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Abstract

Background: Spontaneous reporting systems (SRSs) have been increasingly established to collect adverse drug events for
fostering adverse drug reaction (ADR) detection and analysis research. SRS data contain personal information, and so their
publication requires data anonymization to prevent the disclosure of individuals’ privacy. We have previously proposed a privacy
model called MS(k, θ*)-bounding and the associated MS-Anonymization algorithm to fulfill the anonymization of SRS data. In
the real world, the SRS data usually are released periodically (eg, FDA Adverse Event Reporting System [FAERS]) to accommodate
newly collected adverse drug events. Different anonymized releases of SRS data available to the attacker may thwart our
single-release-focus method, that is, MS(k, θ*)-bounding.

Objective: We investigate the privacy threat caused by periodical releases of SRS data and propose anonymization methods to
prevent the disclosure of personal privacy information while maintaining the utility of published data.

Methods: We identify potential attacks on periodical releases of SRS data, namely, BFL-attacks, mainly caused by follow-up
cases. We present a new privacy model called PPMS(k, θ*)-bounding, and propose the associated PPMS-Anonymization algorithm
and 2 improvements: PPMS+-Anonymization and PPMS++-Anonymization. Empirical evaluations were performed using 32
selected FAERS quarter data sets from 2004Q1 to 2011Q4. The performance of the proposed versions of PPMS-Anonymization
was inspected against MS-Anonymization from some aspects, including data distortion, measured by normalized information
loss; privacy risk of anonymized data, measured by dangerous identity ratio and dangerous sensitivity ratio; and data utility,
measured by the bias of signal counting and strength (proportional reporting ratio).

Results: The best version of PPMS-Anonymization, PPMS++-Anonymization, achieves nearly the same quality as
MS-Anonymization in both privacy protection and data utility. Overall, PPMS++-Anonymization ensures zero privacy risk on
record and attribute linkage, and exhibits 51%-78% and 59%-82% improvements on information loss over PPMS+-Anonymization
and PPMS-Anonymization, respectively, and significantly reduces the bias of ADR signal.

Conclusions: The proposed PPMS(k, θ*)-bounding model and PPMS-Anonymization algorithm are effective in anonymizing
SRS data sets in the periodical data publishing scenario, preventing the series of releases from disclosing personal sensitive
information caused by BFL-attacks while maintaining the data utility for ADR signal detection.
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Introduction

Motivation
Adverse drug reactions (ADRs) are undesirable side effects of
taking drugs. Before hitting the market, a new drug has to
undergo a series of clinical trials. Unfortunately, it is hard to
find all ADRs in the premarketing stage due to fewer volunteers.
Thus, an increasing number of countries have built spontaneous
reporting systems (SRSs) to collect adverse drug events (ADEs)
to monitor the safety of marketed drugs, such as the FDA
Adverse Event Reporting System (FAERS) of the US Food and
Drug Administration (FDA) [1], the UK Yellow Card scheme
[2], and the MedEffect Canada [3]. Some countries even publish
their SRS data sets, for example, US FDA and MedEffect
Canada, to the public to facilitate ADR research.

SRS data are a kind of microdata containing personal health
information, such as diseases of the patients. Microdata, usually
represented in the form of tables of tuples [4], are composed of
explicit identifier (ID) that can uniquely identify each individual
(eg, SSN, name, phone number); quasi-identifier (QID) that can
be linked with external data to reidentify some of the individuals
(eg, sex, age, and ZIP code); sensitive attribute (SA) that contains
sensitive information, such as disease or salary; and non-SA
that falls into none of the above 3 categories. Publishing these
data sets would lead to privacy threats. A real case did occur in
Canada. A broadcaster successfully reidentified a 26-year-old
girl by linking MedEffect Canada and the publicly available
obituaries [5]. This case motivated the research by El Emam et
al [5], whose findings showed that the MedEffect Canada data
exhibit a high risk of identity disclosure.

Generally, simple removal of the identification attributes, such
as name, SSN, or phone, has been shown to fail to protect
individual privacy [6]. The adversary can still link published
data to external data (eg, voter list, through quasi-identification
attributes, such as gender, job, age, ZIP code). This calls for the

research topic, namely, privacy-preserving data publishing
(PPDP), which aims to anonymize raw data before publication.
In [7], we pointed out that none of traditional anonymization
methods (eg, k-anonymity [6], l-diversity [8]) is favorable for
SRS data sets due to characteristics such as multiple individual
records, multivalued SAs, and rare events. Later, we proposed
a privacy model called MS(k, θ*)-bounding [9] to anonymize
SRS data to prevent the disclosure of individual privacy. New
events arrive in SRSs continuously in the real world, so countries
such as the USA and Canada release SRS data sets periodically,
for example, every quarter, to handle this kind of dynamically
growing data sets (ie, periodical data publishing). Unfortunately,
MS(k, θ*)-anonymity is designed for a single static publishing
scenario, and is awkward to handle a series of published data
sets.

Usually, each ADE record in SRS data contains a CaseID to
trace the follow-ups of that event; all records with the same
CaseID, located within the same or different periods, refer to
the same event. Although someone may regard follow-ups as
duplicates of the original case, the situation is somewhat
different. Follow-up cases contain complement or correction of
the original case. Still, duplicate reports refer to the same case
submitted by different reporters, so were misrecorded with
different CaseIDs. Follow-ups are easily detected via CaseID,
but identifying actual duplicates is challenging, which should
be considered a data preprocessing issue. There has been some
research studies on detecting actual duplicates in SRS data
[10-12]. Most SRS systems such as FAERS, however, provide
no deduplication mechanism. We thus ignore this issue.
Unfortunately, CaseID provides a useful linkage for the
adversary across a series of anonymized data sets to exclude
records not belonging to the target, raising the risk of breaching
the target’s privacy. For illustration, let us consider 3
consecutive quarters of published SRS data sets in Table 1, each
of which satisfies 3-anonymity.
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Table 1. Three consecutive quarters of published spontaneous reporting system data sets, each satisfying 3-anonymity.

DiseaseAgeSexQuarter and CaseID

1

Flu[35-40]Male1

Flu[35-40]Male2

Fever[35-40]Male3

HIV[30-35]Female4

Flu[30-35]Female5

Diabetes[30-35]Female6

2

Flu[30-40]ANY1

HIV[30-40]ANY4

Diabetes[30-40]ANY7

Fever[30-35]Male8

Flu[30-35]Male9

Diabetes[30-35]Male10

HIV[30-35]Male11

Flu[30-35]Male12

3

Flu[30-35]Female13

Diabetes[30-35]Female14

Fever[30-35]Female15

Flu[30-35]Female16

Fever[30-35]Female17

Diabetes[30-35]Male7

Fever[30-35]Male8

HIV[30-35]Male18

Possible Scenarios

Scenario I
Suppose that the adversary learns that his/her neighbor Alice,
whose QID value is {Female, 32}, suffered from some ADR in
Q2. First, the adversary links to Table 1 (quarter 2) through the
QID of Alice, learning that the record of Alice is in the first
QID group (CaseIDs 1, 4, and 7). The adversary can then link
to the previously published SRS data through the candidate
CaseID set {1, 4, 7} and find the record with CaseID=1 and
Sex=Male in Table 1 (quarter 1). Because Alice is female, the
adversary can exclude CaseID 1 from the candidate CaseID set
{1, 4, 7}, changing Table 1 (quarter 2) to 2-anonymous and
lifting the confidence of the attacker to identify Alice.

Scenario II
Following the previous example, the adversary has known the
candidate CaseID set of Alice {4, 7}. The adversary can now
use this set to link to subsequently published SRS data and
observe a record whose CaseID is 7 in Table 1 (quarter 3).
Because the owner of that record is male, the adversary can

exclude CaseID 7 from the candidate CaseID set, concluding
that the CaseID of Alice in Table 1 (quarter 2) is 4.

