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Abstract

Background: SARS-CoV-2, the novel coronavirus responsible for COVID-19, has caused havoc worldwide, with patients
presenting a spectrum of complications that have pushed health care experts to explore new technological solutions and treatment
plans. Artificial Intelligence (AI)–based technologies have played a substantial role in solving complex problems, and several
organizations have been swift to adopt and customize these technologies in response to the challenges posed by the COVID-19
pandemic.

Objective: The objective of this study was to conduct a systematic review of the literature on the role of AI as a comprehensive
and decisive technology to fight the COVID-19 crisis in the fields of epidemiology, diagnosis, and disease progression.

Methods: A systematic search of PubMed, Web of Science, and CINAHL databases was performed according to PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines to identify all potentially relevant studies
published and made available online between December 1, 2019, and June 27, 2020. The search syntax was built using keywords
specific to COVID-19 and AI.

Results: The search strategy resulted in 419 articles published and made available online during the aforementioned period. Of
these, 130 publications were selected for further analyses. These publications were classified into 3 themes based on AI applications
employed to combat the COVID-19 crisis: Computational Epidemiology, Early Detection and Diagnosis, and Disease Progression.
Of the 130 studies, 71 (54.6%) focused on predicting the COVID-19 outbreak, the impact of containment policies, and potential
drug discoveries, which were classified under the Computational Epidemiology theme. Next, 40 of 130 (30.8%) studies that
applied AI techniques to detect COVID-19 by using patients’ radiological images or laboratory test results were classified under
the Early Detection and Diagnosis theme. Finally, 19 of the 130 studies (14.6%) that focused on predicting disease progression,
outcomes (ie, recovery and mortality), length of hospital stay, and number of days spent in the intensive care unit for patients
with COVID-19 were classified under the Disease Progression theme.

Conclusions: In this systematic review, we assembled studies in the current COVID-19 literature that utilized AI-based methods
to provide insights into different COVID-19 themes. Our findings highlight important variables, data types, and available
COVID-19 resources that can assist in facilitating clinical and translational research.
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Introduction

COVID-19 is a global health crisis, with more than 16 million
people infected and over 666,000 deaths reported (up to July
29, 2020) worldwide [1]. The resulting impact on health care
systems is that many countries have overstretched their resources
to mitigate the spread of the pandemic [2]. In addition, a high
degree of variance in COVID-19 symptoms has been reported,
with symptoms ranging from a mild flu to acute respiratory
distress syndrome (ARDS) or fulminant pneumonia [3-5]. There
is an urgent need for effective drugs and vaccines for COVID-19
treatment and prevention. Owing to the lack of validated
therapeutics, most containment measures to curtail the spread
of the disease rely on social distancing, quarantine measures,
and lockdown policies [2,6]. The transmission of COVID-19
has been slowed as a result of these measures, but not
eliminated. Moreover, with the ease of restrictions, a fear of the
second wave of infection is prevalent [7,8]. To prevent the
second potential outbreak of COVID-19, there is a need for
advanced containment measures such as contact tracing and
identification of hotspots [9,10].

Artificial intelligence (AI) encompasses a broad spectrum of
technologies that aim to imitate cognitive functions and
intelligent behavior of humans [11]. Machine learning (ML) is
a subfield of AI that focuses on algorithms that enable computers
to define a model for complex relationships or patterns from
empirical data without being explicitly programmed [11]. Deep
learning (DL), a subcategory of ML, achieves great power and
flexibility compared to conventional ML models by drawing
inspiration from biological neural networks to solve a wide
variety of complex tasks, including the classification of medical
imaging and natural language processing (NLP) [11].

