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Abstract

Background: Foodborne diseases have a high global incidence; thus, they place a heavy burden on public health and the social
economy. Foodborne pathogens, as the main factor of foodborne diseases, play an important role in the treatment and prevention
of foodborne diseases; however, foodborne diseases caused by different pathogens lack specificity in their clinical features, and
there is a low proportion of actual clinical pathogen detection in real life.

Objective: We aimed to analyze foodborne disease case data, select appropriate features based on analysis results, and use
machine learning methods to classify foodborne disease pathogens to predict foodborne disease pathogens for cases where the
pathogen is not known or tested.

Methods: We extracted features such as space, time, and exposed food from foodborne disease case data and analyzed the
relationships between these features and the foodborne disease pathogens using a variety of machine learning methods to classify
foodborne disease pathogens. We compared the results of four models to obtain the pathogen prediction model with the highest
accuracy.

Results: The gradient boost decision tree model obtained the highest accuracy, with accuracy approaching 69% in identifying
4 pathogens: Salmonella, Norovirus, Escherichia coli, and Vibrio parahaemolyticus. By evaluating the importance of features
such as time of illness, geographical longitude and latitude, and diarrhea frequency, we found that these features play important
roles in classifying foodborne disease pathogens.

Conclusions: Data analysis can reflect the distribution of some features of foodborne diseases and the relationships among the
features. The classification of pathogens based on the analysis results and machine learning methods can provide beneficial
support for clinical auxiliary diagnosis and treatment of foodborne diseases.

(JMIR Med Inform 2021;9(1):e24924) doi: 10.2196/24924
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Introduction

Background
Foodborne diseases refer to diseases caused by pathogenic
factors such as harmful substances that enter the body through

food intake [1]. They are usually associated with contaminated
foods and pathogens or viruses contained in foods. A foodborne
disease outbreak is defined as an incident in which 2 or more
people experience similar diseases after consuming the same
food [2]. According to a World Health Organization (WHO)
report [3], 600 million people worldwide suffered from diseases
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caused by eating contaminated food every year, of whom 4.2
million die. According to the Centers for Disease Control
(CDC), 48 million people are infected with foodborne diseases
every year in the United States, 128,000 of whom are
hospitalized and 3000 of whom die [3]. In recent years, China
has also begun monitoring foodborne diseases. In 2008, 294,000
people suffered from foodborne diseases, 50,000 of whom were
hospitalized and 6 died [4]. Currently, the incidence of
foodborne diseases is among the highest in all kinds of diseases
[5]. Frequent occurrences of foodborne diseases at home and
abroad seriously endanger public health and social economy
and have become an important public health and food safety
issue in the world. Foodborne disease–related research and
prevention efforts are urgent.

Therefore, many researchers at home and abroad study
foodborne diseases, including monitoring, identification and
outbreak prediction. The Foodborne Diseases Active
Surveillance Network was established in the United States to
monitor, track, analyze, and prevent foodborne diseases [6]. In
recent years, China has also established surveillance platforms
for foodborne diseases, such as the National Foodborne Disease
Surveillance Reporting System [7], which classifies, stores,
monitors, and statistically analyzes foodborne disease
surveillance data collected nationwide. Methods for
identification and diagnosis of foodborne diseases are mainly
categorized into 2 types—one analyzes the molecular subtypes
of pathogens using biochemical tests to diagnose foodborne
diseases, another often uses statistical analysis or machine
learning algorithms to identify disease information that may be
included in the data [8]. For foodborne disease outbreak
prediction, regression, clustering, hidden Markov model, and
some timeseries prediction methods are usually used.

The main cause of foodborne diseases is that patients are
infected with contaminated foods, which causes the pathogens
to enter the body [9]. Therefore, research on pathogens of
foodborne diseases are of great significance. However, the
clinical features of foodborne diseases caused by different
pathogens are not specific, and it is difficult to intuitively
identify pathogens according to patient information and disease
description. Traditional pathogen identification methods based
on laboratory testing usually take a long time [10]. In recent
years, researchers have proposed some methods for rapid
detection of pathogens in foodborne diseases [11-13], including
nucleic acid, immune, and biosensor methods; however, these
methods require very professional equipment, and there are still
some limitations in practical applications. Therefore, only a
small proportion of foodborne diseases have been carried out
the identification of pathogens, which greatly hinders the
diagnosis of foodborne diseases and may affect doctors' ability
to treat diseases caused by different pathogens and may even
result in misdiagnosis. At the same time, the low proportion of
foodborne pathogens identification also leads to incomplete
disease data for analysis, which has a negative effect on disease
burden estimation and outbreak prediction [14].

