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Abstract

Background: There is an increasing body of research on the development of machine learning algorithms in the evaluation of
online health educational resources for specific readerships. Machine learning algorithms are known for their lack of interpretability
compared with statistics. Given their high predictive precision, improving the interpretability of these algorithms can help increase
their applicability and replicability in health educational research and applied linguistics, as well as in the development and review
of new health education resources for effective and accessible health education.

Objective: Our study aimed to develop a linguistically enriched machine learning model to predict binary outcomes of online
English health educational resources in terms of their easiness and complexity for international tertiary students.

Methods: Logistic regression emerged as the best performing algorithm compared with support vector machine (SVM) (linear),
SVM (radial basis function), random forest, and extreme gradient boosting on the transformed data set using L2 normalization.
We applied recursive feature elimination with SVM to perform automatic feature selection. The automatically selected features
(n=67) were then further streamlined through expert review. The finalized feature set of 22 semantic features achieved a similar
area under the curve, sensitivity, specificity, and accuracy compared with the initial (n=115) and automatically selected feature
sets (n=67). Logistic regression with the linguistically enhanced feature set (n=22) exhibited important stability and robustness
on the training data of different sizes (20%, 40%, 60%, and 80%), and showed consistently high performance when compared
with the other 4 algorithms (SVM [linear], SVM [radial basis function], random forest, and extreme gradient boosting).

Results: We identified semantic features (with positive regression coefficients) contributing to the prediction of easy-to-understand
online health texts and semantic features (with negative regression coefficients) contributing to the prediction of hard-to-understand
health materials for readers with nonnative English backgrounds. Language complexity was explained by lexical difficulty (rarity
and medical terminology), verbs typical of medical discourse, and syntactic complexity. Language easiness of online health
materials was associated with features such as common speech act verbs, personal pronouns, and familiar reasoning verbs.
Successive permutation of features illustrated the interaction between these features and their impact on key performance indicators
of the machine learning algorithms.

Conclusions: The new logistic regression model developed exhibited consistency, scalability, and, more importantly,
interpretability based on existing health and linguistic research. It was found that low and high linguistic accessibilities of online
health materials were explained by 2 sets of distinct semantic features. This revealed the inherent complexity of effective health
communication beyond current readability analyses, which were limited to syntactic complexity and lexical difficulty.
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Introduction

For a long time, the study of the quality of language for effective
health communication and education has focused on the
complexity of health and medical educational resources [1-5].
A range of readability assessment tools have been developed
to measure the lexical, grammatical, and syntactic features of
health and educational resources [6-9]. Existing research shows
that lack of linguistic understandability or readability can be
explained by lexical difficulty, and complex grammatical and
syntactic features [10-12]. This has caused the wide assumption
that controlling for these textual features alone can help achieve
the optimized reading experiences of medical and health
materials for most people [13,14].

More recently, increasing research efforts have been geared
toward developing accessible or easy-to-understand health
materials and resources to help reduce the widening health
inequality caused by socioeconomic determinants in societies
with large and diverse vulnerable populations [15-19]. The key
research question is whether previous studies and insights gained
into health material readability can be translated directly into
the design and development of accessible health resources for
diverse populations, or whether there is a one-size-fits-all
approach to accessible health information evaluation.

Natural language processing tools and machine learning
algorithms have gained increasing popularity in health
informatics. These flexible and versatile computational
techniques can achieve high-precision prediction of outcomes
based on the data-driven learning and computing of quantifiable
features of the study object [1,7,10,20]. This represents a
significant advance from statistics, which requires the presence
of both dependent and independent variables to fit their relations
into developed statistical models [21]. In the deployment stage,
validated machine learning algorithms do not require the
outcome variable to be available, as the algorithms can
effectively predict the outcome, either a categorical or
continuous variable, based on the computational learning of
relevant features of the study object [22].

Providing reliable high-precision prediction of the outcome
variable, for example, new online health information before
release to the intended readers, can help identify and reduce
potential barriers to health information understanding and thus
increase the wide social accessibility of critical health
information among diverse vulnerable populations or
populations at risk due to lack of English proficiency and
exposure to English health educational traditions.

