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Abstract

Background: Precise prediction of contrast media–induced acute kidney injury (CIAKI) is an important issue because of its
relationship with poor outcomes.

Objective: Herein, we examined whether a deep learning algorithm could predict the risk of intravenous CIAKI better than
other machine learning and logistic regression models in patients undergoing computed tomography (CT).

Methods: A total of 14,185 patients who were administered intravenous contrast media for CT at the preventive and monitoring
facility in Seoul National University Hospital were reviewed. CIAKI was defined as an increase in serum creatinine of ≥0.3
mg/dL within 2 days or ≥50% within 7 days. Using both time-varying and time-invariant features, machine learning models, such
as the recurrent neural network (RNN), light gradient boosting machine (LGM), extreme gradient boosting machine (XGB),
random forest (RF), decision tree (DT), support vector machine (SVM), κ-nearest neighbors, and logistic regression, were
developed using a training set, and their performance was compared using the area under the receiver operating characteristic
curve (AUROC) in a test set.

Results: CIAKI developed in 261 cases (1.8%). The RNN model had the highest AUROC of 0.755 (0.708-0.802) for predicting
CIAKI, which was superior to that obtained from other machine learning models. Although CIAKI was defined as an increase
in serum creatinine of ≥0.5 mg/dL or ≥25% within 3 days, the highest performance was achieved in the RNN model with an
AUROC of 0.716 (95% confidence interval [CI] 0.664-0.768). In feature ranking analysis, the albumin level was the most highly
contributing factor to RNN performance, followed by time-varying kidney function.

Conclusions: Application of a deep learning algorithm improves the predictability of intravenous CIAKI after CT, representing
a basis for future clinical alarming and preventive systems.

(JMIR Med Inform 2021;9(10):e27177) doi: 10.2196/27177
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Introduction

Computed tomography (CT) using contrast media is necessary
to clinically detect abnormalities, but the administration of
contrast media can lead to acute kidney injury (known as
contrast media–induced acute kidney injury [CIAKI]). This is
a critical issue due to subsequent risk of irreversible kidney
dysfunction and increased mortality [1]. This adverse
relationship is more critical in intra-arterial administration of
contrast media than in intravenous administration [2].
Nevertheless, frequent use of CT scanning with intravenous
contrast media increases the risk of nephrotoxicity, which
requires prophylaxis and monitoring of kidney functions [3].
Prediction of intravenous CIAKI after CT scanning may be
clinically essential to prepare for intervention in advance, but
most relevant studies have primarily focused on intra-arterial
CIAKI [4]. Models generated in some studies have predicted
intravenous CIAKI, but these models had limitations because
model performance was evaluated using a training set (rather
than a test set) [5-10], an updated definition of CIAKI was not
used [5-12], a prophylaxis protocol was not described [5,10,11],
cases with intra-arterial administration of contrast media were
combined in the analysis of intravenous cases [6,9,10], and
confounding factors were not sufficiently considered [6-10].

Deep learning algorithms have achieved successful prediction
of patient outcomes [13,14], which will change the paradigm
of clinical decision making from diagnosis to treatment. Among
deep learning algorithms, the recurrent neural network (RNN)
can learn and characterize a temporal data set. In the nephrology
field, using a time-varying data set of kidney function and vital
signs, the predictability of outcomes has improved, such as
acute kidney injury [15] and intradialytic complications, which
are better than other machine learning (eg, gradient boosting
machine) [16] and discrete-time logistic regression [17] models.
Precise prediction of intravenous CIAKI may be difficult
because multiple conditions have interactive and complex effects
on its risk, and heterogeneous features of patients along with
fluctuating dynamics of kidney functions before CT scanning
may also complicate precise prediction. Herein, we addressed
whether an RNN model with a time-varying data set including
kidney functions could predict the risk of intravenous CIAKI
better than other machine learning or conventional scoring
models.