AI techniques have been employed in the health care domain
on different scales ranging from the prediction of disease spread
trajectory to the development of diagnostic and prognostic
models [12-14]. A study by Ye et al [15] identified and
evaluated various health technologies, such as big data, cloud
computing, mobile health, and AI, to fight the pandemic. These
technologies and a wide range of data types, including data from
social media, radiological images, omics, drug databases, and
public health agencies, have been used for disease prediction
[1,14,16-19]. Several studies have focused on reviewing
publications that discuss AI applications to support the
COVID-19 response [12,13,15,20,21]. One of the early studies
by Vaishya et al [20] identified 7 critical areas where AI can be
applied to monitor and control the COVID-19 pandemic.
However, given that this was an early work, this review lacked
publications in all the 7 areas. In a later study, Lalmuanawma
et al [12] built upon these 7 areas by identifying and performing

a rapid review of the then available studies; however,
considering this was a rapid review, only limited studies were
included, and the qualification criteria were not clear.
Furthermore, a study by Shi et al [21] focused on AI applications
to radiological images, and a study by Wynants et al [13]
focused on critical appraisal of models that aimed to predict the
risk of developing the disease, hospital admission, and disease
progression. Nevertheless, the majority of epidemiological
studies that aimed to model disease transmission or fatality rate,
among other factors, were excluded in this study.

The primary aim of this study was to conduct a comprehensive
systematic literature review on the role of AI as a technology
to combat the COVID-19 crisis and to assess its application in
the epidemiological, clinical, and molecular advancements.
Specifically, we summarized the areas of AI application, data
types used, types of AI methods employed and their
performance, scientific findings, and challenges experienced in
adopting this technology.

Methods

This systematic literature review followed the guidelines of
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) framework for preparation and reporting
[22].

Eligibility Criteria
This study focused on peer-reviewed publications as well as
preprints that applied AI techniques to analyze and address the
COVID-19 crisis on different scales, including diagnostics,
prognostics, disease spread forecast, omics, and drug
development.

Data Sources and Search Strategy
PubMed, Web of Science, and CINAHL databases were
searched, restricting the search to research articles published in
English and in peer-reviewed or preprint journals or conference
proceedings available from Dec 1, 2019, through June 27, 2020.
The search syntax was built with the guidance of a professional
librarian and included the following search terms:
“CORONAVIRUS,” “COVID-19,” “covid19,” “cov-19,”
“cov19,” “severe acute respiratory syndrome coronavirus 2,”
“Wuhan coronavirus,” “Wuhan seafood market pneumonia
virus,” “coronavirus disease 2019 virus,” “SARS-CoV-2,”
“SARS2,” “SARS-2,” “2019-nCoV,” “2019 novel coronavirus,”
“novel corona,” “Machine Learning,” “Artificial Intelligence,”
“Deep Learning,” “Neural Network,” “Random Forest,”
“Support Vector Machine,” and “SVM.” Refer to Multimedia
Appendix 1 for search query syntax. Figure 1 illustrates the
process of identifying eligible publications.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram of systematic identification, screening,
eligibility, and inclusion of publications that applied artificial intelligence techniques to tackle the COVID-19 pandemic.

Study Selection
Following the systematic search process, 419 publications were
retrieved. Of that, 61 duplicate publications were removed,
leaving 358 potentially relevant articles for title and abstract
screening. Two teams of reviewers (HB, SS and MS, SB)
screened these articles independently, following which an
additional 203 publications were removed, and 155 publications
were retained for a full-text assessment. These publications
were further assessed for eligibility, resulting in a total of 130
publications that were included in the final analysis.
Disagreements between reviewers were resolved by an
independent review by a third reviewer (FS).

Data Collection and Analyses
Qualitative and quantitative descriptive analyses were performed
on the included studies (n=130) that had used AI techniques for
tackling the COVID-19 pandemic. Based on the area of
application, the studies were categorized into the following 3

themes: (1) Computational Epidemiology (CE), (2) Early
Detection and Diagnosis (EDD), and (3) Disease Progression
(DP). Qualitative analysis was performed on studies that
belonged to the CE theme and quantitative descriptive analysis
was performed for studies that belonged to the EDD and DP
themes. After data extraction and analysis, we summarized and
reported the findings in the form of tables and figures in
accordance with the aim of the study.

