics for electronic health record data.

ReferenceSection in Multimedia Appendix 6Disclosure type and metric

Identity

N/Aa1Average risk

N/A1Overall risk

[125]1β-Likeness

[248]2Distance-linked disclosure

Attribute

[249]2Probabilistic linkage disclosure

[250]2Interval disclosure

[251]3Log-linear modelsMembership

aN/A: not applicable.

Usability Measurements
The metrics used for measuring the usefulness of the
anonymized data can be treated as an on-demand component
of a data anonymization system. We revisit the proposed
quantitative metrics in this section, although this important
indicator is usually not fully covered in the off-the-shelf privacy

model–based data anonymization tools. In addition, qualitative
metrics are not covered in this study. This is due to the varied
objectives of different data anonymization activities, including
the evaluation of anonymization quality that is performed by
health care professionals. Table 4 lists the selected data usability
metrics and the type of data for which they are suitable.

Table 4. Categorization of data usability metrics.

ReferencesSection in Multimedia Appendix 5Data type and metric

Numerical and categorical

[172,187-189]1.1Information loss and its variants

[190]1.2Privacy gain

[191]1.3Discernibility

[117]1.4Average equivalence class size

[192,193]1.5Matrix norm

[194]1.6Correlation

[195,196]1.7Divergence

Imagea

[197-200]2.1Mean squared error and its variants

[201-206]2.2Peak signal-to-noise ratio

[207,208]2.3Structural similarity index

aAny type of raw and anonymized electronic health record data that can be converted into an image.

JMIR Med Inform 2021 | vol. 9 | iss. 10 | e29871 | p. 14https://medinform.jmir.org/2021/10/e29871
(page number not for citation purposes)

Zuo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Existing Privacy Model–Based Data Anonymization
Tools
In this section, several off-the-shelf data anonymization tools
based on conventional privacy models and operations are
detailed. These tools are commonly adopted for anonymizing
tabular data. It should be noted that EHRs are usually organized

in the tabular data format and that the real difficulties of
anonymizing tabular data lie in the inherent bias and
presumption of the availability of limited forecast-linkable data.
Therefore, we investigated 14 data anonymization toolboxes,
all of which share a similar workflow (summarized in Figure 8
and compared in Table 5 and Table 6). Functionally similar
toolboxes are introduced together below.
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Figure 8. Overall results of the systematic literature mapping study. This mapping consists of four contextually consecutive parts (from bottom to top):
basic anonymization operations, existing privacy models, metrics proposed to measure re-identification risk and degree of usability of the anonymized
data, and off-the-shelf data anonymization software tools. ADS-GAN: anonymization through data synthesis using generative adversarial networks;
AP: affinity propagation; BL: β-Likeness; CIAGAN: conditional identity anonymization generative adversarial network; CPGAN: compressive privacy
generative adversarial network; DBSCAN: density-based spatial clustering of apps with noise; DP: differential privacy; DPPCA: differentially private
principal component analysis; FCM: fuzzy c-means; G: graph; GAN: generative adversarial network; GL: geolocational; GMM: Gaussian mixture
model; HE: homomorphic encryption; IL: information loss; ILPG: ratio of information loss to privacy gain; KA: k-Anonymity; kNN+DP: k-nearest
neighbor+differential privacy; LD: l-Diversity; medGAN: medical generative adversarial network; ML: machine learning; PCA: principal component
analysis; PG: privacy gain; PPPCA: privacy-preserving principal component analysis; R: relational; RT: relational-transactional; SC: spectral clustering;
T: transactional; TC: t-Closeness.
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Table 5. Comparison of the off-the-shelf privacy model–based data anonymization tools in terms of available development options, anonymization
functionality and risk metrics.