Using first-hand materials from a diverse range of English health
websites, our study developed a high-performing machine
learning model to effectively predict the easiness versus
difficulty of original English health information among young
adults from nonnative English-speaking backgrounds. The
machine learning algorithm revealed that while the difficulty

of English health information can be explained by existing
readability research, such as lexical unfamiliarity, medical
terminology, and jargons, as well as syntactic complexity that
can be measured by long and complex sentence structures, the
easiness or understandability of original English material can
be explained by distinct textual and semantic features associated
with the use of common speech act verbs, familiar verbs of
mental acts and processes (understand, learn, trust, feel,
remember, etc), personal names and pronouns, names of social
groups and communities, affiliations, people’s relations,
expressions that assist with the evaluation of events, scenarios,
or circumstances such as probability expressions (can, might,
may be, etc), purposeful expressions that direct or draw the
attention of the readers to key points of the reading material
such as adverbs describing levels, and degrees.

Methods

Data Collection
We collected 1000 original health texts published by national
and international health authorities on a wide range of health
topics ranging from infectious diseases, noncommunicable
diseases (like cancers, diabetes, and cardiovascular diseases),
and environmental health to mental diseases, disability, and
palliative care. These materials were collected and screened for
their information validity. We only kept health texts published
by health authorities and organizations that have extensive
experience in developing and disseminating credible health
information [23-25]. Private, commercial, or nonaccredited
health websites were excluded manually to ensure the reliability
and usability of our research findings for the development,
evaluation, and prediction of public-oriented health educational
resources. The collected health materials were then divided into
2 categories of easy versus difficult materials by a small group
of young adults with nonnative English-speaking backgrounds.
They rated the texts on a continuous scale of 0 to 10, with 0
indicating the easiest level and 10 indicating the hardest level.
Their original ratings were then standardized to z scores, and
the mean z score was taken as the notional value of the reading
difficulty of a certain text. Lastly, we took the grand mean of
the z scores of the 1000 texts and classified the entire corpus
with a binary classification framework. Those below the grand
mean were labeled as easy to read texts, and those above the
grand mean were labeled as difficult health texts for machine
learning algorithm development.

Machine Learning Algorithm Development

Data Normalization
The 1000 health education articles were randomly split into
training data and test data with 700 and 300 samples,
respectively. The training data were used for 5-fold
cross-validation to select the best hyperparameters for the
machine learning algorithms, and the test data were used for
evaluation and validation. The statistic distribution of the
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training and test data were as follows: training data, 384 difficult
and 316 easy samples; test data, 162 difficult and 138 easy
samples. Data normalization is necessary and essential for the
machine learning algorithms to achieve good generalization
and classification performance [26,27], which normalizes and
scales the range of data features to prevent those features with
a larger range from dominating the optimization process. It can
also improve the learning process, and the range of the value
of the collected health text data varies widely from a minimal
value of 0 to a maximal value of 1030. Thus, we performed the
following 3 normalization methods implemented in scikit-learn
[28] on the data: min-max normalization, z-score normalization,
and L2-norm normalization. Min-max normalization scales the
data to a certain range like (0,1) or (−1,1). For z-score
normalization, the rescaled data would have a unit variance and
0 mean. The L2-norm normalization scales the data samples
individually to unit norm, and the sum of the squares of the data
will always be up to 1. The formulas of these 3 methods are
shown in equations (1), (2), and (3), respectively. For the data
sample x, the minimum value is denoted as xmin and the
maximum value is denoted as xmax. The mean of the data is
denoted as xmean, and the SD of the data is denoted as xstd.

Hyperparameter Tuning and Model Selection
We evaluated the following 5 machine learning algorithms on
our constructed health education data: linear model logistic
regression (LR), linear model support vector machine (SVM)
with linear kernel, nonlinear model SVM with radial basis
function (RBF) kernel, ensemble tree model random forest (RF),
and extreme gradient boosting (XGBoost) [29]. The nonlinear
and ensemble tree models were able to learn a decision boundary
that is nonlinear in the input space. The algorithms were
implemented in Python with scikit-learn and xgboost packages.

To optimize the performance of the machine learning algorithms,
we performed leave-one-out 5-fold cross-validation on the
training data to fine tune the hyperparameters of each model
via automatic grid search and randomized search methods. For
LR, SVM (linear), and SVM (RBF), where the candidate values
of hyperparameters are discrete, we applied a grid search to
perform an exhaustive search to find the best and cross-validated
parameter values of the model. For the ensemble tree model RF
and XGBoost, where some of the hyperparameters are
continuous, the randomized search method was applied to save
the hyperparameter tuning space and time, which sampled a
fixed number of parameter settings from the specified
distribution instead of performing an exhaustive search. Figures
1 and 2 show the hyperparameter tuning process of the LR and
SVM (linear) models, respectively. The fine-tuned values of
core hyperparameters of the models are shown in Table 1. For
hyperparameters not listed, we used the default value in the
model.
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Figure 1. Hyperparameter tuning process of logistic regression. CV: cross-validation.

