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Abstract

Background: In pulse signal analysis and identification, time domain and time frequency domain analysis methods can obtain
interpretable structured data and build classification models using traditional machine learning methods. Unstructured data, such
as pulse signals, contain rich information about the state of the cardiovascular system, and local features of unstructured data can
be extracted and classified using deep learning.

Objective: The objective of this paper was to comprehensively use machine learning and deep learning classification methods
to fully exploit the information about pulse signals.

Methods: Structured data were obtained by using time domain and time frequency domain analysis methods. A classification
model was built using a support vector machine (SVM), a deep convolutional neural network (DCNN) kernel was used to extract
local features of the unstructured data, and the stacking method was used to fuse the above classification results for decision
making.

Results: The highest average accuracy of 0.7914 was obtained using only a single classifier, while the average accuracy obtained
using the ensemble learning approach was 0.8330.

Conclusions: Ensemble learning can effectively use information from structured and unstructured data to improve classification
accuracy through decision-level fusion. This study provides a new idea and method for pulse signal classification, which is of
practical value for pulse diagnosis objectification.

(JMIR Med Inform 2021;9(10):e28039) doi: 10.2196/28039
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Introduction

A pulse signal contains a large amount of pathological and
physiological information [1,2], and the signal characteristics
are closely related to diseases (hypertension, atherosclerosis,
etc), especially cardiovascular disease (CVD) and physiological

parameters (pulse wave velocity, blood pressure, etc) [3,4].
Therefore, pulse analysis is widely used for cardiovascular
function assessment and noninvasive early diagnosis of CVD
and related complications [5]. It is a convenient, noninvasive,
and effective diagnostic method that is widely used in traditional
Chinese medicine (TCM). In recent years, smart wearable
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devices have become increasingly popular, allowing individuals
to monitor their own pulse status. However, the important
information contained in the pulse signal requires a highly
experienced TCM practitioner to make a diagnosis, which is
highly variable [6]. In Chinese medicine, pulses are classified
into 28 single-pulse types based on 4 major elements: pulse
depth, pulse rate, pulse shape, and pulse intensity [6,7]. A
patient's pulse may be a combination of several single-pulse
types, that is, a compound pulse [8], and a compound pulse may
carry more physiological information and be more difficult to
distinguish and identify. For example, a slippery pulse and a
flat pulse are the main pulse types in healthy people; a thready
pulse may be due to overexertion and deficiency of qi and blood;
a stringy pulse may be related to liver disorders; a thready,
slippery pulse may be related to colds; a thready, stringy pulse
may be related to kidney disorders; and a stringy, slippery pulse
may be related to coughing, dizziness, and weakness.

Practitioners of Chinese medicine make a diagnosis by touching
the patient's wrist and feeling the patient's pulse with their
fingers for several minutes to determine the patient's pulse type
through experience and make medical decisions accordingly.

Using deep learning or machine learning methods, pulse types
can be better classified to help medical practitioners with
diagnosis. For individuals, without medical background and
experience, the pulse types obtained can also be collected and
analyzed by wearable devices to obtain a preliminary
understanding of their physical condition and can better prevent
CVD. There is already a good deal of scholarly research related
to the classification of pulse types. Xu et al [9] used Lempel-Ziv
complexity analysis to detect arrhythmic pulses. This approach
was applied on 140 clinic pulses for detecting 7 pulse patterns.
Zhang et al [10] referred to the edit distance with real penalty
(ERP) and the progress in k-nearest-neighbor (KNN) classifiers
using an ERP-based KNN classifier on the classification of
pulse waveforms. Garmaev et al [11] used cluster analysis of
the time parameters of a pulse signal to classify pulses. After
clustering, the data were evaluated using the nonparametric
Kruskel-Wallis test. Li et al [12] used five CVD and

complications extracted from medical records as classification
criteria. This convolutional neural network (CNN) could extract
stronger features for pulse signals. Huang et al [13] developed
a high-dimensional pulse classification method to improve pulse
diagnosis accuracy. They extracted 71 pulse features from the
time, spatial, and frequency domains to cover as much pulse
information as possible.

However, most of the above methods extract structured data of
pulse signals and are suitable for traditional machine learning
models; however, unstructured data, such as pulse signals,
contain rich information. Taking advantage of different pulse
signal analysis methods and combining machine learning and
deep learning methods to build pulse signals for classification
models can help TCM practitioners make better pulse diagnoses
and help smart wearable devices more accurately assess the
human health status.