Risk as-
sessment

Anonymiza-
tion

Development supportLast releaseTool

Programming
language

Cross-plat-
form

ExtensibilityPublic

APIa
Open
source

✓✓Java✓✓✓✓bNovember 2019ARX

✓Java✓✓✓✓October 2019Amnesia

✓Java✓✓✓✓August 2019μ-ANTc

Java✓✓✓✓August 2019Anonimatron

✓C++✓June 2019SECRETAd

✓✓R✓Poorly support-
ed

✓✓May 2019sdcMicro

Ruby✓April 2019Aircloak Insights

Perl✓April 2019NLMe Scrubber

Ruby✓✓✓✓March 2019Anonymizer

✓R✓✓✓✓February 2019Shiny Anonymizer

✓✓C++March 2018μ-ARGUS

✓Java✓Poorly support-
ed

✓April 2010UTDf Toolbox

Java✓✓November 2011OpenPseudonymiser

✓Java✓2009TIAMATg

Poorly
supported

✓C++✓Poorly support-
ed

✓2009Cornell Toolkit

aAPI: application programming interface.
bFeature present.
cμ-ANT: microaggregation-based anonymization tool.
dSECRETA: System for Evaluating and Comparing RElational and Transaction Anonymization.
eNLM: National Library of Medicine.
fUTD: University of Texas at Dallas.
gTIAMAT: Tool for Interactive Analysis of Microdata Anonymization Techniques.
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Table 6. Comparison of the off-the-shelf privacy model–based data anonymization tools with respect to the supported privacy models.

Privacy modelsLast re-
lease

Tool

(k,

km)-anonymi-
ty

km-anonymi-
ty

(ε, δ)-
anonymi-
ty

(k, ε)-
anonymi-
ty

(k,
g)-anonymi-
ty

k-mapδ-pres-
ence

t-close-
ness

l-diversi-
ty

k-anonymi-
ty

✓✓✓✓✓✓aNovem-
ber 2019

ARX

✓October
2019

Amnesia

✓✓August
2019

μ-ANTb

August
2019

Anonimatron

✓✓✓June
2019

SECRETAc

✓✓May
2019

sdcMicro

April
2019

Aircloak Insights

April
2019

NLMd Scrubber

March
2019

Anonymizer

February
2019

Shiny Anonymizer

✓March
2018

μ-ARGUS

✓✓✓April
2010

UTDe Toolbox

Novem-
ber 2011

OpenPseudonymiser

✓✓✓2009TIAMATf

✓✓2009Cornell Toolkit

aFeature present.
bμ-ANT: microaggregation-based anonymization tool.
cSECRETA: System for Evaluating and Comparing RElational and Transaction Anonymization.
dNLM: National Library of Medicine.
eUTD: University of Texas at Dallas.
fTIAMAT: Tool for Interactive Analysis of Microdata Anonymization Techniques.

Amnesia [252] supports 2 privacy models, km-anonymity and
k-anonymity; the former is used for set-valued and relational-set
data sets, and the latter is used for tabular data. Amnesia does
not support any reidentification risk assessment; the authors
claim that there is no risk associated with the anonymized data
set because every query on the anonymized attributes will return
at least k records.

Anonimatron [253] state that it has been GDPR-compliant since
2010. It supports working with several databases out of the box.
It can also be used with text files. The software conducts
search-and-replace tasks based on custom rules and as such is
merely a pseudonymization tool; however, it is extensible
because of its open-source nature.

ARX [164,181,254] was originally developed for biomedical
data anonymization. In terms of conventional privacy models,
ARX mainly supports 6 additional privacy models: (1) strict
average risk, (2) population uniqueness, (3) sample uniqueness,
(4) δ-disclosure privacy, (5) β-likeness, and (6) profitability.
The population uniqueness can be measured using 4 different
models described in the studies by Pitman [148], Zayataz [149],
Chen and McNulty [150], and Dankar et al [255]. For
t-closeness, there are 3 different variants for categorical and
numeric data. The profitability privacy model is a game-theoretic
model used to conduct cost-benefit analysis and maximize the
monetary gains of the data publisher [152]. ARX is open source
[256] and supports data of high dimensionality. It is available
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as a library to be integrated into custom projects or as an
installable graphical user interface tool. Similar to ARX, the
microaggregation-based anonymization tool (μ-ANT) [257] is
also open source [258] and extensible. μ-ANT supports 2 privacy

models, km-anonymity and k-anonymity, as well as t-closeness
[122]. With respect to usability measurements, μ-ANT supports
both information loss and sum of the squared errors. However,
μ-ANT does not support functions for filling the missing
attribute values (this requires manual data preprocessing, instead,
either by removal or filling with average values) or metrics to
evaluate the reidentification risk of the anonymized data.