Figure 2. Hyperparameter tuning process of support vector machine (linear). CV: cross-validation.
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Table 1. The fine-tuned values of the core hyperparameters of machine learning algorithms.

ValueDescriptionAlgorithm and hyperparameter name

Logistic regression

11.51395399Inverse of regularization strengthC

Support vector machine (linear)

9.236708571873866Regularization parameter. The strength of the regularization is in-
versely proportional to C.

C

linearThe kernel type to be used in the algorithm.kernel

TrueWhether to enable probability estimates.probability

Support vector machine (radial basis function)

221.22162910704503Regularization parameter. The strength of the regularization is in-
versely proportional to C.

C

0.02212216291070450Kernel coefficient.gamma

rbfThe kernel type to be used in the algorithm.kernel

TrueWhether to enable probability estimates. probability

Extreme gradient boosting (XGBoost)

0.7842105263157895Subsample ratio of the training instances.subsample

120Number of boosted trees to fit.n_estimators

2Minimum sum of instance weight (hessian) needed in a child.min_child_weight

4Maximum depth of a tree.max_depth

0.11473684210526315Step size shrinkage used in an update to prevent overfitting.learning_rate

0.5666666666666667The subsample ratio of columns when constructing each tree.colsample_bytree

RFE_SVMa

SVMA supervised learning estimator with a fit method that provides in-
formation about feature importance.

estimator

1The minimum number of features to be selected. min_features_to_select

1The number of features to remove at each iteration.step

Random forest

100The number of trees in the forestn_estimators

4The maximum depth of the tree.max_depth

0.0463703639292683The minimum number of samples required to split an internal node.min_samples_leaf

0.06216133047419098The minimum number of samples required to be at a leaf node.min_samples_split

aRFE_SVM: recursive feature elimination_support vector machine.

Results

Statistical Analyses
We annotated the corpus with the semantic annotation system
developed by Lancaster University, UK [30]. The features were
count data. Table 2 shows the results of the Mann-Whitney U
test of the 2 sets of health texts across 22 of the original 115
semantic features as an illustration of contrasts between easy
and difficult texts. Statistically significant differences (P<.05)
existed for most features. To help with the understanding of the
annotated semantic features, some typical words of each feature
were extracted from the original corpus. A2 included cause,
affect, trigger, develop, progression, depend, evoke,
transmission, modify, etc. Examples from texts classified as
difficult are “neurodegenerative condition that affects the central

nervous system,” “in some cases, evoked potentials (nerve
transmission speed) may be measured and/or a lumbar puncture
(spinal tap) may be required,” and “an attack results in
inflammation and development of one or more lesions, resulting
in scarring (sclerotic plaque), forming on the nerves.” A7
included can, may, might, could, must, etc. Examples from texts
classified as easy to understand are “the second section has an
orange border and can help you understand what may have
happened to you,” “you can ask someone you trust to help you
with these books. This might be a disability support worker or
a family violence support worker,” and “these books are about
where violence can happen and who can do violence.” A12
included problems, hard, tough, etc. Examples from texts
classified as easy to understand are “in fact, most kids run away
due to problems with their families,” “anger is one of the hardest
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emotions to manage because it’s so strong,” “if your friend is
thinking about running away, warn him or her about how tough
it will be to survive on the streets.” A13 included most, at least,
thoroughly, etc. Examples from texts classified as easy to
understand are “thoroughly wash your hands beforehand to
reduce the risk of spreading the infection to others.” A15
included risk, safe, dangerous, danger, exposure, at risk, etc.
B1 included heart, muscles, chest, blood vessel, artery, ventricle,
valve, cardiovascular, and contraction. B2 included arrhythmia,
arteriosclerosis, abnormalities, and Down syndrome. B3
included oxygen mask, medication, antibiotics, vaccines,
diagnosis, paracetamol, ibuprofen, steroids, etc. Q2 included
admit, deliver, talk, speak, call, acknowledge, advice, suggest,
note, question, answer, voice, etc. S2 included women, girls,
children, people, workers, staff, providers, etc. S3 included