Methods

Data Source and Study Patients
A total of 19,628 patients underwent CT scanning with
intravenous administration of contrast media at the 1-day-care

facility of the Seoul National University Hospital between
February 2007 and January 2019. This facility was built for the
purpose of monitoring and preventing CIAKI in patients at risk,
such as those with reduced kidney function or comorbidities.
During admission, patients received hydration with 500 mL of
0.9% saline before and after intravenous administration of
contrast media and 1200 mg of N-acetylcysteine for 3 days
[18,19]. Kidney function was subsequently monitored for 2-7
days after CT scanning. Patients aged less than 18 years (n=5),
with end-stage kidney disease (n=335), and no information
about serum creatinine levels 28 days before and 7 days after
CT scanning (n=5103) were excluded. Accordingly, 14,185
cases were included in the analysis (Multimedia Appendix 1).
The institutional review board of the National University
Hospital approved the study design (no. H-1812-134-997),
which was conducted in accordance with the principles of the
Declaration of Helsinki.

Study Features and Outcomes
Baseline characteristics, such as age, sex, weight, height,
comorbidities (eg, coronary artery disease, any cancer, liver
cirrhosis, glomerulonephritis, kidney transplantation), protocol
of CT scanning and volume of contrast media, vital signs (eg,
systolic blood pressure, diastolic blood pressure, heart rate,
respiratory rate, and body temperature), and medications (eg,
β-blocker, calcium channel blocker, angiotensin-converting
enzyme inhibitor, angiotensin receptor blocker,
hydrochlorothiazide, spironolactone, furosemide, statin,
metformin, sodium-glucose cotransporter 2 inhibitor, dipeptidyl
peptidase-4 inhibitor, other oral hypoglycemic agents, and
insulin), were collected using the patients’ electronic medical
records. Vital signs were measured at the time of admission to
the facility. Laboratory findings were measured up to 1 month
before CT scanning, and variables such as white blood cell
count, hemoglobin, hematocrit, platelet count, cholesterol,
albumin, total bilirubin, alkaline phosphatase, aspartate
transaminase, alanine transaminase, uric acid, blood urea
nitrogen, glucose, calcium, phosphate, sodium, potassium,
chloride, and bicarbonate were evaluated. The estimated
glomerular filtration rate (eGFR) was calculated using the
Chronic Kidney Disease Epidemiology Collaboration equation
[20]. Time-varying features included serum creatinine, eGFR,
and elapsed times before CT scanning, and time-invariant
features included all the other features. The baseline
characteristics are summarized in Table 1.
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Table 1. Baseline characteristics.

P valuebNon-CIAKI (n=13,924)CIAKIa (n=261)Total (n=14,185)Features

<.00167.6 (56.7-78.5)65.2 (54.1-76.3)67.5 (56.7-78.4)Age (years), mean (range)

.3310,757 (77.3)195 (74.7)10,952 (77.2)Male, n (%)

.9424.0 (20.7-27.3)24.0 (20.4-27.6)24.0 (20.7-27.3)Body mass index (kg/m²), mean (range)

Type of CTc, n (%)

N/Ad4287 (30.8)73 (28.0)4360 (30.7)Abdomen and pelvis

N/A3233 (23.2)90 (34.5)3323 (23.4)Liver

N/A1313 (9.4)17 (6.5)1330 (9.4)Urogenital

N/A989 (7.1)15 (5.7)1004 (7.1)Chest

N/A4102 (29.5)66 (25.3)4168 (29.4)Others

.0198.3 (82.1-114.6)99.8 (81.5-118.1)98.3 (82.1-114.6)Contrast media volume (mL), mean (range)

Vital signs

.002126 (116-138)130 (117.5-141)126 (116-138)Systolic blood pressure (mmHg), median (IQR)

.0175 (68-83)78 (70-83.5)75 (68-83)Diastolic blood pressure (mmHg), median (IQR)

<.00168 (61-79)73 (62-82)68 (61-79)Heart rate (/min), median (IQR)

.3318.3 (17.5-19.2)18.3 (17.4-19.1)18.3 (17.5-19.2)Respiratory rate (/min), mean (range)

.1236.4 (36.1-36.7)36.4 (36.1-36.8)36.4 (36.1-36.7)Body temperature (°C), mean (range)

Comorbidities, n (%)