Related Work

Foodborne Disease Analysis Based on Surveillance
Platform Data
The international community has always attached great
importance to the research on foodborne diseases and has carried
out many related works. The data sources for these studies
include surveillance platforms, social networks, hotlines, search
engines, and food samplings [15-18]; however, compared with
other data sources, the data from surveillance platforms are
reliable and authoritative, and the analysis results based on these
data are more credible. That is because these data are usually
from hospitals or health departments, and the data are all
confirmed foodborne disease cases. Therefore, many foodborne
disease–related surveillance platforms have been established
internationally to support foodborne disease research. In 1995,
the United States established the Foodborne Diseases Active
Surveillance Network to monitor and track foodborne diseases
[6]. The Foodborne Disease Outbreak Surveillance System is
a CDC-sponsored platform for collecting information on
foodborne disease outbreaks. It collects information on
foodborne disease outbreaks into reports and uploads them to
National Outbreak Reporting System every year [19,20]. In
2000, WHO established the Global Foodborne Infection
Network for the monitoring, control and prevention of foodborne
diseases. In addition, there are some other foodborne disease
surveillance platforms, such as PulseNet [21] and GenomeTrakr
[22]. In recent years, China has also paid attention to the
surveillance of foodborne diseases. China Food Safety Risk
Assessment Center established a National Foodborne Disease
Surveillance Reporting System [7] to collect, store, analyze and
track foodborne disease data nationwide. The data in the system
contain disease case information, test information, exposed food
information, and report information, which can be used for
analysis and research on foodborne diseases.

These foodborne disease surveillance platforms provide a unified
and authoritative source for foodborne disease data. Research
on foodborne diseases using data from surveillance platforms
have been popular for a long time [4,23-28]. However, most of
foodborne disease research based on surveillance platform data
are concentrated on statistical analysis; only a few use the data
for disease aggregation analysis and outbreak prediction [29],
and it has not yet been proposed to identify pathogens using
surveillance platform data. As the traditional methods of
pathogens’ identification using biochemical testing are
time-consuming and require technical support, a large proportion
of the confirmed foodborne disease cases in the surveillance
system have not been tested for pathogens, which will affect
the subsequent estimation of foodborne disease burden and
foodborne disease outbreak prediction [14]. Therefore, an
accurate identification approach for foodborne pathogens based
on surveillance platform data is still necessary.

Foodborne Disease Analysis Based on Machine
Learning
Machine learning addresses the question of how to build
computers that improve automatically through experience; it is
one of the most rapidly growing technical fields [30]. In recent
years, machine learning has been widely used in various fields,

JMIR Med Inform 2021 | vol. 9 | iss. 1 | e24924 | p. 2http://medinform.jmir.org/2021/1/e24924/
(page number not for citation purposes)

Wang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


including epidemiology. Researchers propose many methods
based on machine learning to diagnose diseases, predict outbreak
of diseases, analyze gene of disease pathogens, and so on
[31,32]. The successful application of machine learning in
epidemiology has brought enlightenment to the study of
foodborne diseases; many works have been carried out to solve
foodborne disease problems using machine learning methods.
In the identification of foodborne diseases, many studies choose
supervised classification models as well as unsupervised
clustering methods instead of traditional statistical methods [8],
and it is proved that these studies can obtain good results. In
the foodborne disease outbreak prediction, researchers also use
machine learning methods, such as hidden Markov models [33]
and DBScan models [29]. In addition, there are some works
using machine learning methods to analyze foodborne
pathogens. Several classification models have identified
pathogens by using near infrared laser scatter images [13].
Machine learning is applied in the gene sequence analysis of
foodborne pathogens, resulting in more accurate and quicker
analysis [34]. The decision tree method is also used to mine the
association between food, location, and pathogens based on
CDC data [35].