partners, friends, girlfriend, boyfriend, etc. S5 included member,
organization, public, community, board, group, personal, etc.
T2 included begin, start to, still be, hold off on, go on and on,
get going; during, all the time, end with, etc. X2 included
understand, learn, trust, feel, remember, seek, check, experience,
reason, inform, review, etc. X7 included want, purposes,
planning, mission, aim, target, requirement, focus, etc. Y1
included radiation, x-rays, telescope, bioterrorism, tissue
engineering, anatomy, laser, etc. Y2 included software, online,
internet, email, computer, websites, screen, etc. Z6 included
not, no, and negative. Z99 included paratyphoid, bleach based,
handwashing, alcohol based, ready to eat, cross-contamination,
unpasteurized, disinfect, salmonellosis, cardiologists,
parainfluenza, etc.

Table 2. Mann-Whitney U test results.

Asymptotic significance (2-tailed) of the
mean difference (P value)

Difficult; mean (SD)Easy; mean (SD)DefinitionCode

.1210.64 (12.83)9.03 (9.41)Cause and effectA2

<.0014.18 (7.30)8.55 (10.48)ProbabilityA7

<.0010.73 (1.55)1.54 (2.35)Easy/difficultA12

.073.96 (4.63)4.75 (5.57)Degree descriptorsA13

.831.46 (3.87)1.17 (3.37)Safety/dangerA15

.1615.80 (21.80)17.09 (31.84)Anatomy and physiologyB1

<.00124.27 (33.45)14.66 (21.20)Health and diseaseB2

<.00112.77 (17.93)8.97 (14.01)Medicines and medical treatmentB3

<.0015.68 (8.57)9.67 (11.76)Speech actsQ2

<.0019.31 (16.12)12.17 (16.58)PeopleS2

<.0010.79 (3.14)1.72 (4.48)RelationshipS3

<.0011.75 (3.38)3.05 (5.68)Groups and affiliationS5

.072.41 (3.35)2.95 (4.09)TimeT2

<.0016.62 (9.35)10.69 (11.19)Mental actions and processesX2

<.0013.39 (5.55)1.78 (3.13)Intention/purposesX7

<.0010.73 (1.52)0.19 (0.58)Science and technology in generalY1

<.0010.60 (2.09)1.33 (3.34)Information technology and computingY2

.513.05 (6.90)2.06 (4.16)Personal namesZ1

<.001136.93 (116.84)120.84 (120.48)grammatical expressionsZ5

<.0014.23 (5.17)3.01 (5.11)NegativeZ6

<.00121.14 (30.53)54.97 (48.37)PronounsZ8

<.00145.70 (54.20)18.63 (29.12)Unmatched expressionsZ99

Model Selection
After hyperparameter tuning, we compared the performance of
5 machine learning models with different normalization methods
to select the best model for our further feature
selection/reduction validation. We reported 5-fold
cross-validation average accuracy on the training data and
accuracy on the test data of all models. For 5-fold
cross-validation, we applied a different random seed so the
5-fold data sets for validation would be different from the data

sets for hyperparameter tuning. The results are shown in Table
3. As shown in the results, L2-norm normalization can improve
the classification performance of the LR, SVM (linear), and
SVM (RBF) models on both training data and test data.
However, z-score and min-max normalization have negative
impacts on model performance. For the ensemble tree model
RF and XGBoost, data normalization is unnecessary in model
development since the large range of feature values can help
the partitioning process. LR with L2-norm normalization, which
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yielded the best performance on both training data and test data, was selected as the best model for further validation.

Table 3. Performance of the 5 selected models with different data normalization methods.

L2-normMin-MaxZ-scoreNot normalizedClassifier

TestTrainingTestTrainingTestTrainingTestTraining

0.8400.8400.7800.8090.7770.8100.8170.823Logistic regression

0.8400.8330.8070.8010.8030.8190.8230.816Support vector machine (linear)

0.8330.8340.7870.8290.7930.8070.8230.833Support vector machine (radial
basis function)

0.8300.7890.8030.7960.8030.7960.8030.796Random forest

0.8370.8030.8370.8370.8400.8210.8400.821Extreme gradient boosting

Automatic Feature Selection: 67 Features
We applied recursive feature elimination (RFE) with SVM as
the base estimator (RFE_SVM) to learn feature importance and
performed feature reduction to remove unimportant features
[31]. During the feature selection process, RFE_SVM decides
whether a certain selected feature is useful or not for the SVM

model to learn the decision boundary. This was achieved via
iteratively eliminating features. Figure 3 shows the automatic
cross-validated tuning process of RFE_SVM with different
numbers of selected features. RFE_SVM learned 67 features,
eliminating 48 unimportant features from the original full feature
set of 115 features. The learned 67 features were automatically
selected (AS) features from machine learning algorithms.