<.0014744 (34.1)126 (48.3)4870 (34.3)Diabetes mellitus

.266760 (48.5)136 (52.1)6896 (48.6)Hypertension

.161912 (13.7)28 (10.7)1940 (13.7)Coronary arterial disease

.1911294 (81.1)220 (84.3)11514 (81.2)Cancer, any type

.0052195 (15.8)58 (22.2)2253 (15.9)Liver cirrhosis

.08426 (3.1)13 (5.0)439 (3.1)Glomerulonephritis

.29222 (1.6)2 (0.8)224 (1.6)Kidney transplantation recipient

Medication, n (%)

.145352 (38.4)112 (42.9)5464 (38.5)Antihypertensive agents

<.0011834 (13.2)71 (27.2)1905 (13.4)Diuretics

.172672 (19.2)59 (22.6)2731 (19.3)Statins

.072495 (17.9)58 (22.2)2553 (18.0)Hypoglycemic agents

Blood findings

<.00112.2 (10.7-13.7)11.15 (10.1-12.4)12.2 (10.6-13.7)Hemoglobin (g/dL), median (IQR)

<.00136.8 (32.5-41.1)33.6 (30.4-37.95)36.8 (32.4-40.9)Hematocrit (%), median (IQR)

<.0014.1 (3.8-4.3)3.8 (3.5-4.2)4.1 (3.8-4.3)Albumin (g/dL), median (IQR)

<.00122 (17-27)25 (19-35)22 (17-27)Blood urea nitrogen (mg/dL), median (IQR)

<.0011.44 (1.24-1.67)1.58 (1.27-2.01)1.44 (1.25-1.67)Creatinine (mg/dL), median (IQR)

<.00147.2 (38.9-56.1)42.7 (30.4-54.3)47.1 (38.9-56.1)eGFRe (mL/min/1.73 m²), median (IQR)

aCIAKI: contrast media–induced acute kidney injury.
bP values were derived from the chi-square tests for categorical variables and the Student t-test or the Mann-Whitney U test for continuous variables.
cCT: computed tomography.
dN/A: not applicable.
eeGFR: estimated glomerular filtration rate.
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CIAKI was defined as an increase in serum creatinine of ≥0.3
mg/dL within 2 days or ≥50% within 7 days according to the
Kidney Disease Improving Global Outcomes guideline [21]. In
a sensitivity analysis, the other definition recommended by the
European Society of Urogenital Radiology was used, such as
an increase in serum creatinine of ≥0.5 mg/dL or ≥25% within
3 days [22]. As a long-term outcome, information about kidney
progression (ie, doubling of serum creatinine, >50% decrease
in eGFR, and the need for dialysis and transplantation) and
all-cause mortality were obtained using the patients’ electronic
medical records, the Korean end-stage renal disease registry,
and the National Database of Statistics, Korea.

Model Development
Patients were randomly assigned into a training set (70%) to
develop the model and a test set (30%) to examine the
performance of the model, wherein the occurrence of CIAKI
was evenly distributed between the two sets. To develop the
RNN model, we combined RNN and multiplayer perceptron
(MLP) components. As an RNN component, we used the long
short-term memory (LSTM) architecture, which is composed
of input, output, and forget gates [23]. The median number of
time-varying serum creatinine/eGFR values was 16 during the
median timeframe of 4 years (1-9 years) before CT scanning.
With respect to these results, 16 consecutive time-varying
features were used in the RNN model. These features entered
stacked cells and a subsequent dense layer (ie, RNN module),

while time-invariant features were processed by 3 dense layers
of the MLP module. The results were finally concatenated and
then passed through 4 dense layers as a merging module. A
dropout layer (rate=0.5) was followed behind each dense layer,
while internal LSTM layers used input dropout (rate=0.5) and
recurrent dropout (rate=0.5) [24]. Batch normalization layers
were located at the end of RNN and multilayer perceptron
modules and after the first and third layers of the merging
module. Binary cross-entropy loss was used as a loss function
to calculate the difference between actual and predicted labels.
The Adam method was used for an optimizer [25], and the best
parameter was selected using 10-fold cross-validation. Figure
1 presents the schematic diagram of the RNN model. To provide
the model training process, we have added the Python code in
Multimedia Appendix 2. The script includes data preprocessing,
splitting, modeling, and training process information.