Results

Search Results
The search strategy yielded a total of 419 articles, which were
published and made available between December 1, 2019, and
June 27, 2020. Of which, 130 publications were selected for
further analyses. These 130 publications were categorized into
3 themes (ie, CE, EDD, and DP) based on the various AI
applications employed to combat the COVID-19 crisis. These
themes were identified based on AI techniques used to predict,
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classify, assess, track, and control the spread of the virus.
Descriptions of each theme and related publications are
presented in Table 1.

During the initial days of the COVID-19 outbreak, the majority
of published studies focused on predicting the outbreak and
potential drug discoveries; we identified 71 such studies and
classified them into the CE theme. Furthermore, 40 studies that
applied AI techniques to detect COVID-19 using patients’

radiological images or laboratory test results were grouped under
the EDD theme. Finally, 19 studies that focused on predicting
disease progression, outcomes (recovery and mortality), length
of stay, and the number of days spent in the intensive care unit
(ICU) for patients with COVID-19 were grouped under the DP
theme. Over time trend of COVID-19 publications by month
and themes is shown in Figure 2, which depicts an initial surge
of publications focusing on the CE theme followed by the EDD
theme.

Table 1. An overview of the 130 publications in the literature, classified into 3 themes and their descriptions. The themes are listed according to the
frequency of publication (percentage and absolute count).

Publication count, n (%)ReferencesDescriptionTheme

71 (54.6)[14,16,18,23-90]Publications focused on the development and application
of artificial intelligence models to tackle issues central to
epidemiology, such as disease trends and forecast of poten-
tial outbreak, pathobiology of coronavirus infection, protein
structures, potential drug discoveries, policies, and social
impact.

Computational Epidemiology

40 (30.8)[91-130]Publications focused on the application of artificial intelli-
gence techniques to detect and differentiate patients with
COVID-19 from the general population.

Early Detection and Diagnosis

19 (14.6)[17,131-148]Publications focused on the application of artificial intelli-
gence models to predict disease progression, severity, and
likely outcomes in the confirmed COVID-19 population.

Disease Progression

Figure 2. Over time (trend analysis) of COVID-19 studies focused on the application of artificial intelligence techniques that were made available
online in 2020, categorized into the following 3 themes: (1) Computational Epidemiology (CE), (2) Early Detection and Diagnosis (EDD), and (3)
Disease Progression (DP). For preprint articles, the publication month of the latest version available as of query search date was used.

Publications Focused on CE
The 71 studies that focused on epidemiological concerns of
COVID-19 were further classified into 3 categories: (1)
COVID-19 disease trajectory (CDT), (2) molecular
analysis-drug discovery (MADD), and (3) facilitate COVID-19
response (FCR). These classifications were based on the study
aims, that is, to predict outbreaks, potential drug discoveries,
policies, and other measures to contain the spread of COVID-19

(see Table 2). In all, 40 studies that focused on predicting
COVID-19 peaks and sizes globally and specific to a
geographical location, estimating the impact of socioeconomic
factors and environmental conditions on the spread of the
disease, and effectiveness of social distancing policies in
containing disease spread were categorized under CDT. Next,
22 publications were grouped under MADD based on the study
approach used, including studies focused on identification of
existing drugs that have the potential to treat COVID-19,
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analysis of protein structure, and prediction of mutation rate in
patients with COVID-19. Finally, 9 studies that emphasized on
building tools to combat the ongoing pandemic, such as building
a COVID-19 imaging repository, AI-enabled automatic cleaning
and sanitizing tasks at health care facilities that might assist
clinical practitioners to provide timely services to the affected

population, were categorized under FCR. The majority of
publications classified under the CE theme used data from either
social media (eg, 9 studies used data from Twitter, Weibo, or
Facebook) or public data repositories (Eg, NCBI, DrugBank
databases, and other health agencies). Details of individual
studies are provided in Multimedia Appendix 2.

Table 2. Computational Epidemiology publications (n=71) subclassified into 3 categories: (1) COVID-19 disease trajectory, (2) molecular analysis-drug
discovery, and (3) facilitate COVID-19 response.