The objective of this paper was to comprehensively use machine
learning and deep learning classification methods to fully exploit
the information about pulse signals.

Methods

System Flow
A deep convolutional neural network (DCNN)- and SVM-based
stacking network (DSSN) selected suitable algorithms to build
classification models based on the structured and unstructured
data extracted by different analysis methods and integrated them
using the stacking method; the overall architecture is shown in
Figure 1. First, the pulse signal was preprocessed to extract the
feature parameters in time and frequency domains, and the data
were reorganized for the pulse signal to prepare the data for the
training of the base learners. An SVM and a DCNN were
selected as the base learners to build the classification models
corresponding to the three analysis methods, and the output
results were combined together to form a new data set. Finally,
the newly generated data set was used to train the meta-learner
so as to build a DSSN pulse signal integrated classification
model.
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Figure 1. DSSN flowchart. During data preprocessing, time and frequency domain features of the pulse signal were extracted, and all pulse data were
organized to the same length. Time and frequency domain features were separately trained by an SVM to obtain prediction results. One-dimensional
data using the DCNN were used to obtain prediction results. Finally, the pulse-type prediction results of the three methods were integrated by an FCNN.
SVM: support vector machine; DCNN: deep convolutional neural network; DSSN: DCNN- and SVM-based stacking network; FCNN: fully connected
neural network.

Data
The experimental data in this paper were provided by the Four
Diagnostic Information Comprehensive Research Laboratory
of Shanghai University of Traditional Chinese Medicine, which
included 7 types of pulse data (4 single pulses and 3 compound
pulses), with a total sample size of 1812 cases; the specific pulse

types and numbers are shown in Table 1. The acquisition device
was a Z-BOX I pulse acquisition instrument with a sampling
frequency of 720 Hz to acquire the pulse signals at the optimal
pulse-taking pressure with an acquisition time of 60 s. Two or
more TCM experts classified the collected pulse signals using
their experience, and the pulse type was determined only when
the majority of the experts agreed on the classification.

JMIR Med Inform 2021 | vol. 9 | iss. 10 | e28039 | p. 3https://medinform.jmir.org/2021/10/e28039
(page number not for citation purposes)

Yan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Types of pulse signals and data size. There were 4 single pulses and 3 compound pulses. A total of 1812 cases were collected. After balancing
the sample data, the total number of samples reached 4355.

Balanced sample size (n)Sample size (n)Name of pulse typePulse type code

637221Slippery pulse1

64996Flat pulse2

60792Thready pulse3

630657Stringy pulse4

583202Thready, slippery pulse5

614325Thready, stringy pulse6

635219Stringy, slippery pulse7

The experimental data were first preprocessed, the samples were
filtered and noise reduced, single-cycle segmentation of the
pulse signal was performed, and the average single cycle was
taken to represent the pulse signal; seven types of pulse data
are shown in Figure 2. These data set also suffered from sample
imbalance, and the synthetic minority oversampling technique
(SMOTE) algorithm was used to equalize the data set. For data
sets with sample imbalance, the basic approaches are

oversampling and downsampling (ie, copying a small number
of samples and removing a larger number of samples), but both
pose problems: copying samples can easily make the model
overfit, while removing samples can lead to a smaller number
of samples. To solve such problems, the sampling SMOTE
algorithm, which synthesizes new data, can compensate for the
sample imbalance, while trying to avoid overfitting [14].

Figure 2. Seven types of pulse. Single pulses had four types: slippery, flat, thready, and stringy. Compound pulses had three types: thready slippery,
thready stringy, and stringy slippery.

The number of samples in the equalized data set was 4355 in
total after removing samples with failed acquisition and obvious
errors in the waveform in the data set. The number of samples
in each category is shown in Table 1. The SMOTE parameters
were set as k = 5; sample multiplicity N = 7 for the flat, thready

pulse; sample multiplicity N = 3 for the slippery, thready and
slippery, and stringy and slippery pulses; and sample multiplicity
N = 2 for the thready, stringy pulse.
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Time Domain Feature Extraction
The time domain analysis method focuses on the waveform of
the pulse signal in a typical cycle [15], defining the characteristic
points with physiological and pathological significance and then
extracting the corresponding characteristic parameters. In a
single-cycle pulse signal, the peak and trough points of the

waveform have certain physiological significance, and there
are seven main feature points, including the start and end points,
as shown in the marked A-G in Figure 3. The reference points
and significance of the pulse waveform are shown in Table 2.
The time domain feature extraction could be automatically
performed using the algorithm of signal processing.