Scenario III
Suppose that the adversary learns John’s QID value is {Male,
33} and the first time that John had an ADR is in Q3. This
means that the CaseID of John’s event is a “new CaseID” in
Q3 and shall not appear in any previously released data. First,
the adversary links to Quarter 3 and learns that the record of
John is within the second QID group (CaseIDs 7, 8, 18). The
adversary can then connect to the 2 previously published SRS
data sets through the candidate CaseID set of John {7, 8, 18},
observing 2 matching records whose CaseID are 7 and 8 in
Quarter 2. The CaseID of John is neither 7 nor 8, so the
adversary concludes that the CaseID of John is 18, ruining the
privacy protection embedded by 3-anonymity.

Background Knowledge and Related Work

Privacy Models for Microdata Publishing
Research on PPDP [4] aims to protect released microdata from
2 types of privacy attacks: record disclosure and attribute
disclosure.
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Record disclosure, also known as table linkage attack, refers
to the situation in which the individual identity of a specific
tuple that has been deidentified in the published data is
reidentified. Although it is hard to prevent table linkage attacks,
it is possible to reduce the possibility of identifying victims in
a published data. Achievement is the invention of k-anonymity
[6], which is the most influential privacy model that generalizes
the values of QID to ensure that each record in published data
contains at least k–1 other records with the same QID value.

Attribute disclosure, also known as attribute linkage attack,
refers to the situation in which attackers can infer an individual’s
sensitive information, even though they fail to perceive the exact
record of the victim. Unfortunately, k-anonymity is not able to
prevent attribute disclosure. Another renowned privacy model
called l-diversity [8] was thus proposed. The main idea of
l-diversity is to thwart the adversary’s belief on the probability
of the sensitive value by ensuring that each QID group contains
at least l “well-represented” sensitive values, that is, the
probability of inferring the sensitive value of the victim will be
at most 1/l.

Privacy Models for Incremental Data Publishing
Most real-world data are not static but dynamically changing,
which means that data cannot be published simultaneously but
have to be published incrementally [4]. Previously proposed
privacy models such as k-anonymity and l-diversity only focus
on single static data publishing, awkward to prevent privacy
disclosure in incremental data publishing. Contemporary privacy
models for incremental data publishing can be classified into
continuous or dynamic data publishing [4].

Continuous Data Publishing
This refers to the scenario in which all data collected so far have
to be published even if some of the data have been released
before. More precisely, suppose that the data holder had
previously collected a set of records D1 time stamped t1 and
published the anonymized version R1 of D1. After collecting a
new set of records D2 time stamped t2, the data holder will
publish R2 as an anonymized version of all records collected so
far, (ie, D1 ∪ D2). In general, the published release Ri (i≥1) shall
be an anonymized version of D1 ∪ D2 ∪ ... Di.

Byun et al [13] first identified the privacy threat under
continuous data publishing. They demonstrated possible
inference channels by comparing different l-diverse releases to
explore the sensitive values of victims. They later enhanced
their approach by considering both k-anonymity and l-diverse
called (k, c)-anonymous and exploring more types of adversarial
attacks named cross-version inferences [14].

Pei et al [15] illustrated that in the continuous data publishing
scenario, the adversary can infer some privacy information from
multiple releases that have been sanitized by k-anonymity. They
also proposed an effective method called “monotonic
incremental anonymization,” which would progressively and
consistently reduce the generalization granularity as the updates
arrive to maintain k-anonymity.

Fung et al [16] proposed a method to quantify the exact number
of records that can be “cracked” by comparing the series of

published k-anonymous data. The adversary can exclude the
cracked records from published data, making the published data
no longer satisfy k-anonymous. They also presented a privacy
model, called BCF-anonymity, to measure the anonymous
number in published data after excluding the cracked records,
and proposed an algorithm to anonymize published data
achieving BCF-anonymity.

Dynamic Data Publishing
This refers to the scenario in which the data holder can insert
records into or delete records, or perform both actions, from
raw data sets. Suppose that the data holder had collected an
initial set of records D1 in time t1 and published its anonymized
version R1. During the period [t1, t2), the data holder kept
collecting new records and inserted them into D1. Further, the
data holder might delete and update some records from D1,
finally obtaining the updated version D2 of D1 in t2. Then, the
published release R2 in t2 is an anonymized version of D2. In
general, a published release Ri in time ti shall be an anonymized
version of Di.

Xiao and Tao [17] identified a kind of privacy disclosure called
critical absence. The adversary can infer victims’ sensitive
information by comparing the series of published l-diverse data
in dynamic data publishing scenarios (only considered insertion
and deletion). They proposed a privacy model, called
m-invariance, to ensure the certain “invariance” of the
“signature” of QID groups, and an effective method called
counterfeited generalization to anonymize published data
achieving m-invariance.

Bu et al [18] noticed that some sensitive values would be
permanent, such as criminal record and some incurable diseases,
such as HIV. They showed that m-invariance is unable to prevent
privacy disclosure when permanent sensitive values are present.
Therefore, they proposed an anonymization approach, called
HD-composition [18], to limit the probability of linkage between
individuals and sensitive values not over a given threshold.

On observing m-invariance only considers data evolution caused
by insertion and deletion, Li and Zhou [19] further presented a
counterfeit generalization model named m-distinct to support
full data evolution (ie, insertion, update, and deletion).
Moreover, they observed that attribute updates are seldom
arbitrary, with some correlations often existing between the old
and the new values. Based on this observation, they assumed
that all updates on sensitive values are nonarbitrary. Therefore,
m-distinct applies the concept of the candidate update set, which
is a set of specific sensitive values that can be updated.

Following the work in [19], Anjum et al [20] further assumed
that the updates in fully dynamic data publishing are arbitrary,
meaning the old values of attributes may not correlate with the
new values. They presented a new kind of attack named τ-attack
by exploiting the “event list” of an individual. They also
proposed a method called τ-safety, an extension of m-invariance,
to solve the privacy disclosure caused by τ-attack.

He et al [21] presented a new type of attack named value
equivalence attack, which can exploit the partitioned structure
of published data, such as m-invariant releases, to obtain
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sensitive information of individuals. Once the adversary knows
the actual sensitive value of an individual, he/she can disclose
the sensitive information of the remaining individuals within
the same equivalence class. They proposed a graph-based
anonymization algorithm, which leverages a min-cut algorithm
to prevent the old “value association attack” and the new
“equivalence attack.”

Specifically, Bewong et al [22] focused on transactional data.
They proposed a new privacy model called serially preserving,
which requires the posterior probability of any sensitive term
to its corresponding population rate bounded by a given
threshold. A novel anonymization method (Sanony, which
counts on adding counterfeits) was presented to guarantee a
new published transactional data set satisfying the required
privacy model.

There is another scenario of nonstatic data publishing called
sequential data publishing. Different vertical projections of the
same table on different subsets of attributes are published
consecutively in this scenario. Anonymization models and
methods for this scenario were first studied in [23] and then
further investigated in [24] and [25].

In summary, no contemporary work notices the scenario of
periodical data publishing, and no work has been conducted for
SRS data anonymization, considering the privacy threat caused
by follow-up cases. In this paper, we investigate the privacy
threat caused by periodical releases of SRS data and propose
anonymization methods to prevent the disclosure of personal
privacy information while maintaining the utility of published
data.