Figure 3. Automatic cross-validated tuning results of recursive feature elimination_support vector machine (RFE_SVM) with different numbers of
selected features.

Expert Feature Review and Refinement
Out of the 67 features selected automatically by the machine
learning algorithm (RFE_SVM), 45 features were manually
eliminated in the following expert review, as these features were
mostly words/expressions that were not directly relevant to
health or medical information. These included A1 (general

actions); A5 (evaluation [good/bad, true/false]); A6 (comparison
[similar/different]); A9 (getting and giving [possession]); A10
(open, finding, showing); B4 (cleaning and personal care); C1
(arts and crafts); E3 (calm/violent/angry emotions); E4
(happiness and contentment emotions); F1 (food); F2 (drinks
and alcohol); F3 (smoking and nonmedical drugs); F4 (farming
and horticulture); G1 (government and politics); G2 (crime, law
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and order); H5 (furniture and household fittings); I1 (money
generally); L1 (life and living things); L2 (living creatures); L3
(plants); M1 (moving, coming, and going); M3 (vehicles,
transport on land); M5 (flying/aircraft); M6 (location and
direction); M8 (stationary); O2 (objects generally); O4 (physical
attributes); P1 (education in general); S1 (social actions, states,
processes); S7 (social actions, states, processes); S9 (religion,
supernatural); T1 (time); W3 (geographical terms); and so on.
The automatic feature selection reduced the original features
by 41.7% from 115 to 67 features, and the subsequent expert

review reduced a further 39.1% from 67 to 22 features. Tables
4 and 5 show the comparison of the performance of LR selected
as the best performing algorithm with the following 3 sets of
features: 115, 67, and 22. We used 70% of the data set as
training data and 30% as test data, and then applied 3-fold
cross-validation. The pair-wise corrected resample t test showed
that with a significantly reduced number of features, the
performance of the algorithm was not affected, even with a
slightly better improvement in terms of model accuracy (mean
difference of accuracy between 22 and 67 features: P=.04).

Table 4. Performance of machine learning models using different sets of features as predictors (logistic regression).

Macro F1, mean (SD)AUCa, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)Accuracy, mean (SD)Algorithm

0.8367 (0.0153)0.9188 (0.0048)0.8933 (0.0416)0.7767 (0.0321)0.8400 (0.0100)115 features

0.8367 (0.0252)0.9177 (0.0066)0.8333 (0.0643)0.8333 (0.0945)0.8400 (0.0200)67 features

0.8567 (0.0208)0.9108 (0.0045)0.8933 (0.0503)0.8100 (0.0173)0.8567 (0.0208)22 features

aAUC: area under the curve.

Table 5. Pair-wise corrected resampled t test of accuracy differences (using 3 sets of features as predictors).

P value (2-tailed)95% CIMean differenceComparison

UpperLower

Pairwise comparison of accuracy

>.990.0196−0.01960.00%Pair 1: 67 features vs 115 features

.130.0393−0.00601.98%Pair 2: 22 features vs 115 features

.040.02800.00541.98%Pair 3: 22 features vs 67 features

Pairwise comparison of sensitivity

.520.3017−0.18847.30%Pair 1: 67 features vs 115 features

.200.0932−0.02654.29%Pair 2: 22 features vs 115 features

.740.1862−0.2329−2.80%Pair 3: 22 features vs 67 features

Pairwise comparison of specificity

.420.1437−0.2637−6.72%Pair 1: 67 features vs 115 features

>.990.0392−0.03920.00%Pair 2: 22 features vs 115 features

.430.2674−0.14747.20%Pair 3: 22 features vs 67 features

Pairwise comparison of AUCa

.630.0056−0.0079−0.12%Pair 1: 67 features vs 115 features

.280.0103−0.0264−0.87%Pair 2: 22 features vs 115 features

.380.0142−0.0280−0.75%Pair 3: 22 features vs 67 features

Pairwise comparison of F1

>.990.0196−0.01960.00%Pair 1: 67 features vs 115 features

.070.03960.00042.39%Pair 2: 22 features vs 115 features

.070.03960.00042.39%Pair 3: 22 features vs 67 features

aAUC: area under the curve.