Figure 3. Basic information about a single-cycle pulse signal. The amplitude information about the pulse signal is represented vertically, and the time
information is represented horizontally.

Table 2. Physiological significance of pulse signal reference points. These points include the start and end points of the pulse signal, as well as the
extreme points of the pulse signal, all of which reflect to some extent the physiological information about the human body.

MeaningReference point

Systolic waveform

Start pointA

Main wave crestB

Main wave gapC

Rebattling the former wave crestD

Diastolic waveform

Descending the middle gorgeE

Rebattling the waveF

End pointG

In this paper, a total of 23 time domain features of the pulse
signal were extracted, including 1 slope feature, 2 area features,
6 amplitude features, 6 time features, and 8 proportional
features; the feature parameters and their specific meanings are
shown in Table 3. When extracting the pulse waveform
parameters, the ratio between different amplitudes was added

as a feature in order to better reflect the waveform
characteristics, such as h2/h1 and h4/h1, because of the large
differences between different pulse waveforms. Similarly, the
ratio between time parameters was increased to better distinguish
between different types of pulse signals.
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Table 3. Time domain features of the pulse signal. These features include 1 slope feature, 2 area features, 6 magnitude features, 6 time features, and 8
proportional features.

Feature nameFeature parameterFeature type

Main wave slopekSlope

Systolic areaA sArea

Diastolic areaA d

Main wave amplitudeh 1Magnitude

Main wave gorge amplitudeh 2

Wave front dicrotic amplitudeh 3

Dicrotic notch amplitudeh 4

Dicrotic wave amplitudeh 5

1/3 pulse widthw

Main wave phaset 1Time

Main wave gorge phaset 2

Wave front dicrotic phaset 3

Dicrotic notch phaset 4

Dicrotic wave phaset 5

Pulse cycleT

Time ratiot1/TProportion

Time ratiot1/t4

Time ratiot5/t4

Pulse width cycle ratiow/T

Main wave gorge main Wave amplitude ratioh2/h1

Dicrotic notch main wave amplitude ratioh4/h1

Dicrotic wave main wave amplitude ratioh5/h1

Systolic:diastolic area ratioAs/Ad

Time and Frequency Domain Feature Extraction
Wavelet packet analysis is an effective signal analysis method
that uses different wavelet bases for signal decomposition and
has a greater advantage in analyzing nonstationary signals. As
a time frequency analysis method, wavelet packet analysis can
zoom in on both time domain information and frequency domain
information and has excellent time frequency local analysis
capability. At present, it is applied to the analysis and
identification of pulse signals, with good results [16]. As shown
in Figure 4 as a schematic diagram of wavelet packet
decomposition, wavelet packet analysis further decomposed
the high-frequency band, while decomposing the low-frequency
band, which improved the time-frequency resolution of the
pulse signal. The low-frequency profile and high-frequency
details of the wavelet packet decomposition, un(t), at different
frequencies is defined as follows:

where t is time, k is the time translation factor, and gk and hk

have an orthogonal relationship, that is, gk = (–1)kh1–k. Defining
the number of coefficients in the j layer as nj, the energy of the
j-th layer is as follows:

The sampling frequency of the pulse signal was 720 Hz, and
the energy of the pulse was mainly concentrated in the frequency
band within 10 Hz. Therefore, the energy characteristics of the
pulse signal in different frequency bands were extracted by
8-layer wavelet packet decomposition. For wavelet feature
extraction of biological signals, sym8 outperforms Haar, dB2,
and dB4 in terms of the performance index, specificity,
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sensitivity, accuracy, time delay, and quality assessment of
wavelets [17]. A sym8 wavelet has better regularity and
symmetry, which can reduce the phase distortion caused by the
calculation. Combined with the above analysis, this paper used

a sym8 wavelet to decompose the pulse signal by 8-layer
wavelet packets to obtain 256-dimensional energy features. The
time and frequency domain features could be automatically
extracted by the algorithm of signal processing.

Figure 4. Schematic diagram of wavelet packet decomposition.