sdcMicro [259] supports 2 privacy models (k-anonymity and
l-diversity) in conjunction with recoding, suppression,
postrandomization method (PRAM; which works on categorical
data and is usually treated as encompassing noise addition, data
suppression, and data recoding. Specifically, each value of a
categorical attribute is mapped to a different value in accordance
with a prescribed Markov matrix, that is, PRAM matrix), noise
addition, and microaggregation. Apart from these functions,
this tool also supports the measurement of reidentification risk.
As a tool similar to sdcMicro, μ-ARGUS [260] has been
implemented in multiple programming languages. It supports
anonymization of both microdata and tabular data. It is packaged
as disclosure control software and includes k-anonymity,
recoding (generalization), suppression, PRAM, noise, and
microaggregation. Compared with sdcMicro and μ-ARGUS,
both University of Texas at Dallas Toolbox [261] and Tool for
Interactive Analysis of Microdata Anonymization Techniques
[262] support 3 privacy models but lack a risk-assessment
module. In addition, University of Texas at Dallas Toolbox was
compared with ARX in the study by Prasser et al [263] because
of their similar automated anonymization processes and
perspectives (in both, the data set is treated as population data,
describing one individual per record). In this comparison, ARX
showed better performance with respect to execution times and
measured data utility.

SECRETA (System for Evaluating and Comparing RElational
and Transaction Anonymization) [264] handles 3 categories of
data: relational data, transactional data, and
relational-transactional data, which are respectively supported

by k-anonymity and its variants, km-anonymity and (k,

km)-anonymity. For relational data sets, SECRETA supports
various schemes for data generalization, including full-domain
generalization, subtree generalization, and multidimensional

generalization. For transactional data, it supports km-anonymity
using hierarchy-based generalization and constraint-based
generalization. For measuring the risk of reidentification, the
standalone Identification of Privacy Vulnerabilities toolkit [265]
is used.

Aircloak Insights [266,267] can be deemed a data
pseudonymization tool because it does not tackle any task of
data anonymization. Concretely, by investigating 2 research
studies [266,267], we argue that Aircloak Insights is focused
more on data protection than on data anonymization. Aircloak
Insights comes with a Diffix backend [267], which is essentially
a middleware proxy to add noise to user queries for database
access in an encrypted fashion. This is also inconsistent with

what the authors announced on their official website: “Our
privacy-preserving analytics solution uses patented and proven
data anonymization that provides GDPR-compliant and
high-fidelity insights” [268]. Nevertheless, a number of
summarized attacks [267] may be used for validating the
efficiency and efficacy of the data anonymization toolbox
associated with the Aircloak pipeline.

National Library of Medicine-Scrubber [269] is an
anonymization software tool that is specifically designed for
coping with unstructured clinical text data. As such, k-anonymity
is not applicable. Privacy is achieved by applying the HIPAA
Safe Harbor model. National Library of Medicine-Scrubber
treats text data anonymization as a process of eliminating a
specific set of identifiers from the data, and the level of
anonymization depends on the comprehensiveness of the
identifier lookup data source. In addition, the reidentification
risk measurement is not considered in this tool because the
authors think that there is no established measure for
reidentification of the patient from an anonymized text
document.

OpenPseudonymiser [270] and ShinyAnonymizer [271] are
very similar: both conduct data encryption only, although they
have been specifically designed for medical data. As they only
perform data encryption, they are not adequate for data
anonymization. Concretely, they support a number of hashing
functions (eg, MD5 and SHA512) and encryption algorithms
(eg, data encryption standard and advanced encryption standard).
Although they support several fundamental data anonymization
operations (eg, removing information, suppression,
generalization, and bottom and top coding), they do not
implement any of the operations in line with privacy models.
In addition, they do not provide tools for calculating the risk of
reidentification or the measurement of data utility. Similarly,
Anonymizer [272] was introduced as a universal tool to create
anonymized databases. This tool replaces all data in the given
database with anonymized random data where the unique,
alphanumeric values are generated by the MD5 hashing function.
To this end, the anonymized data might be less useful in view
of the authors’ announcement [273]: “There is no way to keep
nonanonymized rows in a table”; thus, this software tool is
useful for database randomization rather than anonymization.