We also developed other machine learning models, such as a
light gradient boosting machine (LGM), an extreme gradient
boosting machine (XGB), a random forest (RF), a decision tree
(DT), a support vector machine (SVM), a κ-nearest neighbor,
and logistic regression, to compare their performance to the
RNN model. These models could not handle time-varying
features; therefore, only time-invariant features were included
in the models. Tenfold cross-validation was used in the
hyperparameter-tuning process, and candidate hyperparameters
are listed in Multimedia Appendix 3.

Figure 1. Schematic diagram of the recurrent neural network. C: concatenate; CIAKI: contrast media–induced acute kidney injury; Cr: creatinine;
Dense: dense layer; LSTM: long short-term memory; MLP: multilayer perceptron; eGFR: estimated glomerular filtration rate; RNN: recurrent neural
network.

Feature Importance
Feature importance in the performance of the RNN model was
evaluated using SHapley Additive exPlanations (SHAP) [26].
This method explains the model outcome as a sum of values
attributed to each input feature, allowing the SHAP value to be
interpreted as feature importance. The gradient SHAP model
was applied to calculate the SHAP value [26]. The sum of SHAP
values was used in the case of time-varying features. For
non-RNN models, LinearExplainer (logistic regression and
SVM) and TreeExplainer (DT, RF, XGB, and LGM) were used
[26].

Statistical Analysis
Categorical and continuous variables are expressed as
proportions and the means ± SD if they had a normal distribution
and as medians with IQRs if they were non-normally distributed.
Missing values of time-invariant features (4219 cases [28.5%]
had at least 1 missing value) were imputed by the
κ-nearest-neighboring imputer based on information in the

training set [27]. If there were missing values in time-varying
features (7031 cases [49.6%] had at least 1 missing value),
masking was used during training of the RNN model. Model
performance was evaluated in the test set using the area under
the receiver operating characteristic curve (AUROC) and
compared between models using the Delong test. All P values
were set as two-sided, and values less than 0.05 were defined
as significant. Statistical analyses were performed using R
software (version 4.0.2; The Comprehensive R Archive
Network: http://cran.r-project.org) and Python (version 3.8.3;
Python Software Foundation: http://www.python.org).
TensorFlow 2.3.0 (Google Brain, Google Inc.) was used as a
deep learning framework [28], and other machine learning
algorithms were performed by Scikit-learn [29].
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Results

Baseline Characteristics
The mean age of cases was 67.5 (SD 11.1) years, and 22.8%
(n=3233) were female. The median values of serum creatinine
and eGFR were 1.4 mg/dL (IQR 1.3-1.7 mg/dL) and 47.1
mL/min/1.73 m² (IQR 38.9-56.1 mL/min/1.73 m²), respectively.
The most common protocol was CT of the abdomen and pelvis
(n=4360, 30.7%), followed by the liver (n=3323, 23.4%) and
urogenital area (n=1330, 9.4%). Other baseline characteristics
of the patients are presented in Table 1. The values of baseline
characteristics did not differ between the training and test sets
(Multimedia Appendix 4).

CIAKI and Long-Term Outcomes
Intravenous CIAKI occurred in 261 (1.8%) patients after CT
scanning (1.8% in the training set and 2.0% in the test set).

During the median follow-up period of 4 years (IQR 2-7 years),
renal progression and all-cause mortality were identified in 3400
(24.0%) and 3762 (26.5%) patients, respectively. The CIAKI
group had a higher risk of these outcomes compared with the
non-CIAKI group (P<.001 for renal progression and P=.042
for all-cause mortality; see Multimedia Appendix 5).

Model Performance
When model performance was evaluated in the test set, the RNN
model achieved the highest AUROC of 0.755 (95% confidence
interval [CI] 0.708-0.802), followed by the RF (0.726 [95% CI
0.674-0.778]) and logistic regression (0.690 [95% CI
0.632-0.748]) (Table 2). The AUROC of the RNN model was
greater than that obtained from other machine learning models
(P<.05), except the RF, and the corresponding curves support
these results (Figure 2).