Classification Methods
The pulse signal features extracted by using time domain and
time frequency domain analyses are structured data, and
unstructured data are obtained by using data reorganization to
obtain one-dimensional data of the pulse signal. For structured
data, a machine learning algorithm was applied; for unstructured
data, a deep learning algorithm was used to train the
classification model. Finally, all results were integrated using
the stacking method. The algorithms used were as follows:

1. SVM: As a base learner, this method was used to train time
domain and time frequency domain data. The penalty parameter
C was set as 2.0, the kernel was set as rbf, and gamma was set
as 3.0. The inputs to the SVM classifier were time domain
features and time frequency domain features of the pulse. The
outputs were the classification results of seven pulse types.

2. DCNN: As a base learner, the pulse signal whose length was
800 was the input to the DCNN classifier, and the outputs were
the classification results of seven pulse types. The network used
in this paper had three convolutional layers. The first layer was
set as filters = 5 and kernel size = 11. The second layer was set
as filters = 25 and kernel size = 9. The third layer was set as
filters = 100 and kernel size = 10. The dense layer was set as
units = 7 and activation = softmax.

3. FCNN: As a meta-learner, the input was results of the three
base learners and the labels were the same as raw data. The
outputs were classification results of the seven pulse types after
stacking. The network had four dense layers. The first and
second layers were set as units = 1024 and activation = relu.
The third layer was set as units = 512 and activation = relu. The
last layer was set as units = 7 and activation = softmax.

In this paper, deep neural networks, including the FCNN, were
implemented by TensorFlow (Google) as the back-end Keras
framework, the loss function was chosen as cross-entropy, the

batch size of the DCNN was set to 8, the batch size of the FCNN
was set to 32, the number of iterations was 1000, the initial
learning rate was 0.001, the stochastic gradient descent (SGD)
optimization algorithm was used, the momentum was 0.9, the
weight recession was 0.0001, the dropout parameter was 0.5,
and the ratio between the training set, validation set, and test
set was 6:2:2. To avoid the overfitting phenomenon caused by
network training, the early stop strategy was used. When the
loss of the neural network on the validation set did not decrease
within 10 cycles, the training was stopped and the model with
the smallest loss on the validation set was selected as the final
training result. The CPU used for the experiments was an Intel
Core i7-8700K with 32 GB of memory and an NVIDIA Tesla
V100 GPU graphics card.

The data set in this paper contained multiple pulse categories,
so it was necessary to combine the classification results of each
category for judgment. In this paper, macroaverage was used
as the judging index, and the average accuracy and average
recall were calculated as follows:

Results

SVM Experimental Results
In training the SVM model, the radial basis function (RBF) was
chosen as the kernel function, in which the main parameters
included the penalty coefficient C and gamma. c indicated the
degree of acceptance of error; the larger the value of C, the less
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the classification error was allowed to occur during training,
and the selection of appropriate C could suppress the overfitting
phenomenon of the model. Here, gamma was a parameter of
the RBF, which was used to adjust the range of action of the
model support vector.

To find the best parameter that made the best classification of
the model, this paper used the grid search method to determine

optimal parameter values. When training the classification model
with time domain features and time frequency domain features,
the parameter range of C was set to 1-50, with a step size of 1;
the parameter range of gamma was 1-50, with a step size of 0.5;
and default values were used for the rest of the parameters. The
results of the optimal classification model are shown in Table
4.

Table 4. Classification results of time and time frequency domain features with an SVMa. The average accuracy rate is the percentage of all pulse type
classifications that are correct. The average recall rate is the ratio of the correct pulse type in the classification result to the pulse type in the sample.
Accuracy is the average of the accuracy of each of the 7 pulse types.

Accuracy (%)Average recall rate (%)Average accuracy rate (%)Classification model

76.176.279.2Time domain feature+SVM

72.872.974.6Time and frequency domain feature+SVM

aSVM: support vector machine.

As can be seen from Table 4, the time domain classification
model had a higher accuracy than the time frequency domain
classification model with the same classifier, reaching 76.1%,
which was 3.3% higher than the time frequency domain
classification model. Meanwhile, the flat accuracy rate and the
average recall rate of the time domain classification model were
79.2% and 76.2%, respectively, which were higher than those
of the time frequency domain classification model.