Compared with traditional statistical analysis methods, machine
learning methods can achieve more accurate result faster and
can handle larger and more complex data. Therefore, machine
learning methods have become popular methods to solve
problems of foodborne diseases. However, most of these studies
focus on the identification or prediction of diseases [8,29,31-33],
and only a small part of them were carried out for the analysis
of disease pathogens [13,34,35]. Often, molecular typing or
gene sequence of pathogens rather than disease case information
are used. There are a few machine learning–related works
proposed to analyze the relationship between pathogens and
disease case data from surveillance platform.

Methods

Data Description
Our data source was the National Foodborne Disease
Surveillance Reporting System [7], which collected 2.6 million

foodborne disease cases from 2011 to 2018. About 60,000 of
them have been tested and certain pathogens have been
identified, accounting for only 3% of all cases. Among the
60,000 tested cases, a total of 26 pathogens were identified, as
shown in Table 1. Among them, the China Food Safety Risk
Assessment Center focuses on the detection of Salmonella,
Norovirus, Escherichia coli, Vibrio parahaemolyticus, and
Shigella, and the first 4 pathogens (Salmonella: 26.5%;
Norovirus: 25.9%; E coli: 20.9%; V parahaemolyticus: 18.6%)
total more than 50,000, accounting for 92% of the total cases,
as shown in Table 1. Therefore, in the following work, we
mainly focus on these 4 pathogens.

One case data entry contains information on the patient’s age,
gender, home address, time of illness, time of treatment,
symptoms, diagnosis, and related food information (including
food name, food type name, food processing type, food purchase
location, and food intake location). There are also samples and
sample test items related to the case, including type, number,
number of strains, test method, test item category, test item
name, and test result. We used pathogen types as labels. In the
process of feature selection, we excluded some food and
laboratory testing information. As a result, the selected features
included patient's age, patient's gender, home address, time of
illness, symptoms, diagnosis, food name, and food type.

We conducted exploratory data analysis to understand the
feature distribution and guide data preprocessing in the
subsequent step. We use the map to show the geographical
distribution of the detection rate of the 4 pathogens. Some
research indicated that foodborne diseases have a seasonal
pattern and that climatic temperature could be a factor of
incidence [36]. Therefore, we performed a visual analysis of
the detection rate of the 4 pathogens by time. We also calculate
the distribution of patients’ age with different pathogens and
visualize the distribution of patients’ age. Besides, we also
performed a visual analysis of the gender of the patient and the
type of exposed food. The food names, symptoms, and diagnosis
were textual information; therefore, they were not explored.
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Table 1. Distribution of pathogens involved in the cases.

Count, nPathogen

16378Salmonella

16052Norovirus

12947Escherichia coli

11503Vibrio parahaemolyticus

2004Shigella

1174Rotavirus

452Campylobacteria

618Other pathogens

348Staphylococcus aureus

114Adenovirus

114Aeromonas hydrophila

112Star shaped virus

97Listeria monocytogenes

75Zagreb as viruses

37Vibrio cholerae

22Vibrio vulnificus

17Yersinia enterocolitica

14Bacillus cereus

10Organophosphorus

7Enterobacter sakazakii

7E coli O157: H7/NM

5Other viruses

3Coliform count

2Mold count

2Hemolytic streptococcus

1Clostridium botulinum

1Rodenticide class

1Determination of total number of colonies

Data Preprocessing
The original data formats are described in Table 2. We mapped
the 4 pathogens (Salmonella, Norovirus, E coli, and V
parahaemolyticus) into 4 classification labels. We converted
the gender data in nominal format into a binary variable, and
extracted the month value from the time of illness as a time

attribute. For the age attribute, we used 10-year intervals. Home
address is a distinguishable attribute, but it was stored in 3 fields
(province, city and district) in the database, and each field was
in numeric format. We remapped the 3 fields into text formats
according to dictionaries, combined them, and calculated
corresponding latitude and longitude as location attributes.
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Table 2. The original format and description of attribute data.