The Cornell Toolkit [274] supports l-diversity and t-closeness
with flexible parameter configurations. Although the software
supports the ability to display the disclosure risk of
reidentification of the original tabular data, the method or
methods used for implementing the risk measurement have not
been introduced in either the paper [274] or in the documentation
on the web [275], leaving this software with a low degree of
explainability and, hence, trustworthiness.

Existing Machine Learning–Based Data
Anonymization Tools

Two Classes
Recently, in response to the GDPR and DPA regulations, efforts
were made by the machine learning and cryptography
communities to develop privacy-preserving machine learning
methods. We define privacy-preserving methods as any machine
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learning method or tool that has been designed with data privacy
as a fundamental concept (usually in the form of data
encryption) and that can typically be divided into 2 classes:

those that use SMPC and those that use fully HE (FHE). All
the investigated machine learning–based data anonymization
tools are compared in Table 7.

Table 7. Comparison of existing machine learning–based data anonymization tools. The Largest model tested column reports the number of parameters
in the largest model shown in the respective tool’s original paper (when reported); CrypTFlow has been shown to work efficiently on much larger
machine learning models than the other available privacy-preserving machine learning tools.

Development supportUsability measure-
ment

Reidentification
risk assessment

Encryption methodsTool

Largest model
tested

Malicious
security

Supports
training

Federated
learning

Differential
privacy

FHEbSMPCa

N/Ad✓✓cCrypTen

419,720✓✓✓✓TF Encrypted

N/A✓✓✓✓PySyft

65×106✓✓CrypTFlow

421,098✓CHET

aSMPC: secure multiparty computation.
bFHE: fully homomorphic encryption.
cFeature present.
dN/A: not applicable.

SMPC Frameworks
SMPC involves a problem in which n parties, each with their
own private input x1, x2,..., xn where party i has access to input
xi (and only xi), wish to compute some function f(x1, x2,..., xn)
without revealing any information about their private data [276]
to the other parties. Most SMPC frameworks assume the parties
to be semihonest: under this scheme we assume that malicious
parties still follow the set protocol (although they may work
together to attempt to extract private information). The current
state-of-the-art framework for SMPC is SPDZ [277], and it is
upon this framework that many SMPC-based machine learning
libraries are built. This allows data owners to keep their data
private and also allows for the machine learning model to be
hidden. However, it does require at least three trusted,
noncolluding parties or servers to work together to provide the
highest level of protection; this can mean it is difficult to
implement in practice. There are also significant overheads with
this method; not only do SPDZ algorithms necessarily take
longer to compute (because of cryptographic overhead), but
there is also a significant amount of communication that needs
to take place among all participating parties. This results in
SMPC machine learning models running approximately 46
times slower than plaintext variants [278], meaning that it is
impractical to use such models with large and complex data
sets.

There are several different practical implementations of this
type of protocol, although none are ready for use in production
environments. CrypTen [279] is a library that supports
privacy-preserving machine learning with PyTorch. CrypTen
currently supports SMPC (although support for other methods
such as FHE is in development) by providing SMPC-encrypted
versions of tensors and many PyTorch functions; it also includes
a tool for encrypting a pre-existing PyTorch model. Although

CrypTen supports many of PyTorch’s existing functions, it still
has certain limitations. Most notably, it does not currently
support graphics processing unit computation, which
significantly hinders its ability to be used in conjunction with
large, complex models. TensorFlow (TF) Encrypted [280] is a
similar framework for the TF open-source software library for
machine learning that also supports SMPC through the SPDZ
framework. TF Encrypted also includes support for federated
learning (which allows the training of machine learning models
to be distributed over many devices without each device needing
to reveal its private data) and HE.

PySyft [278] is a more general framework than CrypTen or TF
Encrypted because it supports multiple machine learning
libraries (including TF and PyTorch) and multiple privacy
methods. As part of this, it features SMPC-based machine
learning, much like CrypTen and TF Encrypted, but also allows
for additional layers of security to be incorporated into the model
such as DP and federated learning. It is also possible to use TF
Encrypted as the provider for TF-based encryption using PySyft,
allowing for tighter integration between the 2 libraries. Similar
to CrypTen and TF Encrypted, PySyft is a high-level library
that attempts to make it easy for machine learning researchers
to transition to build privacy-preserving models. However,
PySyft should currently only be used as a research tool because
many of its underlying protocols are not secure enough to be
used with confidence.