Table 2. AUROCa of machine learning models in predicting intravenous CIAKIb.

P valuedAUROC (95% CIc)Models

.010.690 (0.632-0.748)Logistic regression

<.0010.629 (0.566-0.693)κ-Nearest neighbor

<.0010.644 (0.580-0.707)SVMe

<.0010.633 (0.573-0.694)DTf

.170.726 (0.674-0.778)RFg

.0060.665 (0.607-0.722)XGBh

<.0010.651 (0.589-0.713)LGMi

N/Ak0.755 (0.708-0.802)RNNj

aAUROC: area under the receiver operating characteristic curve.
bCIAKI: contrast media–induced acute kidney injury.
cCI: confidence interval.
dCompared to the receiver operating characteristic curve of the RNN model.
eSVM: support vector machine.
fDT: decision tree.
gRF: random forest.
hXGB: extreme gradient boosting machine.
iLGM: light gradient boosting machine.
jRNN: recurrent neural network.
kN/A: not available.
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Figure 2. AUROC for predicting intravenous CIAKI in the machine learning models. AUROC: area under the receiver operating characteristic curve;
CIAKI: contrast media–induced acute kidney injury; DT: decision tree; KNN: κ-nearest neighbor; LGM: light gradient boosting machine; LR: logistic
regression; SVM: support vector machine; RF: random forest; RNN: recurrent neural network; XGB: extreme gradient boosting machine.

We further compared the performance of the RNN model with
other published scoring models. Eight studies have developed
models to predict intravenous CIAKI [5-12]. The flowchart of
study selection and their associated information is presented in
Multimedia Appendix 6 and Table 3, respectively. Of these 8
models, 5 used specific features to develop models, such as
cystatin C [6-8,10], homocysteine [7], neutrophil
gelatinase-associated lipocalin [10], β2-microglobulin [10], and
urine output [9]. Accordingly, 3 other models, such as the

Mehran score [30], which was originally developed for patients
undergoing intra-arterial administration of contrast media during
coronary angiography but had also undergone CT scanning in
1 study [11], and two logistic regression–based models without
testing of an independent data set [5,12], were compared to the
RNN model. The performance of these 3 models was lower
than that of the RNN model with the following AUROCs: 0.521
(P<.001) in the Mehran score and 0.539 (P<.001) and 0.645
(P=.022) in the other 2 logistic regression-based models.
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Table 3. Previous studies predicting intravenous CIAKIa.

AUROCb in
test set

Modeling
methods

Features, nPatients, n (train-
ing/test)

Prophylaxis proto-
col

CIAKI
(%)

CIAKI defi-
nition

Study subjectsStudies

N/Ad (0.794
in training
set)

Nomogram2750/0Not declared4.5≥0.5 mg/dL
or ≥25%
within 3
days

Abdominal CTc

in emergency de-
partment

Kim et al
[5]

N/A (0.826
in training
set)

Baseline ratio

of CysCg/Cr

2373/0Oral fluid intake,
2 L

14.2≥0.5 mg/dL
or ≥25%
within 48 h

CAGe or CT in
hospitalized pa-

tients with sCrf

levels between
0.8 and 1.3
mg/dL

Wacker-
Gussmann

et al [6]d

N/A (0.829
of homocys-
teine in train-
ing set)

AUROC with
single feature

5580/0Oral fluid intake,
500 mL

9.8≥0.5 mg/dL
or ≥25%
within 48 h

Coronary CT in
patients with

eGFRh of ≥60

mL/min/1.73 m2

Li et al [7]

N/A (0.781
of CysC in
training set)

AUROC with
single feature

2424/0Oral fluid intake,
500 mL

12.3≥0.5 mg/dL
or ≥25%
within 48 h

Coronary CT in
patients with
eGFR of ≥60

mL/min/1.73 m2

Li et al [8]