DescriptionFormatAttribute

The name of pathogensNominalPathogen name

The age of patientsNumericAge

The gender of patientsNominalGender

The time of illnessDateSick time

The value of province in patients’ home address after dic-
tionary mapping

NumericProvince

The value of city in patients’home address after dictionary
mapping

NumericCity

The value of district in patients’ home address after dictio-
nary mapping

NumericDistrict

The symptom information of patientsTextSymptom

The diagnosis information of patientsTextDiagnosis

The name of food which patients ateTextFood name

The type of food which patients ateNominalFood type name

Symptom and diagnosis fields were in text format. Each
symptom field (or diagnosis field) contained a series of
symptoms (or diagnoses), separated by a comma. When we
processed the symptom field, word segmentation into a set of
symptoms was performed. For the diarrhea symptom, we
mapped all diarrhea features that appear in the data to a
dictionary. The diarrhea trait of each disease case was expressed
as its corresponding value in the dictionary, the diarrhea
frequency of each disease case was the value extracted from
the disease case, and the diarrhea frequency of cases without
diarrhea was expressed as 0. For the vomiting symptom, we

selected vomiting frequency as the attribute, and the value was
in numeric format. For cases without vomiting, the frequency
of vomiting was 0. For the fever symptom, we extracted the
body temperature of each disease case and divided the body
temperature into 4 grades (no fever, low, medium, high). For
other symptoms, we converted them into a collection of binary
variables, and we set a threshold to filter out the symptoms that
occur too few times. Examples of symptoms after cleaning and
transforming are shown in Table 3. For the diagnosis field, we
conducted word segmentation and mapped the segmented
diagnose into a collection of binary variables.

Table 3. Representation of symptoms of example cases.

VectorSymptom field

Example case 2Example case 1

01Diarrhea traits

05Diarrhea frequency

10Fever

01Sick

01Hypourocrinia

30Vomiting frequency

00Thirst

00Weak

00Stomachache

00Pale complexion

00Tenesmus

00Dehydration

The exposed food information related to the disease case
included the type and name of the food. There were 23 food
categories which were expressed in nominal format. We
converted these into one-hot representations. We first performed
data cleaning and word segmentation on the food name field.
We removed punctuation, special characters, and numbers, then

used the word segmentation tool to segment the food name into
a collection of words. Since food name was a text field, we used
word2vec, an approach that trains an N-gram language model
using a neural network and finds vectors corresponding to the
words to learn high quality spatial representation of words from
a large amount of unstructured text data [37], to embed food
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name information into vectors, using an open pretrained Chinese
word embedding model [38] to represent the food name that
trains text data from Baidu Encyclopedia. After mapping words
into vectors, semantically similar words were relatively close
in the vector space. To maintain the same dimension in each
disease case, we calculated the average value of word vectors
for each food name and obtained a 300-dimension vector for
each food name field. Then, using variance for feature selection,
we determined the final variance threshold and the dimension
of the word vectors by comparing the model results under

different thresholds to reduce the dimension of word vectors to
control the feature dimension within a reasonable range and
reduce the training time of model. In addition, we used
t-distributed stochastic neighbor embedding to reduce the word
vectors to 2 dimensions and used a scatter plot to represent word
vectors of the top 5 foods (we removed unknown foods, mixed
foods, multiple foods and other foods) with the highest
frequency among the 19 types [39], shown in Figure 1. Finally,
all features were combined into 349-dimension vectors.

Figure 1. Representation of word vectors of food names in 2 dimensions.

Classification Methods
Statistical analysis revealed the distribution of the 4 pathogens
was relatively balanced; therefore, no extra sampling was
required. We trained decision tree, random forest, gradient boost
decision tree (GBDT), and adaptive boosting models with the
processed data in Python (version 3.7; Scikit-learn package

[40]) and compared the results to obtain the best classification
model.

Decision tree [41] is a nonparametric supervised learning
method widely used in classification and regression. It differs
from other classifiers that put all the features into the classifier
at once. It decomposes the complex decision-making process
into recursive steps, dividing the features. It does not require
data normalization and has good interpretability [41].
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Random forest is an ensemble model based on decision trees
that can solve the problem of weak generalizability of decision
trees [42]. It builds multiple decision trees and uses voting
methods to obtain the final result. Each tree uses a replacement
sampling method to obtain the training data and samples the
features in a certain proportion. It can process high-dimensional
data without feature selection. For unbalanced data sets, errors
can be balanced; however, random forests may overfit on noisy
data sets [42].

GBDT is also an integrated model based on decision trees [43].
Unlike random forest, which uses bagging to randomly select
samples, GBDT uses the boosting method; it uses a serial
training method to add the results of weak classifiers to obtain
the prediction value. When training the next weak classifier, it
fits the residual between the predicted value of the previous
round of classifiers and the true value to improve the
classification result.