CrypTFlow [281] differs from the aforementioned libraries in
that it is a compiler for TF models rather than a programming
interface. CrypTFlow takes a TF model as an input and outputs
code that can run under an SMPC model. An advantage that
CrypTFlow has over CrypTen, TF Encrypted, and PySyft is
that, as part of its compilation process, CrypTFlow performs a
number of optimization steps that in the other libraries would
have to be done by hand or cannot be performed at all. For
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example, when converting floating-point numbers to a
fixed-precision representation (which is necessary because
SMPC works inside a finite field), CrypTFlow chooses the
smallest precision level that will match the classification
accuracy of floating-point code. This, along with the other
optimizations performed during the compilation process, means
that it is possible to (efficiently) run much larger models in
CrypTFlow than may be possible in other libraries. The possible
real-world impact of CrypTFlow has been shown by running 2
networks designed for predicting lung disease from chest x-rays
[282] and diabetic retinopathy [283] from retinal images. It is
also possible to use CrypTFlow in conjunction with secure
enclaves such as Software Guard Extension 41 (Intel
Corporation) to work within the stricter malicious security
assumptions; this is stricter than assuming semihonest parties
because malicious parties may deviate from the defined protocol.
The provision of malicious security means that CrypTFlow is
more suitable for use in environments where extreme caution
must be taken with the data set being used. Similar to CrypTen,
the main issue with CrypTFlow is that it currently does not
support the training of machine learning models because it is
difficult to use the graphics processing unit in such a setting,
meaning that there is still the need to be able to process plaintext
data during the training process, which is not compatible with
many of the scenarios where one may want to use
privacy-preserving machine learning techniques.

An example of how SMPC protocols and SMPC-supporting
machine learning libraries can be used is shown in the study by
Hong et al [284], which used TF Encrypted to train a classifier
on 2 genomic data sets, each containing a large number of
features (12,634 and 17,814 features per sample), to detect
tumors as part of the iDASH challenge. This task had an
additional challenge because the 2 data sets were heavily
imbalanced, but common countermeasures to this are difficult
to implement in an SMPC framework. For example, resampling
is commonly used to overcome this, but because the labels are
private in SMPC, this is impossible. To overcome the imbalance,
the weighting of samples in the loss function was adjusted to
place a higher emphasis on those from the minority class. The
study’s best results had an accuracy of 69.48%, which is close
to the classifier trained on the plaintext data, which showed an
accuracy of 70%. This demonstrates that it is possible to train
machine learning models on encrypted data; the study also noted
that the TF Encrypted framework is easy to use for anyone
familiar with TF, meaning that privacy-preserving machine
learning is accessible to experts from both machine learning
and cryptography fields.

CrypTen, TF Encrypted, and PySyft all have the advantage that
they work closely with commonly used machine learning
libraries (PyTorch, TF, and both PyTorch and TF, respectively),
meaning that there is less of a learning curve required to make
the existing models privacy preserving compared with tools
such as CrypTFlow. This ease of use comes at the cost of
efficiency, however, because more complex tools such as
CrypTFlow are able to work at a lower level and perform more
optimizations, allowing larger models to be encrypted.

Fully HE
HE is a type of encryption wherein the result of computations
on the encrypted data, when decrypted, mirror the result of the
same computations carried out on the plaintext data.
Specifically, FHE is an encryption protocol that supports any
computation on the ciphertext. Attempts have been made to
apply FHE to machine learning [285,286]. Traditionally, because
of the significant computational overhead required to run FHE
computations, these models were trained in plaintext data; for
example, it took 570 seconds to evaluate CryptoNet on the
Modified National Institute of Standards and Technology data
set [285]. It is only recently that we have been able to train a
full classification model using FHE computations [36]. The
main benefit of FHE over SMPC is that it does not require
multiple and separate trusted parties; the models can be trained
and run on encrypted data by a single entity. This makes FHE
a more promising prospect than SMPC for problems involving
data that are too sensitive to be entrusted to multiple parties (or
in situations where multiple trusted parties may not be
available).