Model Validation
We evaluated the stability, robustness, scalability, and
effectiveness of the 22 linguistically enhanced (LE) features.
We first compared the performance of the LE features with all

initial (ALL) 115 features and the 67 AS features on different
sizes of training and test data. The entire data were randomly
split into training data and test data with different split rates
(0.2, 0.4, 0.6, and 0.8). For instance, with a split rate of 0.2
(denoted as train=0.2), 20% of data were used as training data
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and the remaining 80% of data were used as test data for
validation. The receiver operating characteristic curve and area
under the curve (AUC) metrics were used to evaluate the model
performance.

As shown in Figure 4, the model using LE features consistently
yielded a comparable or higher performance on different training
data set sizes (train=0.4, 0.6, and 0.8) compared with the models
involving ALL and AS features. For the split rate of 0.2, the
model with LE features had a lower AUC score compared with

the models involving ALL and AS features. This was caused
by the underfitting nature of the model involving LE features
(with only 22 features, less variance, and more bias). The models
involving ALL and AS features were more likely to be
overfitting for the number of training data (n=200), which was
very close to the number of features used for classification (115
and 67, respectively). With an increase in the training data size,
the underfitting issue was solved, and the model involving LE
features had better performance compared with the models
involving ALL and AS features.

Figure 4. Stability and robustness of the 22 linguistically enhanced features. ALL: all initial (115 features); AS: automatically selected (67 features);
AUC: area under the curve; LE: linguistically enhanced (22 features); ROC: receiver operating characteristic.

To better evaluate the scalability, effectiveness, and contribution
of the constructed LE features on health educational material
classification, we compared the performance of 5 machine
learning models with different feature sets. The selected machine
learning models were LR, SVM (linear), SVM (RBF), RF, and
XGBoost, and the models were trained on training data and
evaluated on test data. The performance was assessed in terms
of accuracy, sensitivity, and specificity metrics. As shown in
Figure 5, LE features benefited all machine learning models

compared with AS and ALL features, with a comparable or
higher accuracy and sensitivity. The models (RF and XGBoost)
with LE features had lower specificity than the models with AS
and ALL features. Overall, LE features had a positive impact
on the machine learning process, and changing the machine
learning model will not affect the overall learning performance
on health education data, demonstrating its scalability and
effectiveness.

Figure 5. Scalability and effectiveness of the 22 linguistically enhanced features. ALL: all initial (115 features); AS: automatically selected (67 features);
LE: linguistically enhanced (22 features); LR: logistic regression; RBF: radial basis function; RF: random forest; SVM: support vector machine; XGB:
extreme gradient boosting.

Impact of Features on Model Sensitivity and Specificity
The final feature set contained 22 features, as presented in Figure
6, which shows the regression coefficients of the finalized 22
features. Half of the features (n=11) were associated with the
easiness of the health materials, as indicated by their positive
regression coefficients as follows: Z8 (pronouns), 5.717293;
S5 (groups/affiliations), 3.393270; X2 (mental actions and
processes), 3.350851; A7 (probability), 2.942145; A12 (easy
versus difficult), 2.610647; A13 (degree descriptors), 1.462447;

Q2 (speech verbs), 1.093459; Y2 (information
technology/computing), 0.949234; S3 (relations), 0.898446; Z1
(personal names), 0.548855; and S2 (people), 0.135449. The
other half of the features (n=11) were associated with the
difficulty of the health materials, as indicated by their negative
regression coefficients as follows: Z6 (negative functional
words), −0.221485; X7 (intentions), −0.743811; Y1 (science
and technology), −1.903669; A15 (safety/risks), −2.291032; T2
(time), −2.756571; B1 (anatomy and physiology), −3.021697;
B2 (health and disease), −3.793444; A2 (cause and effect verbs),
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−4.838672; B3 (medicines and medical treatment), −5.763809;
Z5 (grammatical expressions), −7.348969; and Z99 (unmatched

or out-of-dictionary expressions), −8.749430.

Figure 6. Feature coefficients in the logistic regression model with 22 semantic features. Descriptors are shown in Multimedia Appendix 1.