Publication count, n (%)ReferencesDescriptionCategory

40 (56.3)[23-62]Publications focused on predicting COVID-19 peaks and
sizes globally (and specific to a geographical location),
estimating the impact of socioeconomic factors and envi-
ronmental conditions on the spread of the disease, and ef-
fectiveness of social distancing policies in containing dis-
ease spread.

COVID-19 disease trajectory

22 (31)[69-89]Publications focused on identifying existing drugs that have
the potential to treat COVID-19, analysis of protein struc-
ture, and predicting mutation rate in patients with COVID-
19.

Molecular analysis: drug discovery

9 (12.7)[63-68,90]Publications focused on building tools to combat the ongo-
ing pandemic, such as building a COVID-19 imaging
repository, artificial intelligence–enabled automatic clean-
ing and sanitizing tasks at health care facilities to assist
clinical practitioners to provide timely services to the af-
fected population.

Facilitate COVID-19 response

Publications Focused on EDD
We identified 40 publications that primarily focused on
diagnosing COVID-19 in patients with suspected infection
mostly by using chest radiological images, such as computed
tomography (CT), X-radiation (X-ray), and lung ultrasound
(LUS). As shown in Table 3, 23 studies used X-ray, 15 used
CT, 1 study used LUS, and 1 study used nonimaging clinical

data. Most studies used DL techniques to diagnose COVID-19
based on radiological images. Nine studies employed ResNet,
4 studies used Xception, and 3 studies used VGG neural network
models either for pretraining or as a diagnostic model. The only
study that used nonimaging clinical data to diagnose COVID-19
employed routine laboratory results captured in electronic health
record (EHR) systems. Details of individual studies are provided
in Multimedia Appendix 3.

Table 3. Early Detection and Diagnosis publications (n=40) subclassified into 4 categories based on the modality used for COVID-19 prediction: (1)
X-ray, (2) computed tomography, (3) lung ultrasound, and 4) nonimaging clinical data.

Publication count,

n (%)

ReferencesDescriptionCategory

23 (57.5)[91, 92, 95, 97-99, 101-106,
112-114, 117, 118, 122-124,
126, 127, 129]

Publications focused on the application of artificial intelli-
gence techniques to detect and differentiate patients with
COVID-19 from the general population using X-ray images.

X-ray

15 (37.5)[93, 94,96, 100, 107-111,
116,119-121, 125, 130]

Publications focused on the application of artificial intelli-
gence techniques to detect and differentiate patients with
COVID-19 from the general population using computed
tomography images.

Computed tomography

1 (2.5)[128]Publication focused on the application of artificial intelli-
gence techniques to detect and differentiate patients with
COVID-19 from the general population using lung ultra-
sound images.

Lung ultrasound

1 (2.5)[115]Publication focused on the application of artificial intelli-
gence techniques to detect and differentiate patients with
COVID-19 from the general population using nonimaging
clinical data.

Nonimaging clinical data

Publications Focused on DP
We identified 19 publications that were primarily focused on
the prognosis of disease in patients with COVID-19. We further

classified these studies into (1) risk stratification (n=15), which
included publications focused on assessing the risk of DP and
(2) hospital resource management (n=4), which included
publications focused on predicting the need for hospital
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resources (see Table 4). All 15 DP studies used demographic
variables, 13 studies used comorbidities, and 11 studies used
radiological images for analyses. Details of individual studies

grouped under this theme are provided in Multimedia Appendix
4.

Table 4. Disease Progression publications subclassified into 2 categories: (1) risk stratification and (2) hospital resource management.

Publication count, n (%)ReferencesDescriptionCategory

15 (78.9)[17, 131, 133, 134, 137-140,
142-148]

Publications focused on assessing the risk of disease
progression.

Risk stratification

4 (21.1)[132, 135, 136, 141]Publications focused on predicting the need for hospital
resources.