Applying FHE to privacy-preserving machine learning is a
relatively new area of research, and thus there are few tools that
tie the 2 concepts together, with most research focusing on
specific model implementations rather than on creating a general
framework for FHE machine learning. One such tool, however,
is CHET [287]. CHET is an optimizing compiler that takes a
tensor circuit as an input and outputs an executable that can
then be run with HE libraries such as Simple Encrypted
Arithmetic Library (Microsoft Research) [288] or Homomorphic
Encryption for Arithmetic of Approximate Numbers [289]. This
automates many of the laborious processes (eg, encryption
parameter setting) that are required when creating circuits that
work with FHE libraries; these processes also require FHE
domain knowledge, which we cannot expect many machine
learning experts to possess. Hence, the use of CHET can result
in more efficient FHE models. For example, the authors of
CHET claim that it reduces the running time for analyzing a
particular medical image model (provided by their industry
partners) from 18 hours (the original, unoptimized FHE model)
to just 5 minutes. However, despite CHET using numerous
optimizing methods during its compilation phase, the resulting
encrypted models are still restrictively slow (when compared
with their nonencrypted counterparts). Not only does this mean
it is only practical to use CHET with smaller models, but it also
means that it is impractical to train a model using CHET. It is
also important to consider whether FHE provides a level of
security and privacy that is high enough for the task at hand;
some current regulations argue that encryption is a form of
pseudonymization rather than anonymization [290] because it
is possible to decrypt encrypted data.

Legal Framework Support
Although general data protection laws such as GDPR and DPA
and health care–specific guidelines have been proposed for a
while, data anonymization practitioners still demand a combined
and intuitive reference list to check. In this discussion, we
tentatively construct a policy base by collecting and sorting the
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available guidance provided by 4 lawful aspects in an effort to
benefit future intelligent data anonymization for health care.

The policy base was constructed by considering the
documentation provided in accordance with legal frameworks
and guidelines proposed by government-accountable institutions,
that is, the GDPR, particularly Article 5 [291]; the DPA [292];
the ICO (mainly based on the code of practice); and the NHS
(with documents published in 2013 [293], 2015 [294], 2017
[75], 2019 [74,295], and 2021 [296,297]). Fundamentally, any
organization (eg, the NHS or a UK company) that holds personal
identifiable information is required to register with the ICO,
and subsequently perform possible data anonymization followed
by a reidentification risk assessment to evaluate the effectiveness
of the anonymized data in line with the DPA (the UK
implementation of the GDPR). In the case where the NHS or a

UK company realizes that a data breach has occurred, it is
required to report this to the ICO. In addition, the ICO provides
guidance to help the NHS or UK companies to better understand
the lawful basis for processing sensitive information. Recently,
the ICO [298] and the European Data Protection Board [299]
published their statements on the processing of personal
identifiable data in coping with the COVID-19 outbreak.

From the NHS perspective, pseudonyms should be used on a
one-off and consistent basis. In terms of the best practice
recommendations, they recommend adopting cryptographic
hash functions (eg, MD5, SHA-1, and SHA-2) to create a
fixed-length hash. We argue that the encrypted data might be
less useful for possible later data analysis and explainability
research. We summarize the suggestions provided by the 4
aforementioned entities in Textbox 2.
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Textbox 2. Guidance provided by 4 lawful aspects.

General Data Protection Regulation

• Accuracy

• Accountability

• Storage limitation

• Purpose limitation

• Data minimization

• Purpose limitation

• Lawfulness, fairness, and transparency

Data Protection Act

• Notify any personal data breach

• Settle system interruption or restoration

• Implement disclosure-risk measures

• Define legal basis for data processing

• Establish precise details of any processing

• Prevent unauthorized processing and inference

• Conduct data protection impact assessment

• Test anonymization effectiveness through reidentification

• No intent, threaten, or damage to cause in reidentification

• Ensure data integrity when malfunctions occur

Information Commissioner’s Office

• Remove high-risk records

• Remove high-risk attribute

• Use average value of each group

• Use the week to replace the exact date

• Swap values of attributes with high risk

• Use partial postcode instead of full address

• Define a threshold and suppress the minority

• Probabilistically perturb categorical attributes

• Aggregate multiple variables into new classes

• Use city instead of postcode and house number, street

• Recode specific values into less-specific range

• Use secret key to link back (data owner only)