Methods

Publishing Scenario and Privacy Attacks
We first introduce the periodical data publishing scenario and
present 3 kinds of privacy attacks for periodically published
SRS data sets satisfying MS(k, θ*)-bounding. We propose a
new privacy model, PPMS(k, θ*)-bounding, to protect published

SRS data sets from those attacks in the periodical data
publishing scenario. We also propose a corresponding
anonymization algorithm, namely PPMS-anonymization, that
incorporates 2 innovative strategies, NC-bounding and
QID-covering, to prevent the released data sets from privacy
attacks caused by follow-up key (ie, CaseID). Two extensions
of PPMS-anonymization, PPMS+-anonymization and
PPMS++-anonymization, are presented as well, which employ
more efficient techniques, including neglecting subsequent
coverings and grouping with new cases.

BFL-Attacks
Typical SRS data, such as FAERS, are usually published
periodically and contain follow-up cases, which can be
expressed as a new data publishing model named periodical
data publishing. Suppose that the data holder previously had
collected an initial set of records D1 in period [t0, t1) and
published R1 as an anonymized version of D1. After collecting
a new set of records D2 during period [t1, t2) the attacker wants
to anonymize and publish D2 at time t2. D2 may or may not
contain some follow-up cases in D1. Let R2 denote the
anonymized version of D2. In general, the release Ri published
at ti is an anonymized version of Di (i≥1). Note that for an
original case x, the life span of its follow-up cases in subsequent
releases is not continuous. That is, a follow-up observed in Di

may disappear in Di+1 but show up again in some later release
Di+j, for j>1. This makes the periodical publishing scenario
distinct from existing scenarios in the literature. First, unlike
the situation in dynamic data publishing, Di is a new set of
collections, rather than updated from Di–1. Besides, the existence
of follow-up cases is different from the assumption for
continuous data publishing (ie, all cases in Di should be kept in
all subsequent releases Dj, for j>i). A comparison of the
proposed periodical data publishing with dynamic data
publishing and sequential data publishing is summarized in
Multimedia Appendix 1 (also see Textbox 1).

Textbox 1. Definition 1: QID-cover.

Consider the QID values, q1 and q2, of 2 cases. We say q1 covers q2, denoted by q1 q2, if for every attribute a in QID, a(q1) is equal to or more
generalized than a(q2), where a(q) denotes the value of q in attribute a.

Backward-Attack (B-Attack)
Backward-Attack (B-attack) focuses on excluding records from
the specific release by exploiting some previous ones (Textbox
2). Scenario I is an example, which occurs when the QID value
of the old case differs from the background learned by the
attacker. As the QID values would have been generalized in all

published releases, the only way by which B-attack can succeed
is when the QID value of old CaseID fails to cover that of the
current CaseID. More precisely, for every target v, if in any
previous release there exists an old CaseID iold corresponding
to the candidate CaseID set of v such that the QID value of iold

does not cover the QID value of v, then iold would be excluded
from the candidate CaseID set of v.

Textbox 2. Definition 2: Backward-attack.

Consider a target v to be inferred by the attacker and an anonymized release Ri. Let qv and CI denote the QID value and the candidate CaseID set of
v in Ri, respectively, and U be the set of records in all previous releases {R1, R2, ..., Ri–1} whose CaseID is in CI. The B-attack will occur if there

exists a record r in U such that the QID value of r, qr, does not cover qv. The set of these excludable records is denoted by B.
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Forward-Attack (F-Attack)
Analogous to B-attack, Forward-Attack (F-attack) occurs when
the QID value of the following CaseID differs from the
background learned by the attacker (Textbox 3). That is, the
QID value of a following CaseID in some subsequent releases

fails to cover that of the current CaseID. An example is shown
in Scenario II. More precisely, for every target v, if in any
subsequent release there exists a following CaseID inew

corresponding to the candidate CaseID set of v such that the
QID value of inew does not cover the QID value of v, then inew

would be excluded from the candidate CaseID set of v.

Textbox 3. Definition 3: Forward-attack.

Consider a target v and an anonymized release Ri. Let qv and CI denote the QID value and the candidate CaseID set of v in Ri, respectively, and U be
the set of records in all subsequent releases {Ri+1, Ri+2, ..., Rc} whose CaseID is in CI. The F-attack will occur if there exists a record r in U such that

the QID value of r, qr, does not cover qv. The set of these excludable records is denoted by F.

Latest-Attack (L-Attack)
This attack is illustrated in Scenario III. In this example, the
attacker knows that the event for the target (John) first appears
in Quarter 3. It follows that John’s case (CaseID) is definitely

absent in all previously published releases. In general, for every
target v whose CaseID is first present in some release known
by the attacker, Latest Attack (L-attack) would occur if the
candidate CaseID set of v contains some old CaseIDs appearing
in previous releases (Textbox 4).

Textbox 4. Definition 4: Latest-attack.

Consider a target v. Suppose the attacker learns that the CaseID of v first appears in an anonymized release Ri. Let CI be the candidate CaseID set of
v in Ri. The L-attack will occur if there exists any case in CI whose CaseID appears in some previous releases. The set of these excludable records is
denoted by L.

Privacy Model PPMS(k, θ*)-bounding
To prevent BFL-attacks, we propose a new privacy model called
periodical-publishing multisensitive (k, θ*)-bounding,
abbreviated as PPMS(k, θ*)-bounding (Textboxes 5 and 6).

Textbox 5. Definition 5: Confidence.

Let s be a sensitive value in SA and an anonymized release Ri. Given a target v with QID value qv, we define the probability that v has sensitive value
s as conf(v → s), which is equal to σs(g)/|g|, where g denotes the QID group in Ri in which v resides and σs(g) is the number of cases in g that contains
s.

Textbox 6. Definition 6: PPMS(k, θ*)-bounding.

Let S={s1, s2, ..., sm} be the set of all possible sensitive values in SA and θ*=(θ1, θ2, ..., θm) be the probability thresholds specified by the data holder,
where 0≤θj≤1, for 1≤j≤m. We say a series of anonymized releases R1, R2, ..., Rn satisfies PPMS(k, θ*)-bounding if each Ri, 1 ≤ i ≤ n, satisfies the
following:

1. For every individual v, the size of the candidate CaseID set CI of v in Ri excluding B, F, and L is no less than k, that is, |CI – (B∪F∪L)| ≥ k, and

2. The confidence to infer v having any sensitive value sj ∈ S is no larger than θj, that is, conf(v → sj) ≤ θj.

The privacy requirement of Definition 6(1) is to prevent record disclosure while Definition 6(2) is to prevent attribute disclosure. Our model adopts
nonuniform thresholds for different sensitive values because different values express different degrees of sensitivity in the real world. For example,
the disclosure of a patient with fever is far less sensitive than that of an individual with HIV.

Anonymization Algorithm

Overview
Our algorithm can be summarized as a greedy and clustering
approach to divide records into QID groups. Viewing each QID
group as a cluster, we adopted a clustering-based method [26]
to build QID groups, each of which starts from a randomly
chosen record and grows gradually by adding a solo record
exhibiting the best characteristic among all candidates. This

process repeats until the QID group satisfies the “k” requirement.
Finally, we generalize the QID values of all records within the
same cluster to the same value.

We adopted 2 metrics, information loss [26] (Textbox 7) and
privacy risk (PR) [9] (Textbox 8), to choose the best isolated
record. For each evolving QID group, the former favors the new
record contributing minimal impact to the data utility while the
latter quantifies the ratio of sensitive values within the QID
group to meet the privacy requirement in Definition 6(2).
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Textbox 7. Definition 7: Information loss.

Suppose the QID attributes can be separated to 2 different sets, numerical attributes {N1, N2, ..., Nm} and categorical attributes {C1, C2, ..., Cn}, and
each Ci is associated with a taxonomy tree Ti. Let g denote a QID group (or cluster). The information loss (IL) [26] of g is defined as follows:

where max(Ni) and min(Ni) denote the maximum and minimum values of attribute Ni in the whole data set, and max(Ni, g) and min(Ni, g) denote the
maximum and minimum values of attribute Ni in g. Notation |g| is the number of records in g, h(Cj) the height of the taxonomy tree Tj, and h(Cj, g)
is the height of the generalized value of Cj in g in taxonomy tree Tj.