Hospital resource management

Discussion

AI techniques will continue to be used for the monitoring,
detection, and containment of the COVID-19 pandemic
[56,95,131]. Our systematic review focused on 130 studies that
applied AI methods and identified 3 broad themes: models
developed to address issues central to epidemiology, models
that aid the diagnosis of patients with COVID-19, and models
that facilitate the prognosis of patients with COVID-19. The 7
areas of AI application areas as identified by Vaishya et al [20]
were grouped into these themes, as described below.

Theme 1: CE models
In this theme, we review various AI techniques applied in
different areas of epidemiology.

AI Techniques for MADD

Current State of Drug Discovery for COVID-19

Currently, there is no available vaccine for treating COVID-19
patients, and this has forced researchers to invent new strategies
for expediting antiviral treatment and decreasing the mortality
rate [149]. On average, the conventional drug discovery process
takes 10-15 years and has very low success rates [150]. Instead,
drug repurposing attempts have been made to explore
similarities between SARS-CoV-2 (ie, the causative agent of
COVID-19) and other viruses such as SARS and HIV [151].
With the rapid accumulation of genetic and other biomedical
data in recent years, AI techniques facilitate the analyses of
drugs and chemical compounds that are already available to
find new therapeutic indications [152].

Protein Structure Analysis

The main protease (Mpro) of COVID-19 is a key enzyme in
polyprotein processing, which plays an important role in
mediating viral replication and transcription [153]. Several
studies have applied AI techniques to identify drug leads that
target Mpro of SARS-CoV-2, thereby making it an attractive
drug target [154,155]. Ton et al [87] built a DL platform called
Deep Docking, which enables structure‐based virtual screening
of billions of purchasable molecules in a short time. This
platform was used to process more than 1 billion compounds
available from the ZINC15 library in order to identify the top
1000 potential ligands for SARS‐CoV‐2 Mpro. The proposed
docking platform is a computationally cheaper and faster AI
method than traditional docking methods, which allows faster
screening of large chemical libraries containing billions of
compounds.

Drug Repurposing

Beck et al [16] used a drug-target interaction DL model to
identify the top 10 commercially available drugs that could act
on viral proteins of SARS-CoV-2. The DL model called
Molecule Transformer-Drug Target Interaction was used to
predict binding affinity values between marketable antiviral
drugs that could target COVID-19 proteins. The researchers
claim that this model can accurately predict binding affinity
based on chemical and amino acid sequences of a target protein
without knowledge of their structural information. Moreover,
the study reports that Atazanavir is the most effective chemical
compound with Kd of 94.94 nM, followed by Remdesivir
(113.13 nM), Efavirenz (199.17 nM), Ritonavir (204.05 nM),
and Dolutegravir (336.91 nM) against the SARS-CoV-2 3C-like
proteinase. Computational drug repositioning AI models provide
a fast and cost-effective way to identify promising repositioning
opportunities, and expedited approval procedures [152,156].

Viral Genome Sequencing

Genome sequencing of various viruses is performed to identify
regions of similarity that may have consequences for functional,
structural, and evolutionary relationships [157]. Owing to the
heavy computational requirements of traditional alignment-based
methods, alignment-free genome comparison methods are
gaining popularity [157,158]. A case study by Randhawa et al
[84] proposed an ML-based alignment-free approach for an
ultra-fast, inexpensive, and taxonomic classification of whole
virus genomes for SARS-CoV-2 that can be used for
classification of COVID-19 pathogens in real time.

AI Techniques for FCR

Ongoing FCR Initiatives

To combat the ongoing COVID-19 crisis, global scientific
collaborations have been encouraged and are necessary now
more than ever. Several initiatives are underway to build
centralized repositories to share COVID-19–related research
[159]. Such global repositories facilitate the understanding of
disease characteristics, interventions, and potential mental health
impacts on the general population.