DCNN Experimental Results
To verify the classification performance of the DCNN used in
this paper, two neural networks, Visual Geometry Group
(VGG)-11 and VGG-16, were selected for comparison
experiments. In the experiments, VGG-11 adopted the standard
network structure and VGG-16 adopted the improved network
structure. The initial learning rate of both CNNs was 0.0001,
and the rest of the parameters were the same as those of the
DCNN. The experimental results are shown in Table 5.

Table 5. Classification results of different CNNa structures. The average accuracy rate is the percentage of all pulse type classifications that are correct.
The average recall rate is the ratio of the correct pulse type in the classification result to the pulse type in the sample. Accuracy is the average of the
accuracy of each of the 7 pulse types.

Accuracy (%)Average recall rate (%)Average accuracy rate (%)Classification model

74.774.774.4VGGb-11

77.477.377.3VGG-16

79.178.979.1DCNNc

aCNN: convolutional neural network.
bVGG: Visual Geometry Group.
cDCNN: deep convolutional neural network.

As can be seen from Table 5, the DCNN had the highest
accuracy rate, which was 4.4%, and 1.7% higher compared with
VGG-11 and VGG-16, respectively. In the average accuracy
and average recall, the VGG-11 network had the lowest rates
among the three models, which was 4.7% and 1.8% lower
compared with the highest DCNN, respectively.

DSSN Experimental Results
To objectively evaluate the effectiveness of the model DSSN
proposed in this paper, the base learners of the models were
compared, and the experimental results are shown in Table 6.
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Table 6. Classification results of different algorithms. The average accuracy rate is the percentage of all pulse type classifications that are correct. The
average recall rate is the ratio of the correct pulse type in the classification result to the pulse type in the sample. Accuracy is the average of the accuracy
of each of the 7 pulse types.

Accuracy (%)Average recall rate (%)Average accuracy rate (%)Classification model

72.872.974.6Time and frequency domain feature+SVMa

76.176.279.2Time domain feature+SVM

79.178.979.1DCNNb

83.382.983.2DSSNc

aSVM: support vector machine.
bDCNN: deep convolutional neural network.
cDSSN: DCNN- and SVM-based stacking network.

As can be seen from Table 6, the DSSN model had the highest
classification accuracy among the five methods, reaching 83.3%.
In the average accuracy and average recall, the DSSN model
rates improved by 8.6% and 10%, respectively, compared with
the lowest time frequency domain feature model, and 4.1% and
4%, respectively, compared with the remaining highest DCNN
model.

Discussion

Using machine learning or deep learning alone for pulse
classification is not effective, but integrating both for learning
can improve the classification accuracy of pulse signals. At the
same time, existing research results on interpretable features of
pulse signals can be absorbed and deep learning algorithms

developed by technology can be used to further explore the
information carried by pulse signals.

Comparison of Seven Pulse Type Classification Results
Using an SVM
As can be seen from Figures 5 and 6, the recognition accuracy
of the time domain classification model was higher than that of
the time frequency domain classification model in the slippery,
thready slippery, thready, thready stringy, stringy slippery, and
stringy pulses, reaching 83%, 78%, 77%, 59%, 67%, and 76%,
respectively, which was 2%-8% higher compared with the time
frequency domain classification model. However, the time
frequency domain classification model had the highest
recognition rate of 95% for the flat pulse, which was 1% higher
compared with the time domain classification model.
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Figure 5. Confusion matrix of time domain features by SVM classification. SVM: support vector machine.
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Figure 6. Confusion matrix of time and frequency domain features by SVM classification. SVM: support vector machine.

Overall, the time domain classification model was slightly better
than the time frequency domain classification model. With the
exception of the thready, stringy pulse, the accuracy of the
recognition of the remaining pulse types was not significantly
different. It can also be seen from the figure that the thready,
stringy pulse and the stringy, slippery pulse were the pulse types
with the lowest classification accuracy, and most of them were
incorrectly classified as stringy pulses. In the time domain
classification model, the recognition error rates were 27% and
23% for the thready, stringy and the stringy, slippery pulses,
respectively; in the time frequency domain classification model,
the recognition error rates were 27% and 20%, respectively.
The reason for this situation might be that both the thready,
stringy pulse and the stringy, slippery pulse have the
characteristics of a stringy pulse, and it is difficult for the
classifier to accurately determine their pulse types, leading to
misclassification.