Figure 7A shows the impact of individual features on the
sensitivity of the LR algorithm. The removal of Z8 (pronouns)
resulted in a mean decrease in sensitivity of 9.69% (P=.047;
95% CI of mean difference −0.1387 to −0.0189). The removal
of A2 (cause and effect) reduced the model sensitivity by 2.69%
to a mean sensitivity score of 0.7907 (SD 0.0163; P=.003; 95%
CI −0.0256 to −0.0181). Another feature that caused a
statistically significant drop in model sensitivity was X2 (mental
actions and processes). The deletion of this feature resulted in
a mean sensitivity decrease of 4.49%, from a mean sensitivity
score of 0.8126 to 0.7761 (SD 0.014; P=.04; 95% CI −0.0625
to −0.0104). The following 11 features also caused decreases
in the model mean sensitivity, but the changes were not
statistically significant: A12 (easy/difficult; mean difference
−0.82%, change to 0.8059; P=.42; 95% CI −0.0293 to 0.016);
A7 (probability; mean difference −1.87%, change to 0.7974;
P=.18; 95% CI −0.041 to 0.0107); B1 (anatomy and physiology;
mean difference −1.71%, change to 0.7986; P=.18; 95% CI
−0.0376 to 0.0098); B2 (health and diseases; mean difference
−1.13%, change to 0.8034; P=.69; 95% CI −0.0773 to 0.0589);
B3 (medicines and medical treatment; mean difference −3.42%,
change to 0.7847; P=.18; 95% CI −0.0752 to 0.0195); Q2
(speech act verbs; mean difference −0.89%, change to 0.8053;
P=.42; 95% CI −0.0318 to 0.0174); S5 (groups and affiliations;
mean difference −0.89%, change to 0.8053; P=.42; 95% CI
−0.0318 to 0.0174); Z5 (grammatical expressions; mean
difference −3.67%, change to 0.7828; P=.08; 95% CI −0.0601

to 0.0005); Z99 (unmatched/out-of-dictionary words; mean
difference −9.28%, change to 0.7371; P=.16; 95% CI −0.1899
to 0.039); T2 (time; mean difference −1.71%, change to 0.7986;
P=.18; 95% CI −0.0376 to 0.0098); and S2 (people; mean
difference −0.89%, change to 0.8053; P=.42; 95% CI −0.0318
to 0.0174). Figure 7B shows the impact of features on the
specificity of the LR model. Decreases in specificity with
removal were noted for the following features: A12
(easy/difficult; mean difference −0.64%, change to 0.8907;
P=.42; 95% CI −0.0253 to 0.0138); A13 (degree descriptors;
mean difference −0.64%, change to 0.8907; P=.42; 95% CI
−0.0253 to 0.0138); A15 (safety/risks; mean difference −0.64%,
change to 0.8907; P=.42; 95% CI −0.0253 to 0.0138); A7
(probability; mean difference −0.64%, change to 0.8907; P=.42;
95% CI −0.0253 to 0.0138); B1 (anatomy and physiology; mean
difference −2.67%, change to 0.8725; P=.25; 95% CI −0.075
to 0.0272); B2 (health and diseases; mean difference −2.03%,
change to 0.8783; P=.21; 95% CI −0.0521 to 0.0158); B3
(medicine and medical treatments; mean difference −1.38%,
change to 0.884, P=.19; 95% CI −0.0337 to 0.0088); Z5
(grammatical expressions; mean difference −1.92%, change to
0.8792; P=.42; 95% CI −0.0758 to 0.0413); Z8 (pronouns; mean
difference −3.95%, change to 0.861; P=.31; 95% CI −0.1238
to 0.053); Z99 (unmatched expressions; mean difference
−3.66%, change to 0.8637; P=.32; 95% CI −0.1178 to 0.0522);
T2 (time; mean difference −0.64%, change to 0.8907; P=.42;
95% CI −0.0253 to 0.0138); and S2 (people; mean difference
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−0.64%, change to 0.8907; P=.42; 95% CI −0.0253 to 0.0138).
The only feature that caused an increase in specificity with its

removal was A2 (cause and effect; mean difference 0.64%,
change to 0.9022; P=.42; 95% CI −0.0138 to 0.0253).

Figure 7. Impact of the features on model sensitivity (A) and specificity (B). Descriptors are shown in Multimedia Appendix 1.