• Add noise to numerical data with low variations

National Health Service

• Round off the totals

• Swap data attributes

• Use identifier ranges

• Mask part of the data

• Use age rather than date of birth

• Change the sort sequence

• Use the first part of the postcode

• Remove direct identifiers (National Health Service number)
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Risk assessment of indirect identifiers•

• Provide only a sample of the population

• Provide range banding rather than exact data

• If aggregate totals less than 5, use pseudonyms

Results Summary for RQs
Here we present the results of the 5 defined RQs (Textbox 3)
and, in the next section, discuss 3 open questions in real-world

EHR data anonymization. The overall results of this SLM study
are summarized in Figure 7.

Textbox 3. Review questions.

• Review question (RQ) 1: Do best practices exist for the anonymization of realistic electronic health record (EHR) data?

• As the leading question of this systematic literature mapping study, we answer this question by exploring the answers to the other 4 RQs.
It is theoretically feasible but practically challenging. On the basis of the answers to the remaining 4 questions, theoretical operations, privacy
models, reidentification risk, and usability measurements are sufficient. Despite this, anonymization is practically difficult mainly because
of 2 reasons: (1) the knowledge gap between health care professionals and privacy law (usually requiring huge collaborative efforts by
clinical science, law, and data science), although we have summarized all lawful bases in the following subsection; and (2) automatic
anonymization of EHR data is nontrivial and very case dependent.

• RQ 2: What are the most frequently applied data anonymization operations, and how can these operations be applied?

• We investigated 7 categories of basic data anonymization operations in 16 articles, most of which are summarized in Multimedia Appendix
3. Apart from their fundamental uses, they can also be incorporated into the data anonymization process in both conventional and machine
learning–based privacy models.

• RQ 3: What are the existing conventional and machine learning–based privacy models for measuring the level of anonymity? Are they practically
useful in handling real-world health care data? Are there any new trends?

• We presented 40 conventional (a taxonomy for relational data is summarized as part of Figure 7) privacy models and 32 machine learning–based
privacy models from a total of 104 articles (summarized as part of Table 1). From this, we have observed that combinations of a deep learning
architecture and one or more data anonymization operations have become a trend, particularly techniques based on (conditional-) generative
adversarial networks. We have also realized that despite the increasing number of publications from the computer vision community, they
rarely use real-world sensitive medical data. For the applicability of existing privacy models, we present an ablation study (Multimedia
Appendix 7 [181,300-303]) using publicly accessible EHRs in the next subsection as part of the discussion.

• RQ 4: What metrics could be adopted to measure the reidentification risk and usability of the anonymized data?

• We investigated 7 (from 4 articles) and 15 (from 19 articles) metrics to quantify the risk of reidentification and degree of usability of the
anonymized data. Measuring reidentification risk requires a pair of raw and anonymized data records in which the original data are treated
as an object of reference and compared with the anonymized data in terms of statistical difference. Such a difference may not sufficiently
reveal the true risk of reidentification. To further investigate this issue, we combined the privacy models for discussing the trade-offs between
these 2 privacy aspects. In contrast, more usability metrics were proposed because of the wider availability of performance indicators.

• RQ 5: What are the off-the-shelf data anonymization tools based on conventional privacy models and machine learning?

• We investigated and compared 19 data anonymization tools (reported in 36 articles), of which 15 are based on privacy models (compared
in Tables 5 and 6), whereas the remaining 5 (compared in Table 7) rely on privacy-preserving machine learning (with issues summarized
in the next subsection). However, there does not exist any off-the-shelf data anonymization tool that truly supports the current legal frameworks
such as the General Data Protection Regulation and Data Protection Act to dispel the doubts and concerns of data owners (we filled this gap
as well).