N/ARIFLEj crite-
ria

1149/0No routine proto-
col

60.1≥0.5 mg/dL
or ≥25%
within 3
days

CAG or CT in in-
tensive care unit

Hocine et

al [9]i

0.864Mehran score80a/137Not declared40.9>0.5 mg/dL
within 48 h

CT pulmonary
angiogram in in-
tensive care unit

Ho et al
[11]

0.749Scoring sys-
tem based on
logistic regres-
sion

32185/5390.9% Saline with
N-acetylcysteine

2.46>25% within
2-6 days

CT in cancer pa-
tients with eGFR
of <45

mL/min/1.73 m2

Jeon et al
[12]

N/A (0.684
of β2-mi-
croglobulin
in training
set)

AUROC with
single feature

590/0Not declaredN/A>0.5 mg/dL
or >25%
within 48-72
h

CAG and CT in
hospitalized pa-
tients

Banda et al

[10]k

aCIAKI: contrast media–induced acute kidney injury.
bAUROC: area under the receiver operating characteristic curve.
cCT: computed tomography.
dN/A: not available.
eCAG: coronary angiography.
fsCr: serum creatinine.
gCysC: cystatin C.
heGFR: estimated glomerular filtration rate.
iUsed the Mehran risk score.
jRIFLE: Risk Injury Failure Loss of kidney function and End-stage kidney disease classification.
kIncluded patients with both intravenous and intra-arterial administration of contrast media.

Sensitivity Analysis
For sensitivity analysis, another definition of CIAKI was used,
an increase in serum creatinine of ≥0.5 mg/dL or ≥25% within
3 days [22]. The RNN model was the best model in predicting
the risk of CIAKI, with an AUROC of 0.716 (95% CI
0.664-0.768), which was greater than that of most of the other
machine learning models (Multimedia Appendix 7). The

corresponding curves support these results (Multimedia
Appendix 8).

Other machine learning models were trained after including 48
features (ie, 16 sets of serum creatinine, eGFR, and elapsed
times) as an independent feature without timed order. The results
are summarized in Multimedia Appendix 9. Although these
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features were considered in the models, the model performance
was less than that of the RNN model.

Furthermore, the original pipeline was separated into 4 models
(MLP alone, MLP plus merging, RNN alone, and RNN plus
merging), and their performance was compared with that of the
original pipeline (named a default model). The AUROC plots
are presented in Multimedia Appendix 10. The deep learning
model with the MLP module alone and the RNN module alone
had AUROCs of 0.705 (95% CI 0.647-0.763) and 0.702 (95%
CI 0.642-0.763), respectively. After adding the merging module
to these models, the AUROCs were 0.710 (95% CI 0.653-0.768)
in the MLP-plus-merging module and 0.675 (95% CI
0.610-0.740) in the RNN-plus-merging module. All these values
were lower than the value from the original deep learning model.

To evaluate the effect of the model complexity on performance,
we built other deep learning architectures, such as a simple
model (ie, 1 less dense layer in the RNN module, MLP module,
and merging module) and a complex model (ie, 1 more dense
layer in the RNN module, MLP module, and merging module).
The AUROCs were 0.751 (95% CI 0.702-0.801) and 0.734
(95% CI 0.678-0.791) in the simple and complex models,
respectively. We also developed models with a single LSTM
layer having a simpler RNN architecture (named “single model”)
and with two stacked bidirectional LSTM layers having a more
complex RNN architecture (named “bidirectional model”). The
single and bidirectional models had AUROCs of 0.746 (95%
CI 0.696-0.795) and 0.717 (95% CI 0.656-0.777), respectively.

The AUROC plots of these models compared to that of the
original model (named “default model”) are described in
Multimedia Appendix 11.

Feature-Ranking Analysis
Feature importance in RNN performance was estimated using
SHAP (Figure 3A). Serum albumin had the highest impact on
model output, and time-varying serum creatinine was ranked
second. Age, several laboratory features (eg, sodium, protein,
and alkaline phosphatase), and vital signs (eg, systolic blood
pressure) were also highly ranked. We also explored SHAP
values in non-RNN machine learning models (Multimedia
Appendix 12). In the RF model and the LGM model, which
achieved the second- and third-highest performance, SHAP
values were highly correlated (Pearson’s correlation of the mean
of absolute SHAP values=0.781; P<0.001; Multimedia
Appendix 13), and the time-invariant features with high impact
in the RNN model (eg, albumin, sodium, and protein) were also
highly ranked.