To find a new record r to be included in g, we choose the one causing the least increase of information loss, which is measured by

ΔIL(g, r)=IL(g ∪ {r}) – IL(g) (2)

Then, the most feasible choice rbst is

rbst=argminr ΔIL(g, r) (3)

In addition, the inclusion of record r containing sensitive value s that appears in g would cause the ratio of s in g to be over θs. As we will derive in
Lemma 2, we have to keep the occurrence of s in g, denoted by σs(g), under a maximum threshold ηs(g) to prevent the confidence of inferring sensitive
value s in g from being larger than θs. We thus adopt the PRs introduced in [9].

When ηs(g∪{r}) ≥ σs(g∪{r}), a greater σs leads to a larger PRs. Therefore, Equation 4 favors the new record r whose sensitive values are relatively
rare in g. Because a record may contain more than 1 sensitive value, the PR caused by adding r into g can be defined as the summation of PRs over
all sensitive values.

Textbox 8. Definition 8: Privacy risk.

Let g denote a QID group (or cluster) during the execution of our anonymization algorithm. The PR [9] of adding a new record r into g is

where s ∈ Sr and Sr is the set of sensitive values contained in record r.

The value of summation of PRs may be zero, that is, all sensitive values in r are new to group g. An increment is thus added into PR(g, r) in Equation
5 to avoid zero PR. The smaller the PR caused by adding r into g, the more likely r will be chosen. If the inclusion of r makes the number of records
containing s in g more than the maximally allowed number, PR becomes infinite, so r will not be chosen. Finally, we refine ΔIL into ΔIL' as follows

ΔIL (g, r)=ΔIL(g, r) × PR(g, r) (6)

and the most feasible choice rbst is

rbst=argminr ΔIL'(g, r) (7)

Strategies Against BFL-Attacks
The NC-bounding strategy aims to maintain at least “k” new
CaseID records in each group after excluding all old CaseID
records. This is because all old CaseID records may become
excludable by exploiting the previous releases, such as B-attack
and L-attack. QID-covering is to generalize the QID value of
records to prevent them from being excluded by B-attack and
F-attack. NC-bounding allows the adversary to discover and
exclude records not belonging to the target, but enforces the
privacy requirement met by the remaining records.
QID-covering, by contrast, perplexes the adversary to find out
excludable records.

Strategy for L-Attack

Overview

Recall that L-attack occurs as the adversary knows the exact
published release to which the first ADE of the target v belongs.
Specifically, let this release be Ri. All old CaseIDs in target v’s
CI set in Ri refer to other targets, which are potentially excluded
by the attacker and so should be discounted from forming a
valid QID group, that is, the size of the QID group should be
at least k. For this reason, we use strategy NC-bounding.

Example 1

Consider the example in Scenario III. The target QID group
<Male, [30-35]> in Table 1 (quarter 3) contains 2 old CaseIDs
(ie, 7 and 8). We need to add 2 other records with new CaseIDs
to make Table 1 (quarter 3) invulnerable to L-attack. In this
case, all records in the QID group <Female, [30-35]> are new
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cases and the size of <Female, [30-35]> is larger than k + 2. We
can choose any 2 of them (eg, 16 and 17) into <Male, [30-35]>
and generalize the QID values accordingly. In general, to defend
against L-attack, the number of new CaseID records in every
QID group needs to be no less than k.

Strategy for B-Attack

Overview

Suppose the target v is in Ri. B-attack means the adversary can
link to R1, R2, ..., Ri–1 through the candidate CaseID set of v to
exclude those CaseIDs definitely not belonging to target v. Note
that all of the excludable CaseIDs in B-attack are old CaseIDs;
thus, the situation is the same as L-attack in which all of the old
CaseID records have a probability to be excluded. Therefore,
the NC-bounding strategy used to defend L-attack can also be

used to secure against B-attack. That is, the number of new
CaseID records in every QID group needs to be larger than or
equal to k in PPMS(k, θ*)-bounding. In this sense, L-attack is
similar to B-attack, because both of them exploit the previous
releases to find excludable CaseIDs. The main difference is that
the former needs to know whether the CaseID is old or not,
while the latter needs to compare the QID values to infer
whether the CaseID belongs to the target.

Example 2

Consider the example in Scenario I. Similar to the previous
example for L-attack, we have to include 2 records with new
CaseIDs, say 8 and 9, into the QID group containing old
CaseIDs 1 and 4 in Table 1 (quarter 2), that is, <ANY, [30-40]>,
and perform generalization accordingly. Table 2 (quarter 2)
shows the resulting anonymized table.

Table 2. The anonymized releases against BFL-attack for the example in Table 1.

DiseaseAgeSexQuarter and CaseID

2

Flu[30-35]Female13

Diabetes[30-35]Female14

Fever[30-35]Female15

Flu[30-40]ANY16

Fever[30-40]ANY17

Diabetes[30-40]ANY7

Fever[30-40]ANY8

HIV[30-40]ANY18

3

Flu[30-40]ANY1

HIV[30-40]ANY4

Diabetes[30-40]ANY7

Fever[30-40]ANY8

Flu[30-40]ANY9

Diabetes[30-35]Male10

HIV[30-35]Male11

Flu[30-35]Male12

Strategy for F-Attack

Overview

Suppose the target is in Ri. F-attack means that the adversary
can link to {Ri+1, Ri+2, ..., Rn} through the candidate CaseID set
of target and exclude the CaseIDs that are definitely not referring
to the target. Unlike BL-attacks, F-attack exploits the subsequent
releases. The NC-bounding strategy works for BL-attacks
because we can find out which CaseIDs are excludable in the
latest raw data set by using previous releases. Unfortunately,
because Ri+1, Ri+2, ..., Rn is not published yet, there is no way
to foresee which CaseIDs will be excluded in Ri by employing
F-attack, causing the NC-bounding strategy to be infeasible to
defend F-attack. By contrast, we know that the adversary can

exploit Ri to perform F-attack to exclude records in R1, R2, ...,
Ri–1. Therefore, the focus is to protect R1, R2, ..., Ri–1 from
F-attack through utilizing Ri. In other words, we have to consider
how to anonymize Di to Ri, making Ri non-exploitable for
performing F-attack on R1, R2, ..., Ri–1. By applying the same
strategy to all subsequent releases after Ri, that is, Ri+1, Ri+2, ...,
Rn, we protect Ri from F-attack.

Let OCi be the set of old CaseIDs present in at least one of the
previous releases R1, R2, ..., Ri–1. Consider a record r whose
CaseID is in OCi. Let O={r1, r2, ..., rp} refer to, as in previous
releases R1, R2, ..., Ri–1, the set of records that has the same
CaseID as that of r. To prevent F-attack, we have to ensure that
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∀a ∈ QID, a(r) a(ri), for 1 ≥ i ≥ p.

That is, the QID value of r should cover that of all r’s previous
cases.

Example 3

Consider the example in Scenario II. To prevent the table
published in Quarter 2 from F-attack, we have to generalize the
2 records, 7 and 8, in Quarter 3 to cover their corresponding
predecessors in Table 1 (quarter 2). This causes the QID value
of case 7 to become “ANY, [30-40]” and that of case 8 remains
unchanged. Because 7, 8, and 18 are in the same QID group,
we have to generalize their QID values into the same value, that
is, “ANY, [30-40]”. Finally, if L-attack is considered as well,
as demonstrated in Example 1, we have to include cases 16 and
17 and finally obtain the result in Table 2 (quarter 2).