Adaptive boosting is an integrated learning model that combines
multiple weak classifiers into a strong classifier [44]. It can
increase the weight of a sample that was misclassified by the
previous weak classifier adaptively and train the next weak
classifier. It has a better classification effect than a single
decision tree [44].

Training and Evaluation
We divided 50,216 samples into training and test sets at a ratio
of 7:3. The size of the training set was 35,151 samples, and the
size of the test set was 15,065 samples. To tune the parameters,
we used the grid search method. Specifically, we estimated the
range of several important parameters in the model (such as the
threshold of variance in feature selection, the number of weak
classifiers, the depth of the tree, the minimal number of sample
partitions, and the learning rate), and set a step size to obtain
all the possible values of these parameters. The parameter
combination that obtained the best model result was selected.
In addition, we also used 10-fold cross-validation to improve
the robustness of the model. Normalized confusion matrix,
accuracy, macro-averaged precision (macro-P), macro-averaged
recall (macro-R), and macro-averaged F1 score (macro-F1)
were used to evaluate models. Multimedia Appendix 1 lists the
evaluation criteria formulas.

Feature Importance Evaluation
In order to understand which features have a more important
impact in the classification process, we calculated the
importance value of each feature. The classification models we
used were all based on tree structures, and the model of tree
structures has natural advantages over other classification

models in terms of interpretability. There are 2 ways to calculate
the importance of features: Variable importance and Gini
importance. Here, we used Gini importance to calculate the
importance of features.

Gini importance is the degree to which the Gini index of a
branch node formed by M is calculated for a feature M [45].
For the entire model, the average value of the Gini index of the
feature on all trees is calculated. In the classification process
based on tree structures, the faster the Gini index declines after
a node splits, the greater the influence of the feature value
represented by the split node on the classification result. The
formula for Gini importance is shown as below.

where D represents the entire data set, and pi represents the
probability of occurrence of each class. △Gini(M) represents
the decrease of impurity when adding the feature M. D1 and D2

represent the data set divided by feature M. The greater the value
of △Gini(M), the higher the feature importance.

Results

Data Analysis
Through the geographical distribution of the detection rate of
pathogens (Figure 2), it can be seen that the geographical
distribution of the detection rate of different pathogens is
somewhat distinguishable. According to the detection rate of 4
pathogens in different months as shown in the upper left of
Figure 3, it can be seen that there are some differences among
the 4 pathogens in seasons or months. For example, V
parahaemolyticus occurs more frequently in summer, while
Norovirus occurs more frequently in autumn and winter.
Therefore, we can consider month as the time feature in data
preprocessing. Through the distribution of age of patients of 4
pathogens (the upper right of Figure 3), the distribution trends
of E coli, Salmonella, and Norovirus in different age groups are
similar, and they were concentrated between 0 and 10 years old.
Patients with V parahaemolyticus were between 20 and 40 years
old, which was different from the other 3 pathogens. The bottom
left of Figure 3 shows the gender distribution and the bottom
right of Figure 3 shows the distribution of 4 pathogens in 23
food categories. These analysis results show the difference
among 4 pathogens.
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Figure 2. The geographic distribution of the detection rates of pathogens.
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Figure 3. The distribution chart of the features of foodborne diseases. The upper left is the distribution of the detection rate of the pathogens by time;
the upper right is the distribution of the pathogens by patient age; the bottom left is the distribution of the pathogens by patient gender; and the bottom
right is the distribution of the pathogens by food type.

Classification Results
The decision tree model's performance was worse than the those
of the other 3 integrated models; its accuracy, macro-P,
macro-R, and macro-F1 rate were approximately 63% (Table
4). Because the decision tree requires adjustment of fewer
parameters and the model is relatively simple, we chose to use
the decision tree model to perform feature selection and applied
the results to the other models to reduce the number of
parameters in those models that need to be adjusted. By
comparing the model results under different variance thresholds,
we found that increases in the word vector dimension did not
greatly improve the effect of the model but increased the training
time. Therefore, to balance the model effect and time cost, we
finally retained a 30-dimensional word vector feature.