Figure 3B shows 2 representative cases with CIAKI. The model
predicted the risk of CIAKI as 0.680 (true-positive) and 0.264
(false-positive) in the upper and lower cases, respectively.
According to SHAP analysis, hyponatremia, hyperkalemia,
time-varying serum features, and low eGFR contributed to
precise prediction in the upper case. In the lower case, although
serum albumin, calcium, and other parameters underestimated
the risk of CIAKI, the time-varying features and low eGFR
corrected this false prediction.
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Figure 3. SHAP analysis of the RNN model. (A) Feature ranking according to SHAP value. (B) Two cases to explain the risk of intravenous CIAKI
with SHAP values. RNN: recurrent neural network; SHAP: SHapley Additive eXplanations; CIAKI: contrast media–induced acute kidney injury; Alb:
albumin; ALP: alkaline phosphatase; BT: body temperature; Ca: calcium; Chol: cholesterol; Cl: chloride; CO2: bicarbonate; DBP: diastolic blood
pressure; eGFR; estimated glomerular filtration rate; Glu: glucose; HCT: hematocrit: K: potassium; Na: sodium; P: phosphate; PR: pulse rate; PreCr;
baseline creatinine; Prot: protein; SBP: systolic blood pressure.

Discussion

Principal Results
Intravenous CIAKI is a critical issue because it contributes to
poor outcomes [31], as noted in its association with renal
progression and increased mortality above. This study first
applied the RNN algorithm to predict intravenous CIAKI with
a greater AUROC than that obtained from other machine
learning or conventional scoring models. These results indicate
that the time-varying data of kidney function (ie, serum
creatinine and eGFR) significantly contribute to the precise
prediction of intravenous CIAKI. SHAP analysis demonstrated
that feature importance could help understand how risk is
estimated.

Because kidney function fluctuates over time, a single value of
serum creatinine or eGFR may not perfectly represent the kidney
function of patients. Certain attempts using time-varying kidney
functions by time-dependent Cox regression [32] and trajectory

analysis [33] have improved the precise estimation of kidney
function. Recently, deep learning with the RNN model showed
favorable performance in predicting acute kidney injury [15],
implying the additive benefit of time-varying kidney functions
to the model performance. Patients with comorbidities, including
cancer, diabetes mellitus, and chronic kidney disease, are
recommended for frequent follow-up of their kidney function
because these data can be used to better predict the trend of
kidney function than a single estimation. In this regard, the
present RNN model achieved the highest performance in
predicting intravenous CIAKI with time-varying features.

Deep learning architecture is complex and difficult to interpret
in nature and is referred to as a black box. To overcome this
limitation, this study applied SHAP to concretely explain the
model output. Using SHAP values, clinicians can comprehend
how the risk probability is explained by the results of various
features and decide whether the model output is feasible. If the
model prediction seems to be imprecise, as in the lower case in
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Figure 3B, the SHAP values in features highly relevant to the
model performance provide room for reconsideration.

Limitations
Despite these informative results, there are limitations to be
discussed. The study design was retrospective and needs to be
validated in future independent cohorts. Unidentified factors,
such as urine output and heart function, may provide additional
information about the risk of CIAKI, but the present data set
included most clinically used features. The prophylaxis protocol
may differ between centers, and thus, the present RNN model
may need to be adjusted when applied externally.

Conclusions
Application of a deep learning algorithm improves the
predictability of intravenous CIAKI, and our model performs
better than other machine learning and conventional scoring
models. These results may be attributable to the consideration
of time-varying kidney functions, in addition to time-invariant
features, and corresponding SHAP values may maximize the
utility of the model in clinics. If proactive management of
intravenous CIAKI is possible via precise prediction, overall
patient outcomes will improve. The study results represent the
basis of this goal.
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