Lemma 1 (Covering Transitivity)

Consider any 3 records, r1, r2, and r3, with the same CaseID in

3 anonymous releases Ri, Rj, and Rk, i<j<k. If qr1 qr2 and

qr2 qr3, then qr1 qr3.

Lemma 1 suggests an efficient approach for realizing QID
covering against F-attack. When we are anonymizing Di to Ri,
rather than checking all of the old CaseID records in the previous
releases, {R1, R2, ..., Ri–1}, we only have to search for, starting
from Ri–1 to R1, the latest release containing old CaseID records.
Once we find that release, we can stop checking the remaining
ones.

We next summarize how we can integrate these 2 strategies to
meet the privacy requirement in Definition 6(a).

Theorem 1

A release Ri anonymized by following strategies of NC-bounding
and QID covering satisfies the requirement of Definition 6(a).
For proof, please see Multimedia Appendix 2.

Strategy Against Attribute Disclosure

Overview

The privacy disclosure caused by BFL-attacks not only includes
record disclosure but also attribute disclosure. This is illustrated
with the following example.

Example 4

Consider the 3 consecutive quarters of the 3-anonymous release
in Table 1. Recall that in Scenario I the adversary can link to
Table 1 (quarter 3) through the QID value of Alice {Female,
32} and perceive the CI of Alice is {1, 4, 7}, inferring the
probability of Alice having any of {Flu, HIV, Diabetes} is 1/3.
After employing B-attack via Quarter 1, CI is reduced to {4,
7}, so the adversary’s confidence that Alice has HIV or diabetes
increases to 1/2. He/she can further exclude CaseID 7 from CI
by performing F-attack via Quarter 3 and be 100% sure that
Alice has HIV.

Now let us consider how to prevent the attribute disclosure
caused by BFL-attacks. The basic idea is to control the ratio of
sensitive values in each QID group to be no greater than the
specified threshold. Consider our proposed strategies against

BFL-attacks stated in the previous section. Let Sg={s1, s2, ...,
sp} denote the set of sensitive values in g and (θ1, θ2, ..., θp) the
corresponding threshold specified for Sg. We can derive the
following occurrence bound for each sensitive value within a
QID group g to meet the required threshold.

Lemma 2

For any sensitive value s∈Sg, the maximal number of cases in
g that contains s without breaking the associated threshold θs,
denoted by ηs(g), is

where |NC(g)| is the number of new CaseIDs in g. For proof,
please see Multimedia Appendix 3.

Algorithm PPMS-Anonymization
Multimedia Appendix 4 presents our algorithm
PPMS-Anonymization, which is composed of 3 stages. The
first stage aims at finding out old CaseID records and
generalizing their QID values in advance to achieve
QID-covering against F-attack. Because there may exist multiple
individual records [9] in ADE data sets, we follow the combined
record (or super record) concept in [9] to deal with this issue.
All records with the same CaseID are combined into a super
record before starting to form QID groups. Without this process,
the records with identical CaseIDs may be divided into different
QID groups, leading to more substantial deviation in the data
quality and perplexing the process of identifying duplicate
records while detecting ADR signals.

To find out old CaseID records in Di and generalize their QID
values in advance, we check previous releases Rpre from Ri–1 to
Ri–x (if i=1, Rpre=null). Because CaseID is used to trace an
event’s follow-ups, there is typically a life span of CaseID,
denoted by x. The generalization of old CaseID records aims at
achieving QID-covering against F-attack. Because of the
transitive property of QID value shown in Lemma 1, once we
discover an old CaseID record r' in any one of the previous
releases, we stop checking the remaining earlier releases by
using “break” (line 13 in Multimedia Appendix 4) to end the
“while loop” (line 8 in Multimedia Appendix 4).

The second stage shown in Multimedia Appendix 5 is activated
by calling the procedure Grouping, forming as many QID groups
satisfying PPMS(k, θ*)-bounding as possible. Each group begins
with a randomly chosen seed record, gradually growing by
adding a record with the least ΔIL' (defined in Equation 7) until
there are at least k new CaseID records to achieve the
NC-bounding strategy. The OldCaseNum function returns the
number of old CaseID records in a group. A new group then
begins with the new record most distinguished from the one
just added into the latest group. The above steps are repeated
until the remaining records fail to form a group, for example,
the number of new CaseID records is less than k or the ratio of
all sensitive values within the remaining records is higher than
the associated threshold (see line 10 in Multimedia Appendix
5).
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The last stage is activated by calling the function Generalization
(Multimedia Appendix 6), which processes the remaining
ungrouped records by assigning each of them into the most
feasible group that produces the minimal ΔIL' to sustain the
data utility and satisfy the privacy requirement. Next, the super
records will be split back to the original records (the group they
belong to remains unchanged). Finally, all records within the
same group are generalized into the same QID value to satisfy
PPMS(k, θ*)-bounding.

Algorithm PPMS+-Anonymization
In this section, we propose an improvement of our

PPMS-Anonymization algorithm: PPMS+-Anonymization. The
idea is to neglect the QID covering derived in Lemma 1.

Let r be a record in Di whose CaseID is c, qr the QID value of
r, and r1, r2, ..., rp be the older versions of r in the previous
releases R1, R2, ..., Ri–1. To prevent F-attack, we have to make

qr cover {qr1, qr2, ..., qrp}. Although we have exploited the
transitivity property in Lemma 1 to avoid checking out all of

the old CaseID records in releases R1, R2, ..., Ri–1, the QID value
suffers from accumulated generalization. That is, the later the
record r is published, the more information loss will be caused
by generalization. Fortunately, we can limit the accumulated
generalization by neglecting all subsequent QID coverings.

The fact is that some of the records protected by QID-covering
against F-attack still can be eliminated by BL-attacks. Following
the previous discussion, let r1 be the earliest record with
CaseID=c. Without loss of generality, assume r1 resides in R1.
Then clearly, c is a new case in R1, that is, c ∈ NC(R1), and will
be an old case in all subsequent releases, that is, c ∈ OC(Rj), 2
≤ j ≤ i–1. Remember that all old CaseIDs have the potential to

be excluded by BL-attacks. So even if we make qr cover {qr2,

qr3, ..., qri-1} to prevent {r2, r3, ..., ri-1} from being excluded by
F-attack, they can still be excluded by BL-attack. This means

that generalizing qr to cover {qr2, qr3, ..., qri-1} is useless. It

suffices to generalize qr to cover qr1. Figure 1 illustrates this
concept.

Figure 1. Idea illustration of neglecting subsequent coverings.

Multimedia Appendix 7 shows PPMS+-Anonymization, the
improved version of PPMS-Anonymization in Multimedia
Appendix 4 (lines 5-18). For the given record r, the modified
version seeks Ri–x to Ri–1 to find the earliest release in which r
occurs. Once we find out the earliest old CaseID record r', we
stop checking the remaining releases.

Algorithm PPMS++-Anonymization

Overview

In Multimedia Appendix 5, the procedure Grouping works by
picking and adding the record with the least ΔIL' into the group,
overlooking whether the record is a new or an old case in D'.
We observed that this mixture of new and old cases to form a
QID group would paralyze the discrimination of ΔIL in choosing
good candidate records, that is, Equation 7, and cause severe
information loss.

Suppose an old CaseID record r is picked as the seed to start a
new QID group g in the procedure Grouping. As an old case,
the QID value of r has already been generalized to cover its

earliest clone record r' in some previous release, meaning that

qr is as coarser as the group in which r' resides. Therefore, if
there exist some isolated records whose QID values are covered

by qr, then adding these records into g yields no increase in
information loss (ie, ΔIL=0). Although this does not affect the
information loss of group g, it does increase the information
loss of the selected record. And in this situation, the Grouping
procedure will randomly choose one from those isolated records,
disregarding different degrees of information loss brought to
these isolated records.