Because of the large number of time domain features extracted
in this paper, only some features were selected for statistical
analysis, as shown in Table 7. Among the seven types of pulse
data, the main wave slope k of the slippery pulse was the largest,
and the main wave amplitude h1 was only second to the stringy,
slippery pulse, which showed the characteristics of the high and
steep main wave of the slippery pulse. The one-third pulse width
w and pulse width period ratio w/T of the stringy pulse were the
largest among the seven types of pulses, which showed the
waveform characteristics of the wide main wave of the stringy
pulse. The main wave amplitude h1 of the stringy, slippery pulse
was the largest, the main wave slope k was only lower than that
of the slippery pulse, and the one-third pulse width w and pulse
width period ratio w/T were larger, which showed that the
stringy, slippery pulse had the waveform characteristics of both
the stringy pulse and the slippery pulse, which was consistent
with the characteristics of both pulses.
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Table 7. Statistical analysis results of some time domain features. Feature parameters were h1, k, w, and w/T for 7 pulse types.

Stringy pulseStringy, slippery
pulse

Thready, stringy
pulse

Thready
pulse

Thready, slippery
pulse

Flat pulseSlippery pulseFeature pa-
rameters

592.404 ±
228.413

636.707 ±
227.226

407.703 ±
157.803

400.857 ±
139.692

356.757 ± 93.869514.706 ±
121.698

610.701 ± 206.724h 1

5.919 ± 2.5436.329 ± 2.4203.957 ± 1.4683.662 ±
1.161

3.912 ± 1.0025.886 ± 1.3946.609 ± 2.241k

0.207 ± 0.0440.176 ± 0.0360.205 ± 0.0430.199 ±
0.034

0.140 ± 0.0300.143 ± 0.0310.126 ± 0.018w

0.245 ± 0.0380.220 ± 0.0330.247 ± 0.0380.214 ±
0.035

0.185 ± 0.0400.165 ± 0.0360.162 ± 0.023w/T

The time domain features not only reflect the waveform
characteristics of the pulse signal but also have certain
physiological and pathological significance. The amplitude of
the main wave, h1, reflects the ejection function of the left
ventricle and the compliance of the aorta; the amplitude of the
main wave isthmus, h2, has the same significance as the
amplitude of the pre-repulse wave, h3, and the sclerosis of blood
vessels or the increase in peripheral resistance leads to an
increase in the amplitudes h2 and h3. The amplitude of the
descending isthmus, h4, reflects the magnitude of peripheral
resistance. The magnitude of the repulse wave, h5, reflects the
level of compliance of the aorta. The magnitude of phase t1
reflects the rapidity of the left ventricular ejection time; the
magnitudes of descending isthmus phase t4 and repulse wave
phase t5 reflect the length of the systolic and diastolic phases
of the left ventricle, respectively. The pulse period T indicates
one cycle of the pulse, corresponding to one cardiac cycle of
the left ventricle. The ratio of the descending isthmus main
wave amplitude, h4/h1, reflects the level of peripheral resistance;
the ratio of the repulse wave main wave amplitude, h5/h1, reflects
the vascular compliance. The time ratio t1/T reflects the rate of
the cardiac ejection function, which increases when the rate
decreases [18]. Wavelet packet analysis is used in the time
frequency domain analysis to extract the energy magnitude of
the pulse signal in different frequency bands, and its distribution
reflects the elastic changes in the blood vessels [19], which also
has some physiological significance.

In the classification algorithm, the SVM uses the kernel RBF
to map the feature parameters into a high-dimensional space to
provide better differentiability between different classes. The

segmentation hyperplane is trained under this space to give the
classification model the ability to recognize different pulse
types. Thus, the time domain and time frequency domain
features characterize the pulse signal from different perspectives,
which can be combined with the SVM algorithm to obtain better
classification results.