Collaborative Open Source Repository

Peng et al [66] focused on creating a repository of COVID-19
chest X-ray (CXR) and chest CT images. The repository,
COVID-19-CT-CXR, is publicly available and contains 1327
CT and 263 X-ray images (as of May 9, 2020) that are
inadequately labeled. The authors build a pipeline to
automatically extract images from the biomedical literature
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relevant to COVID-19 using a DL model. A recent effort by
the National Center for Advancing Translational Sciences to
build a centralized, national data repository on COVID-19,
called National COVID Cohort Collaborative (N3C), is
underway [160]. N3C will support collection and analyses of
clinical, laboratory, and diagnostic data from hospitals and
health care plans. N3C along with imaging repositories such as
COVID-19-CT-CXR will accelerate clinical and translational
research.

Psychological Impact of the COVID-19 Pandemic

COVID-19 lockdown and home-confinement restrictions have
adverse effects on the mental well-being of the general
population and specifically high-risk groups, including health
care workers, children, and older adults [161]. Several studies
have been conducted to understand and respond to these public
health emergencies. For instance, Li et al [63] conducted a study
using a ML model (support vector machine) and sentiment
analysis to explore the effects of COVID-19 on people’s mental
health and to assist policymakers in developing actionable
policies that could aid clinical practitioners. Weibo posts were
collected before and after the declaration of the pandemic to
build emotional score and cognitive indicators. Key findings of
the study reveal that after the declaration of the COVID-19
outbreak in China, there has been a significant impact resulting
in increased negative emotions (eg, anxiety and depression) and
sensitivity to social risks, and decreased happiness and
satisfaction of life. Raamkumar et al [18] used the health belief
model (HBM) [162] to determine public perception of physical
distancing posts from multiple public health authorities. They
used a DL (a variant of recurrent neural network) text
classification model to classify Facebook comments related to
physical distancing posts into 4 HBM constructs: perceived
severity, perceived susceptibility, perceived barriers, and
perceived benefits, with accuracy of the model ranging from
0.91 to 0.95. Moreover, recent developments in the field of
NLP, bidirectional encoder representations from transformers
[163], XLNet [164], and other hybrid ML models have shown
promising results in the field of sentiment analysis. Future
studies should focus on these advanced techniques for improved
social media content analysis.

AI Techniques for CDT

Models for Prediction of COVID-19 Cases

During the initial days of the COVID-19 spread, most research
was focused on building mathematical models for estimating
the transmission dynamics and prediction of COVID-19
developments  [165,166] .  Specifical ly,
susceptible-exposed-infectious-recovered (SEIR) and
auto-regressive integrated moving average (ARIMA) models
and their extensions were widely adopted for the projection of
COVID-19 cases [167]. These models provided health care and
government officials with optimal intervention strategies and
control measures to combat the pandemic [167]. A similar
suggestion was made by Lalmuanawma et al [12].

Forecasting of COVID-19

In our systematic review, Yang et al [59] and Moftakhar et al
[44] used DL models to fit both statistical models SEIR and

ARIMA. The long-short term memory model proposed by Yang
et al [59] and artificial neural network model proposed by
Moftakhar et al [44] had a good fit to SEIR and ARIMA,
respectively. However, projections of both these mathematical
models had deviations less than the ±15% range of the reported
data [167]. Therefore, we recommend future studies should try
to fit AI techniques on both the SEIR and ARIMA models to
reduce the projection error rate and be better prepared for the
second wave of COVID-19.

Impact of Policies on COVID-19 Trajectories

The accuracy of COVID-19 trajectory projections depends on
varying containment policies enforced by different countries
[167,168]. The study by Yang et al [59] used a DL technique
to predict COVID-19 epidemic peaks and sizes with respect to
the containment polices. Their study revealed that the continual
enforcement of quarantine restrictions, early detection, and
subsequent isolation were the most effective in containment of
the disease. Relaxing these policies would likely increase the
spread of disease by 3-fold for a 5-day delay in implementation
and could cause a second peak. We suggest government officials
should strictly enforce such policies to prevent a second outbreak
of COVID-19.