Example 5

Consider Table 3. We assume the age attribute has been
discretized following the taxonomy tree in Multimedia Appendix
8. The first 3 records form a group starting with the old case
record 1, while records 4, 5, and 6 are new cases. Adding any
of the 3 isolated records into this group yields no change in the
group information loss because all of their QID values are
covered by record 1. This makes no distinction in choosing the
isolated records, but record 6 is the best choice, which exhibits
the least data distortion after QID generalization.
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Table 3. An illustration of the problem of QID grouping starting with an old case.

DiseaseAgeSexQID group and isolated records

A forming QID group

FluNonadultANYCaseID 1

FluNonadultANYCaseID 2

FeverNonadultANYCaseID 3

Isolated records

FeverNewbornFemaleCaseID 4

FluPreschoolMaleCaseID 5

DiabetesAdolescentFemaleCaseID 6

To solve this problem, we avoid mixing new CaseID and old
CaseID records in forming QID groups. Instead, we separate
old CaseID records from D  before starting the procedure
Grouping, forming possible QID groups composed of only new
CaseID records. The set of old CaseID records and the remaining
new CaseID records are later dealt with by the function
Generalization. Multimedia Appendix 9 describes the
modification of Multimedia Appendix 4 to realize

PPMS++-Anonymization, an improvement of

PPMS+-Anonymization by grouping new cases first.

Results

Overview
We designed a series of experiments to examine the
effectiveness of our new method in anonymizing a series of
periodically released SRS data sets. The proposed
PPMS-Anonymization algorithm and its extensions,

PPMS+-Anonymization and PPMS++-Anonymization, were
compared with method MS-Anonymization. In this section, we
describe the details of each experiment, including the
experimental results and our observations.

Experimental Setup
The data used in our experiment consist of 32 quarterly
collections from FAERS, including 2004Q1 to 2011Q4. We
used attributes {Weight, Age, Gender} as QID, where Weight
is numerical while the other 2 are categorical, with drug
indication (INDI_PT) and drug reaction (PT) as SA. To view
Age as categorical, we adopted the age taxonomy defined in
MeSH [27] (Multimedia Appendix 8). Moreover, we discarded
records that have missing values in either QID or SA attributes.

We respectively performed MS-Anonymization [9] and 3
versions of PPMS-Anonymization, including the original version
of PPMS-Anonymization (PPMS), the improved version by

incorporating neglecting subsequent coverings (PPMS+), and
the advanced version by employing neglecting subsequent

coverings and grouping with new cases (PPMS++), to anonymize
the selected FAERS data sets, and computed the information
loss of 2 series of anonymized data sets. We then imitated the
behavior of the adversary, employing BFL-attacks to find out
all excludable CaseIDs in 2 series of anonymized data sets.

After that, we removed all excludable records, and evaluated
the risk of record and attribute disclosure of 2 series of
anonymized data sets.

We examined 2 aspects of anonymized data sets: information
loss and PR. The information loss of an anonymized data set is
measured by normalized information loss (NIL), meaning the
average IL (using Equation 1) for each attribute of each record.

where R is an anonymized data set, g is a QID-group,
GroupNum(R) denotes the number of QID groups in R, and
|QID| is the number of attributes in QID. This yields NIL ranging
in [0-1]; the larger the NIL is, the more serious is the information
loss.

We also used the 2 criteria in [9] to measure the privacy
disclosure, dangerous identity ratio (DIR) and dangerous
sensitivity ratio (DSR); the former measures the ratio of QID
groups that violate the privacy requirement for protecting record
identity, while the latter measures the ratio of QID groups that
explore sensitive values.

DIR(R)=DIGNum(R)/GroupNum(R) (10)

DSR(R)=DSGNum(R)/GroupNum(R) (11)

If the number of records in a QID group is less than the threshold
k, we say this group is a dangerous identity group (DIG).
DIGNum(R) denotes the number of DIGs in the anonymized
data set R. A QID group is a dangerous sensitivity group (DSG)
if it contains at least one unsafe sensitive value whose frequency
is higher than the associated threshold. DSGNum(R) denotes
the number of DSGs in R.

To observe the influence of 2 anonymization methods on the
strength of ADR signals, we chose from FDA MedWatch [28]
all significant ADR rules involving patient demographics such
as age or gender conditions and causing withdrawal or warning
of the drug. A detailed description of these ADR rules is
presented in Table 4. We used the proportional reporting ratio
(PRR) [29] description (Multimedia Appendix 10) to measure
the strength of ADR signals, which is used by the UK Yellow
Card database and UK Medicines and Healthcare products
Regulatory Agency (MHRA).
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Table 4. Selected adverse drug reaction rules from Food and Drug Administration MedWatch.

Withdrawn or warning yearMarked yearDemographic conditionDrug name and adverse reaction

Avandia

20101999Age>18• Myocardial infarction
• Death
• Cerebrovascular accident

Tysabri

20052004Age>18• Progressive multifocal leukoencephalopathy

Zelnorm

20072002Sex=Female• Cerebrovascular accident

Warfarin

20141940Age>60• Myocardial infarction

Revatio

20142008Age>18• Death

We considered 3 ways of setting θ*. First, we applied a uniform
setting on θ*, that is, all confidence thresholds of symptoms
were set to the same value (0.2 or 0.4). Then, we used a
frequency-based method to determine the threshold of each
symptom, which is based on the following idea: The more
frequently the symptom occurs, the less sensitive it is. For this
purpose, we calculated the average count of symptoms m and
the corresponding SD. Then we set the confidence thresholds
of symptoms whose occurrence is less than m – SD, between
m – SD and m + SD, and higher than m + SD to 0.2, 0.6, and 1,
respectively. Last, we adopted a level-wise confidence setting,
which is similar to the frequency setting but conforming to
well-recognized medical sensitive terms. All symptoms were
classified into 3 levels: high sensitive (θ=0.2), low sensitive
(θ=0.4), and nonsensitive (θ=1.0). For this purpose, we followed
the setting in [9], choosing the group of symptoms related to
AIDS: “Acquired immunodeficiency syndromes” in MedDRA
(Medical Dictionary for Regulatory Activities) as high sensitive,
2 groups called “Coughing and associated symptoms” and
“Allergies to foods, food additives, drugs and other chemicals”
as nonsensitive, and those not belonging to the above groups
as low sensitive.

Results on Anonymization Quality
This section will report the results on information loss and
privacy disclosure of MS-Anonymization and our proposed 3
versions of PPMS-Anonymization under 3 different settings of
θ*.

Uniform Confidence Setting
In this evaluation, we set a uniform threshold (θ*=0.2 and 0.4)
to each symptom, that is, the sensitivity of each symptom is the
same, and 2 settings of k (k=5, 10).

Information Loss

First, we evaluated the information loss. As per the results
shown in Figure 2A-D, the general trend is when θ* is lower,
the information loss is higher. It is because more records with
different sensitive values have to be grouped together to form
a valid QID group, so more generalization has to be performed.