Discussion

Principal Findings
Improving the readability and accessibility of online English
health education resources can have important impacts on the
development of health literacy and the self-health management

skills of readers. Young adults represent a large and increasing
group of online health information consumers. Our study
developed machine learning algorithms to predict the linguistic
easiness versus difficulty for international tertiary students with
non-English speaking backgrounds. We first compared and
selected algorithms through data normalization (L2-norm). LR
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emerged as the best performing algorithm compared with SVM,
RF, and XGBoost when trained on normalized data. We used
RFE with SVM as the base estimator to automatically reduce
the high-dimensional feature space. The automatic feature
selection reduced the original feature set (n=115) by around
40% to 67.

The subsequent expert evaluation resulted in another 40%
reduction in features. The distribution of regression coefficients
aligns well with the statistical analyses. The following features
with positive regression coefficients in machine learning had
significantly higher means in easy-to-understand health materials
(Mann-Whitney U test): Z8 (P<.001), S5 (P<.001), X2
(P<.001), A7 (P<.001), A12 (P<.001), Q2 (P<.001), Y2
(P<.001), S3 (P<.001), and S2 (P<.001). only the following 2
semantic features had statistically similar means in easy and
difficult texts, with positive regression coefficients: A13 (P=.07)
and Z1 (P=.51). The following features with negative regression
coefficients had statistically higher means in difficult health
materials: Z99 (P<.001), Z5 (P<.001), B3 (P<.001), B2
(P<.001), Y1 (P<.001), X7 (P<.001), and Z6 (P<.001). The
following 4 semantic features had a statistically similar
distribution in easy and difficult texts, with negative regression
coefficients: A2 (P=.12), A15 (P=.83), B1 (P=.16), and T2
(P=.07). This suggests that statistical significance is not the
only determinant in the development of LR algorithms. Feature
interaction may also impact the performance of algorithms,
although the impact of individual features on model sensitivity
and specificity was not statistically significant.

To assess the impact of features on model performance, we
conducted successive permutation of features to examine
changes in the sensitivity and specificity of the LR algorithm.
The LR model with the 22 optimized features achieved the
highest sensitivity (mean 0.813, SD 0.018) and the highest
specificity (mean 0.896, SD 0.050), when compared with other
feature sets, which were optimized either automatically or
statistically. Within the best performing model, the following
3 semantic features caused a statistically significant decrease
in model sensitivity for predicting the linguistic easiness of
online health information: Z8 (pronouns), A2 (words describing
causes, effects, or causal relations), and X2 (words describing
mental status, actions, or processes). We interpreted this
important finding in light of the impact of an information logic
sequence on reading experiences. The use of pronouns and
words describing the causal relations can significantly increase

the explicitness of the logical structure of health information
[32-34]. The addition of words describing mental status, actions,
and processes can help with the reasoning and mental processing
of health information [35-38]. Different from the impact on
sensitivity, none of the individual features caused a statistically
significant decrease in specificity for predicting the difficulty
of health materials for international tertiary students. This
finding correlates well with existing research on readability.
Linguistic features, such as word length, word frequency, and
word familiarity, and other structural features have proven to
be highly relevant and reliable predictors of textual complexity
and difficulty [39].

Limitations
Our study developed an LR algorithm with a small number of
features to predict the easiness and difficulty of online health
information. The intended users were young adults with
university degrees but with nonnative English-speaking
backgrounds. The model is limited to this user group. The
extensibility of our study findings to other user groups and
online health materials in other languages remains to be tested
and validated. Another limitation of our study is that the LR
model using the finalized 22 features did not achieve statistically
significant improvement over the LR model using the 115 and
67 features identified automatically. In future research, we will
explore models that can achieve better performance with a small
set of features that are linguistically meaningful and significant
as well.

Conclusion
We developed a high-performing LR algorithm with a small
number of semantic features to predict the easiness versus
difficulty of online English health resources for young adults
(tertiary students) with nonnative English-speaking backgrounds.
We found that reducing the number of features is essential to
prevent overfitting, since models with less features are less
likely to have overfitting issues. Furthermore, machine learning
models with less features are less complex, are more
interpretable, and have better generalization [40]. The result
also demonstrates the stability and robustness of the algorithm
with linguistically relevant features. Our study shows that
incorporating linguistic knowledge and machine learning–aided
feature selection to reduce the feature space can help develop
more efficient and less complex models with a good
generalization ability.
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