Theme 2: EDD models

Current State of COVID-19 Diagnosis
Many countries ramped up the production of real-time reverse
transcription polymerase chain reaction (RT-PCR) testing kits
to diagnose COVID-19, and thus far, it remains the gold
standard for confirmed diagnosis [169]. However, this
laboratory-based test is limited by low sensitivity, as reported
by several studies [169,170]. As highlighted by both Vaishya
et al [20] and Lalmuanawma et al [12], AI can prove helpful in
the diagnosis of various infectious diseases (eg, SARS, HIV,
and Ebola) when used in conjunction with medical imaging
technologies such as CT, magnetic resonance imaging (MRI),
and X-ray. Radiological images (CT and X-ray) have been used
by clinicians to confirm COVID-19–positive cases; these
imaging findings also serve as an important complement to the
RT-PCR test [171]. In this systematic review, we found LUS
has been used to diagnose COVID-19, in addition to CT and
X-Ray. However, we did not find any study using MRI for
COVID-19 diagnosis.

Diagnostic Models Based on CT and X-Ray
Several studies have reported that the use of chest CT for
early-stage detection of COVID-19 has proven to have a low
rate of misdiagnosis and can provide accurate results even in
some asymptomatic cases [172]. We identified 15 studies that
used CT to detect COVID-19. One of the most cited studies by
Li et al [120] applied DL (COVNet) to differentiate COVID-19
and non–COVID-19 pneumonia CT scans. The area under the
receiver operating characteristic (AUROC) curve reported to
identify COVID-19 based on chest CT exam was 0.96 and the
AUROC curve reported to identify community-acquired
pneumonia based on chest CT exam was 0.95. The accuracy
reported is slightly higher than that reported by Ardakani et al
[93], which was also found in the review by Lalmuanawma et
al [12]. However, there are some disadvantages associated with
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using chest CT for COVID-19 diagnosis, such as the high
radiation dose (7 mSv vs 0.1 mSv for chest X-ray) and the fact
that chest CT is more expensive than chest X-ray [173,174].

In this systematic review, we identified 23 studies that used
chest X-ray and applied AI techniques to diagnose COVID-19
cases. A study by Apostolopoulos et al [91] applied a transfer
learning strategy to train convolutional neural network models
and then automated the detection of COVID-19 using chest
X-ray images. The model (VGG19) achieved an overall accuracy
of 97.82% to detect COVID-19 based on a dataset of 224
COVID-19, 700 pneumonia, and 504 normal X-ray images. A
similar study was performed by Khan et al [117] using transfer
learning and convolutional neural network (Xception)
architecture with 71 layers that were trained on the ImageNet
dataset. Their model (CoroNet) achieved an average accuracy
of 87% to detect COVID-19 based on a dataset of 284
COVID-19, 657 pneumonia (both viral and bacterial), and 310
normal chest X-ray images. These recently published studies
successfully used transfer learning strategy to overcome sample
size limitation and adapt generalizability; it is noteworthy that
such studies were not available in the earlier literature reviews
[12,20]. Although chest X-ray is cost-effective and involves a
considerably lower radiation dose than chest CT, it is less
sensitive, especially in the early stages of the infection and in
cases of mild disease [175]. We recommend that new studies
develop AI models that can detect COVID-19 by using a
combination of CT and X-ray images along with clinical
variables to aid clinical practitioners with accurate diagnosis.

Diagnostic Models Based on LUS and Clinical Variables
During the 2009 influenza (H1N1) epidemic, LUS proved useful
in accurately differentiating viral and bacterial pneumonia and
were found to have higher sensitivity in detecting avian
influenza (H7N9) than chest X-ray [176]. Although clinicians
recommend the use of LUS imaging in the emergency room for
the diagnosis and management of COVID-19, its role is still
unclear [177]. In our review, we identified a study by Roy et al
[128] that used a DL model based on an annotated LUS
COVID-19 dataset to predict disease severity. The results of
the study were reported to be “satisfactory.” Moreover, a study
by Joshi et al [115] proposed an ML approach that utilizes only
complete blood count and gender information of the patient to
predict COVID-19 positivity, as an alternative to the RT-PCR
test. These authors built a logistic regression model based on
retrospective data collected from a single institute and validated
using multi-institute data. Prediction of COVID-19 infection
demonstrated a C-statistic of 78% and sensitivity of 93%. The
aim of the study was to develop a decision support tool that
integrates readily available laboratory test results from patients’
EHRs.