Each tree in the random forest model used replaceable data and
feature sampling, and decision trees were parallel. The
classification results were better than those for a single decision
tree. After adjusting the number of decision trees, the depth of
the tree, and the minimum number of split samples, the average

accuracy of the random forest model was 1% higher than that
of the decision tree model.

The classification results of the GBDT model were better than
those of the other models. When training the GBDT model, we
set the size of feature set to 0.8, which means that each single
decision tree in GBDT only selects 80% of the features for
training, to ensure that each training process focused on different
combinations of features. After parameter tuning (weak
classifier: 171; depth of the tree: 20; minimum number of sample
partitions: 50), an accuracy of 69% was achieved.

Adaptive boosting reach an accuracy of approximately 67%,
only lower than that of the GBDT model.

The classification recalls of the 4 pathogens (Norovirus, E coli,
V parahaemolyticus, Salmonella) were 69%, 60%, 73%, and
69%, respectively (Table 5). Among misclassified E coli
samples, approximately 17% of the samples were misclassified
as Norovirus, 10% of the samples were misclassified as V
parahaemolyticus, and 13% of the samples were misclassified
as Salmonella.
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Table 4. The classification results of 4 classification models.

AccuracyMacro-F1cMacro-RbMacro-Pa

0.630.630.630.62Decision tree

0.640.640.640.63Random forest

0.690.690.690.68GBDTd

0.670.670.660.67AdaBooste

aMacro-P: macro-averaged precision.
bMacro-R: macro-averaged recall.
cMacro-F1: macro-averaged F1 score.
dGBDT: gradient boost decision tree.
eAdaBoost: adaptive boosting.

Table 5. Normalized confusion matrix of classification result in the GBDT model.

PredictedActual

SalmonellaV parahaemolyticusE coliNorovirus

0.130.060.130.69Norovirus

0.130.100.600.17E coli

0.100.730.120.05V parahaemolyticus

0.690.090.100.12Salmonella

Feature Importance Evaluation
For the 4 classifiers, the top 10 important features of each
classifier are shown in Table 6.

According to Table 6, we can see that the 4 classifiers have
higher feature importance values in the longitude and latitude
of the geographical location, the time of illness, the age of
patient, the name of food, and certain symptoms (such as fever,
frequency of diarrhea, frequency of vomiting). This means that
these attributes have a great influence on the discrimination of

pathogens. In addition, GBDT, decision tree, and AdaBoost
also have relatively high importance value on diarrhea traits,
and the stomachache symptom has a high impact on the
classification process of the AdaBoost model and the random
forest model. In the food types, aquatic animals and their
products had a high impact on the classification process using
decision tree or random forest. Combined with the previous
exploratory analysis of data distribution, we can find that the
attributes with large differences in data distribution have larger
attribute importance values too.

Table 6. The top 10 important features in the 4 classifiers.

AdaBoostbGBDTaRandom forestDecision treeImportance rank

LatitudeLatitudeSick timeLatitude1

LongitudeLongitudeLatitudeSick time2

Sick timeSick timeLongitudeLongitude3

Age of patientsDiarrhea frequencyAge of patientsAge of patients4

Diarrhea FrequencyAge of PatientsFeverFever5

Food nameDiarrhea traitsAquatic animals and their
products

Vomiting frequency6

Diarrhea frequencyFood nameVomiting frequencyDiarrhea frequency7

Diarrhea traitsVomiting frequencyDiarrhea frequencyFood name8

FeverFeverFood NameAquatic animals and their
products

9

StomachacheGender of patientsStomachacheDiarrhea traits10

aGBDT: gradient boost decision tree.
bAdaBoost: adaptive boosting.
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Discussion

Principal Results
We used foodborne disease case data to visually analyze several
features of foodborne diseases, and we found that the analysis
results were consistent with those of previous studies in some
aspects. For example, Norovirus occurs more frequently in
autumn and winter [46], and distribution trends of patients’ age
of E coli, Salmonella, and Norovirus are concentrated between
0 and 10 years old, which is consistent with a study result that
young children are more susceptible to foodborne diseases [5].
Besides, for the 4 foodborne pathogens, there were differences
in geographical, time of illness, patients’ age, patients’ gender,
and exposed food categories distribution.