Among the 3 versions of PPMS-Anonymization, PPMS++ leads

the rank, followed by PPMS+ and PPMS, with average

improvements of 51% and 59% for PPMS++ over PPMS+ and
PPMS, respectively, as θ*=0.2 and k=5, and reaching 78% and
82% for θ*=0.4 and k=10. We noticed that as θ*=0.2, some
anonymized data sets fail to meet the privacy requirement, that
is, 2006Q1, 2006Q2, 2007Q1, and 2010Q3. A further inspection
revealed that these data sets contain some highly frequent
symptoms. For example, there are 20,467 cases (without missing
values) in 2007Q1, and 3877 (18.94%) of them contain
“Diabetes Mellitus Non-Insulin-Dependent”. All methods fail
in this data set because the minimum bound of that symptom
should be 21.00% (3877/18,462, where 18,462 is the number
of new cases), so the privacy requirement of 20% cannot be
satisfied. In the data set 2010Q3, there are 12,727/56,550
(22.51%) cases containing “Smoking Cessation Therapy,” so
no method can meet the privacy requirement. (In 2006Q1 and
2006Q2, the symptom “Myocardial Infarction” is frequent.) In
general, the uniform threshold setting is not suitable, especially
when some sensitive values are persistent.
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Figure 2. Evaluation on information loss and privacy disclosure for Federal Drug Administration Adverse Event Reporting System (FAERS) data
anonymized by different methods with uniform setting of θ*. DIR: dangerous identity ratio, DSG: dangerous sensitivity group, NIL: normalized
information loss, PPMS: periodical-publishing multisensitive.

Record Disclosure

Next, we compared the record disclosure caused by each
method. The results are shown in Figure 2E-H.
MS-Anonymization exhibits serious record disclosure. The
average DIRs for k=5 and 10 are 0.61 and 0.8, respectively,
meaning over half of QID groups are DIGs. Besides, the DIR
of MS-Anonymization increases as k is larger. This is because
a larger k leads to less number of groups and so a higher ratio
of groups containing old cases, increasing the risk of QID groups
becoming dangerous. It is noteworthy that the DIRs of 3 versions
of PPMS-Anonymization are all 0. The reason is that our method
guarantees free of record disclosure and the DIR metric is not
dependent on different settings of θ*.

Attribute Disclosure

Finally, we present the results on the DSR metric. The results
are shown in Figure 2I and J. MS-Anonymization yields very
high DSRs, 0.6 on average, for lower θ* values (θ=0.2). This
is because a lower θ is more likely to cause the number of
symptoms close to its maximal allowed number in the QID
groups, especially for high-frequent symptoms. Thus, the action
of excluding records is more likely to cause the violation of θ*

and so leads to relatively higher DSRs, such as 2006Q1, 2006Q2,
2007Q1, and 2010Q3. For example, the maximal symptom
frequencies in 2006Q4 and 2010Q1 are only 8.1% and 9.1%,
respectively, relatively smaller than θ*=0.2 or 0.4, so the DSRs
of these 2 releases are relatively lower than other releases. This
again demonstrates that the uniform threshold setting is not
feasible. The setting of k also influences the DSRs yielded by
MS-Anonymization. A larger k not only causes higher maximal
allowed numbers of symptoms in QID groups but also reduces
the change in the ratio of symptoms when some records are
excluded. Compared with MS-Anonymization, all 3 versions
of PPMS-Anonymization yield zero DSR value in all data sets,
except 2006Q1, 2006Q2, and 2007Q, showing our method can
protect data from attribute disclosure caused by BFL-attacks.

Frequency-Based Confidence Setting
Two different settings of k (5 or 10) are considered. The results
on DIR are omitted because they are similar to those generated
by uniform setting, that is, MS-Anonymization generates large
DIRs while our PPMS-Anonymization yields zero DIR.
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Information Loss

As shown in Figure 3A and B, the NILs generated by each
method are better than those under the uniform setting. It is not
surprising because this more flexible setting easily allows the

methods to choose the closer new record to be added during
QID group construction. Similar to those observed for the

uniform setting, PPMS++ significantly outperforms PPMS+ and
PPMS, yielding NILs less than 0.05 for k =5 and 0.15 for k =10.

Figure 3. Evaluation on information loss and privacy disclosure for Federal Drug Administration Adverse Event Reporting System (FAERS) data
anonymized by different methods with frequency-based setting of θ*. DSR: dangerous sensitivity ratio, NIL: normalized information loss, PPMS:
periodical-publishing multisensitive.

Attribute Disclosure

As shown in Figure 3C and D, all data sets anonymized by
PPMS-Anonymization are free of attribute disclosure (ie, zero
DSR). The DSRs of MS-Anonymization are very small compared
with those in previous settings. It is because those DSGs in the
previous experiments are caused by high frequent symptoms,
whose thresholds, however, are set to 1 in this experiment. In
FAERS data, there are more than 20,000 different symptoms.
It is hard to determine a suitable threshold for each of them
without background knowledge. Therefore, the frequency-based
method is a convenient and reasonable way to deal with this

issue. This also demonstrates the value of allowing nonuniform
settings in our model.

Level-Wise Confidence Setting
Again, 2 different k (5 and 10) settings are considered, and for
the same reason, we omit the results on DIR.

Information Loss

Figure 4A and B shows that although PPMS and PPMS+ yield

more information loss than that by MS-Anonymization, PPMS++

behaves comparably to MS-Anonymization. The NILs are very
similar to those under the frequency-based setting.

Figure 4. Evaluation on information loss and privacy disclosure for Federal Drug Administration Adverse Event Reporting System (FAERS) data
anonymized by different methods with level-wise setting of θ*. DSR: dangerous sensitivity ratio, NIL: normalized information loss, PPMS:
periodical-publishing multisensitive.

Attribute Disclosure

The results in Figure 4C and D show that all 3 versions of
PPMS-Anonymization cause no attribute disclosure (with zero
DSRs), but large DSRs are observed for MS-Anonymization.
We can see that the DSRs of MS-Anonymization in some
quarters are relatively higher, just similar to the results in Figure
2K and L and Figure 3C and D.

Influence on ADR Signals

Selected Signals
In this experiment, we inspected variation on the strength of
observed ADR signals shown in Table 4 between before and
after anonymization. Because some signals exhibit similar
performance, we only show 3 representatives with different
demographic conditions, that is, the signals related to Avandia,
Zelnorm, and Warfarin, which are shown as follows:

R1: Avandia, Age>18 → Myocardial infarction

R2: Zelnorm, Sex=Female → Cerebrovascular accident

JMIR Med Inform 2021 | vol. 9 | iss. 10 | e28752 | p. 14https://medinform.jmir.org/2021/10/e28752
(page number not for citation purposes)

Wang & LinJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


R3: Warfarin, Age>60 → Myocardial infarction

We calculated its occurrences, PRRs, and compared the values
with the original values for each signal. We omit the results for
uniform setting θ*=0.4 and level-wise setting because similar
results were observed for uniform setting θ*=0.2 and
frequency-based setting, respectively.

To highlight the impact of anonymization on rare events, we
set PRR=0 when a<3, where a denotes the number of reports

that satisfy the specific ADR rule. The threshold a≥3 follows
Evans et al [29], who investigated a group of newly marketed
drugs and suggested that the minimum criteria for a signal are
a≥3 and PRR>2.

The original count and PRR of these 3 rules are shown in Figure
5. Rule R1 is a signal with an extremely high occurrence and
significant strength, rule R2 is the one with the relatively small
occurrence and medium strength, while R3 represents medium
occurrence and relatively little strength.

Figure 5. The original counts and proportional reporting ratios (PRRs) of rules R1, R2, and R3.