Discussion

Privacy-Usability Trade-offs and Practical Feasibility
The most important question to consider when data
anonymization is required in the health care sector is the choice
between the level of privacy and degree of usability. In Table
2, we listed parameter interval, which enables specific privacy
model or models to be more practically configurable. The
privacy level indicates the possible degree of privacy that can
be achieved by each privacy model, where separate levels are

provided for some variant models such as (α, k)-anonymity,
stochastic t-closeness, and (ε, m)-anonymity. This problem can
also be viewed as a trade-off between the risk of reidentification
and data usability and can be quantified using specific methods
[304-306].

It should be noted that the privacy models, reidentification risk
measurements, and data usability metrics reviewed in this study
are relatively easy to understand, with equations provided along
with adequate descriptions. However, these concepts are difficult
to deploy in real-world data anonymization tools. Even given
the intensive investigations summarized above, the utility of
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the anonymized data may not be easily measurable through a
number of proposed metrics of reidentification risk and utility
metrics.

Given this discrepancy observed from the ablation study we
conducted (Multimedia Appendix 7), it is worth considering
the problem domain when quantifying the reidentification risk
as well as the utility of the anonymized data, although we
summarized the existing measures in the previous section.
Overall, the trade-offs between reidentification risk and usability
are practically feasible yet problem dependent.

Issues of Privacy-Preserving Machine Learning
SMPC and FHE share some disadvantages. They both use
encryption methods that work over finite fields, and thus they
cannot natively work with floating-point numbers. All practical
implementations instead use a fixed-precision representation,
but this adds computational overhead, and the level of precision
used can affect the accuracy of the results.

Another important issue is that of the trade-off between
interpretability and privacy [307] which, where
privacy-preserving machine learning is concerned, is highly
skewed toward privacy; encrypted models are, because of their
very nature, entirely black-box models. This is not only an issue
in the health care field, where the explainability of machine
learning models is an important issue [308], but also arguably
in any machine learning application because of the GDPR’s
“right to an explanation” [309].

Encrypted, trained models are also still vulnerable to
reverse-engineering attacks (regardless of the encryption method
used) [278]; for example, a malicious user could use the outputs
of a model to run a membership attack (ie, infer from the results
of a model whether the input was from a member of the training
set). Currently, the only known way to overcome this is to apply
DP principles to the model, which adds yet another layer of
complexity to the process. There are signs that existing libraries
are starting to combat the possibility of such attacks by
providing easy methods to apply DP to encrypted models; see,
for example, the DP techniques available in PySyft in the SMPC
Frameworks section above.

It is also important to remember that, as noted previously, any
type of encryption is regarded as a form of pseudonymization

rather than anonymization because the encrypted data can be
decrypted by anyone with access to the encryption key.
However, we note that much of the current guidance on viewing
encryption techniques as anonymization or pseudonymization
is ambiguous; for example, ICO guidance [290] suggests that
encrypted data is classified as anonymized data so long as the
party responsible for the encryption of the personal data is not
also responsible for the processing of the encrypted data
(because then the party processing the data would not be in
possession of the encryption key and would therefore be unable
to reverse the encryption). As such, it is important to carefully
consider whether privacy-preserving machine learning
techniques fully satisfy the requirements set out in law. For
instance, tools that also include other privacy techniques, such
as PySyft, may be more useful in situations where true
anonymization is required.

Overall, privacy-preserving machine learning is a promising
area of research, although more work needs to be undertaken
to ensure that such methods are ready for use in industrial
applications; many of the tools currently available are only
suitable for research rather than practical application. There
also needs to be some consideration over which
privacy-preserving methods best suit the needs of the
application. SMPC currently offers a more viable approach than
FHE because of its ability to run (and, more importantly, train)
larger models, although the need to have multiple trusted parties
may mean that it is seen as less secure than FHE. Meanwhile,
FHE for privacy-preserving machine learning is still an
emerging field, and it is encouraging to see research being
undertaken by both the machine learning and cryptographic
communities to improve the practicality of FHE methods by
improving the running time of encrypted models and reducing
the level of cryptographic knowledge needed to create efficient,
encrypted models using FHE.

Conclusions
In this SLM study, we presented a comprehensive overview of
data anonymization research for health care by investigating
both conventional and emerging privacy-preserving techniques.
Given the results and the discussions regarding the 5 proposed
RQs, privacy-preserving data anonymization for health care is
a promising domain, although more studies are required to be
conducted to ensure more reliable industrial applications.
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