Of the 4 machine learning methods that we used, the
best-performing classification model was the GBDT model with
a classification accuracy up to 69% with the optimal parameters
being 171 weak classifiers, depth of the tree—20, and minimum
number of sample partitions—50, the dimension of word vector
of food name—30. The classification recall of V
parahaemolyticus was the highest, reaching almost 73%, while
for E coli, it was only 60%. The model was most likely to
mistake Norovirus for E coli. Based on this result, it can be
reasonably inferred that the V parahaemolyticus is different
from the other 3 pathogens (with respect to disease case
information), and E coli and Norovirus may have similarities
in distribution areas, time of illness, disease symptoms, and
patient information.

We found that the 4 classifiers have higher feature importance
values for time of illness, geographical longitude and latitude,
and patient age. The optimal GBDT model had higher feature
importance values in terms of diarrhea frequency, food name,
and diarrhea traits. This result is consistent with the previous
data analysis to a certain extent, such as the distribution of the
4 pathogens in geographical space, time, and patient age is quite
different, so it further proves that our method is reasonable.

Primary Contribution
Supervised learning was conducted to extract distinguishable
features of different pathogens, then we compared the results
of multiple experiments to obtain the optimal classification
model for predicting possible pathogens for cases with unknown
pathogens. The classification accuracy of the optimal model for
Salmonella, Norovirus, E coli, and V parahaemolyticus can
reach 69%. The model also has good scores on other evaluation
indicators. Our contributions can be summarized as below:

1. We proposed a machine learning model that can
automatically predict pathogens without laboratory testing.
This model can potentially reduce the burden of demand
for domain knowledge and technical equipment.

2. We conducted a formal analysis of the relationship between
pathogens and several features of disease cases. This
approach help find some distinguishable features of different
pathogens.

3. Our approach can assist doctors to quickly identify the
pathogens of foodborne diseases, especially if there is no

sufficient test equipment and budget. This can help doctors
give specific medical treatment for foodborne diseases
caused by different pathogens and provide support for more
accurate diseases burden estimation. It may also lead to a
more accurate foodborne disease outbreak prediction.

Limitations
This study had certain limitations. First, it should be noted that
the disease case data come from a surveillance platform, and
results are, therefore, influenced by the quality of the
surveillance platform data—though the data were confirmed
cases from hospitals or the CDC, and thus very reliable, the
scope was limited. Many people may choose to buy
nonprescription drugs rather than go to the hospital for treatment
when their illness is not as severe; therefore, the number of
disease cases collected in the surveillance platform may be
lower than the actual value [14]. To solve this problem,
aggregating other data sources, such as social network data or
search engine data, is a useful solution. Second, a large number
of patients were between 0 and 10 years old. Although some
studies have shown that the burden of disease caused by
foodborne disease is higher in young children [46], it has not
excluded that children have a higher probability of visiting a
doctor after illness than adults. Third, in the geographical
distribution of pathogens, there were some differences for the
4 pathogens, but distribution may be affected by population size
and economic status. For example, the population and economic
conditions in the eastern part of China are better than those in
western part, thus the incidence rate in the east may be higher
than that in the west.

Conclusions
We presented a machine learning–based classification method
for pathogens of foodborne diseases using the case data of
foodborne diseases in the National Foodborne Disease
Surveillance Reporting System. Our optimal model achieved a
69% classification accuracy rate on Salmonella, Norovirus, E
coli, and V parahaemolyticus. Pathogens are the main cause of
foodborne diseases, research on pathogens is essential for
foodborne diseases; however, due to the time and technical
limitations, pathogen detection is generally performed in only
a few cases, causing difficulty for identification and diagnosis
of diseases. We proposed a classification method that can predict
pathogens of diseases without laboratory testing. Although this
method cannot replace traditional laboratory testing, it can be
used to assist traditional identification with little time cost and
equipment requirements. This method can help to quickly
identify and diagnose foodborne disease and offer some
guidance for specific medical treatments for foodborne diseases
caused by different pathogens. In addition, it can also provide
some support for improving accuracy rate in further foodborne
diseases burden estimation and outbreak prediction.

In the future, we plan to compare our results with data from the
foodborne disease outbreak surveillance system for optimization
guidance, and we will try to add other domain knowledge or
refer to other data sources to get more reliable results. In
addition, we will carry out disease outbreak prediction.
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