Comparison of Seven Pulse Type Classification Results
Using VGG-11, VGG-16, and the DCNN
Figures 7-9 show confusion matrix plots of the three neural
networks on the seven types of pulse data sets. As can be seen
from the figures, the recognition accuracy of the DCNN
improved in different degrees compared with VGG-11 and
VGG-16 for the all categories of pulses except the flat pulse.
Compared with VGG-11, the DCNN had a 6% higher
recognition rate in the fine slippery pulse and the stringy,
slippery pulse and a 5% higher recognition rate in the slippery
pulse and the stringy pulse. Compared with VGG-16, the
recognition rate was 1%-4% higher in all categories of pulses
except the flat pulse. In the flat pulse recognition rate, VGG-16
had the highest accuracy of 98%, which was 3% higher than
that of the DCNN. The recognition rate of the compound pulse
was low overall, where most of the misclassified samples were
classified as single-pulse types contained in the compound pulse,
which might be due to the fact that the compound pulse had
features that made up two of its single-pulse types, resulting in
the classifier being unable to correctly identify its pulse type,
similar to the results of the time-domain and time
frequency-domain classification models. Overall, the DCNN
had better classification performance compared with VGG-11
and VGG-16.
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Figure 7. Confusion matrix of the seven types of pulses by VGG-11. The diagonal elements of the matrix indicate the prediction accuracy of different
types of pulses. VGG: Visual Geometry Group.
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Figure 8. Confusion matrix of the seven types of pulses by VGG-16. The diagonal elements of the matrix indicate the prediction accuracy of different
types of pulses. VGG: Visual Geometry Group.
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Figure 9. Confusion matrix of the seven types of pulses by the DCNN. The diagonal elements of the matrix indicate the prediction accuracy of different
types of pulses. DCNN: deep convolutional neural network.

Comparison of Seven Pulse Type Classification Results
Using a DSSN
It can be seen from Figure 10 that compared with the three base
learners, the DSSN model improved the recognition rate in all
seven pulse categories to varying degrees, with 3%, 2%, 4%,
1%, 10%, 5%, and 10% improvement compared to the highest
recognition rate in each category of the base learners,
respectively. Among them, the thready, stringy pulse, the
stringy, slippery pulse, and the stringy pulse had the highest

improvement effect, which reduced the recognition error rate
to a greater extent. In addition, the DSSN model had higher
recognition accuracy in each category than the DCNN model.
Among them, the recognition rate of the stringy pulse was 10%
higher compared with the DCNN model, and the remaining
pulse types improved by 1%-7%. Therefore, the DSSN could
integrate the advantages of multiple base learners and thus
effectively improve the recognition accuracy of the model.
Compared with existing pulse signal classification models, the
DSSN also had better classification recognition results.
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Figure 10. Confusion matrix of the DSSN. DSSN: deep convolutional neural network (DCNN)- and support vector machine (SVM)-based stacking
network.

Although pulse types are clearly described in TCM textbooks,
different TCM practitioners often interpret pulse diagnoses
differently, depending on their own experience and
understanding of pulses [20]. Even the same TCM practitioner
may make different diagnoses for similar pulse characteristics
in different circumstances. Using machine learning and deep
learning methods for pulse classification can help TCM
practitioners make better pulse diagnoses and improve the
objectivity of the results. Using the DSSN method, the
recognition accuracy for compound pulses can reach more than
70%, while for single pulses, the recognition accuracy is above
85%, and the best one can reach 97%. If the experimental
samples can be enriched and the balance of samples can be
improved, the accuracy of pulse classification can be further
improved, which is promising for application in wearable
devices.

Limitations and Conclusion
The existing work on pulse classification was mainly performed
by machine learning or deep learning. In this paper, pulse
classification was performed by a machine learning model
(SVM) and a deep learning network (DCNN), but the results
were not good. Through the DSSN method, the classification
results of machine learning and deep learning were ensembled

to obtain more accurate pulse type prediction results.
Practitioners of TCM can use this method to assist in the
diagnosis of TCM pulses, thus avoiding the uncertainty caused
by subjectivity. Wearable devices can also use this method to
determine the type of pulse of the user and thus predict the
health status of the user, which is also relevant for the prevention
of some diseases. At the same time, there were some areas for
improvement in this experiment. First, the sample data of the
pulse should be as large as possible, which will help improve
the accuracy rate to some extent. Second, the diagnosis of the
type of pulse signal collected should be integrated with the
diagnosis results of several TCM experts, which can further
improve the objectivity of the data.

A large number of original pulse wave studies have yielded
many interpretable features, and many research results have
been obtained for pulse wave classification. If only deep learning
is used for classification, it will be difficult to use the results of
previous research. Deep learning feature engineering and
structured features reflect different pulse feature information
that can complement each other. Therefore, based on the original
pulse analysis, TCM scholars can combine the advantages of
deep learning algorithms developed by technology to construct
integrated classifiers that can provide better classification results
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by making full use of the information obtained by deep learning feature engineering and artificially constructed features.
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