Signal Occurrence Variation
We first evaluated the variation of signal occurrence (count)
caused by anonymization. The results are shown in Figure 6.
Notice that there is no result for several quarters (eg, 2007Q1,
2010Q3) under the uniform setting. The reason is the same as
that for information loss. Generally, the variation yielded by
frequency-based setting is much less than that by uniform
setting, and a larger k causes more missing counts. For signals
with extremely high occurrence like R1, the variation can be
substantial; for example, it reaches 180 for PPMS with k=10

and uniform confidence setting. In the same case, our PPMS++

exhibits outstanding performance, only causing variation of less
than 10. We also note that some quarters are suffering significant

count variation for rule R2 (Figure 6E-H). This is because the
taxonomy of Gender is relatively flat, composed of only 2 levels.
Once the gender of a report satisfying this rule is generalized,
it will become “Any” and increase the missing count of this
rule. For example, in Figure 6F, when k=10, 7 of 11 counts are
missing in 2007Q2 for PPMS. In fact, when k=10, the ratio of
reports with Gender=Any is at least 25% and 45% from 2010Q4

to 2011Q4 for PPMS+ and PPMS, respectively, which causes
serious bias on the count of ADR rule. By contrast, as shown
in Figure 6G and H, the frequency-based setting exhibits lower

missing count. The overall situation shows that PPMS++

significantly outperforms PPMS and PPMS+, and demonstrates
comparable results with MS-Anonymization.
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Figure 6. Variations in signal count for different anonymization methods under uniform and frequency-based settings of θ*. PPMS: periodical-publishing
multisensitive.

Signal Strength Variation
Figure 7 shows the results on the PRR difference. Similar to
that observed for occurrence variation, the frequency-based
setting yields more negligible PRR difference than that by
uniform setting. For rule R1 with enormous strength, the PRR
variation is significantly higher than those for rules R2 and R3.

The variations caused by PPMS and PPMS+ fluctuate seriously,
sometimes much higher, reaching 5 for k=10 and uniform setting

of θ*; PPMS++ exhibits relatively small variation under the
same situation. For rule R2 with attributes of flat taxonomy, we

observe a similar phenomenon. Specifically, a sharply significant
variation, reaching –14 (Figure 7E, F, and H), is observed in

2007Q4 for PPMS and PPMS+. This is because the a value for
computing PRR is less than 3. We observe that the original
count of this rule in 2007Q4 (Figure 5B) is 3 and its original
PRR (Figure 5E) is 13.39. This means that this rule is a rare
event with high strength. Any missing count of this rule causes
value a to be less than 3 and the PRR will become 0, invalidating
this rule. This situation demonstrates the impact of
generalization on rare but significant ADR rule, especially for
attributes with shallow generalization levels such as Gender,
which will hinder or delay the discovery of ADR signals.
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Figure 7. Variations in signal strength (proportional reporting ratio [PRR]) for different anonymization methods under uniform and frequency-based
settings of θ*. PPMS: periodical-publishing multisensitive.

Discussion

Principal Results
In this paper, we have introduced the periodical publishing
scenario usually adopted for publishing SRS data. We have
presented 3 kinds of attacks, BFL-attacks, which exploit the
CaseID of records to link the same cases in the series of releases
to crack the anonymization by excluding the nontargets to
improve the confidence to hit the record target or the sensitive
value.

To prevent the record and attribute disclosure caused by
BFL-attacks, we have presented a new model called PPMS(k,
θ*)-bounding. We have also proposed an algorithm called
PPMS-Anonymization to anonymize the raw SRS data set
achieving the privacy requirement of PPMS(k, θ*)-bounding.
Two enhancements of PPMS-Anonymization,

PPMS+-Anonymization and PPMS++-Anonymization, have also
been presented.

To evaluate the performance of our method, we conducted
several experiments with different settings on privacy threshold,
from 3 various aspects of evaluation, including information

loss, PR, and bias on signal strength. The results showed that
our proposed anonymization method, especially

PPMS++-Anonymization, can effectively prevent BFL-attacks
caused by follow-up cases across a series of SRS data sets,
guarantee the privacy requirement with controlled loss of data
utility, and maintain the usability of anonymized SRS data set
for ADR detection, especially for frequency-based threshold
setting and level-wise setting.

Limitations
Fostering the development of new detection methods and early
discovery of suspected ADR signals is the main driving force
for many organizations such as the US FDA to release their
SRS data sets to the public. By contrast, evaluating each
individual case safety report (ICSR) is necessary for
investigating hypothetical signals generated from the SRS data.
Unfortunately, due to national privacy regulations such as the
Health Insurance Portability and Accountability Act (HIPPA)
Privacy Rule [30], some specified individual identifiers and
narrative were removed from the published FAERS data
(following the safe harbor method in Section 164.514 [30]). A
recent work [31] showed that the absence of personal details
would significantly affect the assessment of each ICSR. In this
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context, the published SRS data alone cannot fulfill the purpose
of ICSR evaluation. We endeavor to develop an effective
privacy protection method for the partially deidentified SRS
data (eg, FAERS) without sacrificing the data utility for
aggregative disproportionality analysis of suspected ADR
signals. How to protect the sharing and access of raw SRS data
containing all individually identifiable health information is
beyond the scope of this study. Instead, the SRS data
organization should provide advanced security schemes,
including technical or nontechnical [32], to ensure the
confidentiality, integrity, and availability of the protected health
information for authorized users, as enforced by the HIPPA
Security Rule [33], which requires a good threat analysis
modeling [34] before the system design.

Comparison With Prior Work
This paper is an extended version of our paper presented at
IEEE ICDE’17 [35]. Some new material has been added to
clarify the design of the proposed PPMS-Anonymization and
its improvement (PPMS+-Anonymization), including the design
of the function Generalization (Multimedia Appendix 6),
Multimedia Appendix 7, and Figure 1. A significantly more
efficient version, PPMS++-Anonymization, is proposed. A new
way of confidence threshold setting, level-wise setting, was
evaluated. Additional more ADR signals were inspected. All
experiments were reconducted to include the new version
(PPMS++-Anonymization). Overall, PPMS++-Anonymization
ensures zero PR on record and attribute linkage, while exhibits
51%-78% and 59%-82% improvements on information loss
over PPMS+-Anonymization and PPMS-Anonymization,
respectively, and significantly reduces the bias of ADR signal.
For example, under the frequency setting, the maximum count
bias and PRR bias were reduced from 56 to 3 and 13.4 to 0.1,
respectively.

Based on our work [35], Huang et al [36] proposed 2 new
attacks, MD-attack (Medicine Discontinuation attack) and
SS-attack (Substantial Symptom attack). MD-attack assumes
the attacker knew when the target stopped his/her treatment,

that is, the quarter in which the target’s follow-up record
discontinues, while SS-attack regards a QID group with a
substantial amount of adverse reactions risky. Both types of
attacks, however, suffer some actuality problems. First, the
authors overlooked the phenomenon that an individual’s
follow-up records may discontinue for some quarters and
reappear in the next quarter. This life span discontinuity of
follow-up cases is unpredictable and will thwart the justness of
MD-attack and the anonymization algorithm. The problem for
SS-attack is whether knowing someone having many adverse
reactions does cause a privacy breach, which needs more
convincing evidence. Besides, SS-attack is not related to
periodical releases of SRS data.

Conclusions
In summary, our PPMS(k, θ*)-bounding and
PPMS-Anonymization can anonymize SRS data sets in the
periodical data publishing scenario, preventing the series of
releases from the disclosure of sensitive personal information
caused by BFL-attacks.

The BFL-attacks caused by the existence of CaseID in SRS data
is not a particular case in health data. Other types of medical
data contain similar features, for example, electronic health
records, a digital version of a patient’s paper chart composed
of more private information than SRS data. As far as we know,
it contains an attribute called patient ID which is similar to
CaseID and so may be vulnerable to BFL-attacks. We will study
this shortly. Some more challenging extensions of this topic
include the study of incremental anonymization of data sets
published in a cloud environment [37,38] and handling a large
amount of missing values in SRS data [39]. Recently, the
emerging differential privacy [40-42] has been widely
recognized as a more rigorous privacy protection method [43].
Our recent work [44] on integrating differential privacy to
anonymize a single release of SRS data has shown promising
results. We are currently synergizing the differential privacy to
our PPMS(k, θ*)-bounding to yield a better protection scheme.
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