Theme 3: DP Models

Current State of Predicting COVID-19 Progression
The COVID-19 pandemic has strained global health care
systems, especially ICUs, due to the high ICU transfer rates of
hospitalized patients with COVID-19 [135]. As the pandemic
progressed, the research focus shifted from detecting the
presence of the novel coronavirus in patient samples to the

prediction of patient recovery and associated risks [178].
Therefore, early systematic reviews included very few studies
that focused on DP [12,20]. In this review, we found 19 studies
that predicted DP and the likely outcomes in the confirmed
COVID-19 population. Prior identification of hospitalized
patients who may be at high-risk may aid health care providers
to more efficiently plan and prepare for ICU resources (eg, beds,
ventilators, and staff) [179].

Hospital Resource Management
A study by Cheng et al [135] developed an ML-based model
to predict ICU transfers within 24 hours of hospital admission.
The random forest model was used for COVID-19 prediction
and was based on multiple variables such as vital signs, nursing
assessment, laboratory test results, and electrocardiograms
collected during the patient’s hospital stay. The overall AUROC
curve of the model was reported to be 79.9%. Similar work was
done by Shashikumar et al [141] to predict the need for
ventilation in hospitalized patients 24 hours in advance. The
prediction was not only limited to patients with COVID-19 but
also included other hospitalized patients. These authors studied
40 clinical variables, including 6 demographic and 34 dynamic
variables (eg, laboratory results, vital signs, sequential organ
failure assessment, comorbidity, and length of hospital stay).
In contrast to the traditional ML model used by Cheng et al
[135], Shashikumar et al [141] resorted to a DL model (VentNet)
for prediction with an area under the curve (AUC) of 0.882 for
the general ICU population and 0.918 for patients with
COVID-19. Both the aforementioned studies relied on clinical
variables for prediction, whereas a study by Burian et al [132]
combined clinical and imaging parameters for estimating the
need for ICU treatment. The major finding of the study was that
the patients needing ICU transfers had significantly elevated
interleukin-6, C-reactive protein, and leukocyte counts and
significantly decreased lymphocyte counts. All studies in this
category applied AI techniques to facilitate the efficient use of
clinical resources and help hospitals plan their flow of operations
to fight the ongoing pandemic.

Risk Stratification
Prediction and risk stratification of COVID-19 cases that are
likely to have adverse outcomes will help to streamline health
care resources for patients that need urgent care. In our review,
Yadaw et al [146] evaluated different ML models to classify
COVID-19 cases as deceased or alive classes. This classification
was based on 5 features: age, minimum oxygen saturation during
the encounter, type of patient encounter, hydroxychloroquine
use, and maximum body temperature. Their study revealed that
age and minimum oxygen saturation during encounters were
the most predictive features among the different models
examined. The overall AUC was reported as 0.91. On the other
hand, Ji et al [137] focused on the early identification of
COVID-19 cases that are likely to be at high-risk. Variables
used for this prediction model included demographics,
comorbidities, and laboratory test results. They found a strong
correlation between comorbidities and DP as supported by
various other studies. The study further suggests that a decrease
in lymphocyte count and an increase in lactate dehydrogenase
levels are related to DP. The overall AUC reported was 0.759.
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In both studies, Yadaw et al [146] and Ji et al [137], the ML
models were trained on the retrospective data and validated on
prospective data. Li et al [139] built a pulmonary disease
severity score using X-rays and neural network models. The
score was computed as the Euclidean distance between the
patient’s image and a pool of normal images using the Siamese
neural network. The score predicted (AUROC 0.80) subsequent
intubation or death within 3 days of hospital admission for
patients that were initially not intubated.

COVID-19 pneumonia is associated with high morbidity and
mortality, and it is critical to differentiate COVID-19 from
general pneumonia [180]. In the study by Jiang et al [138], their
model used demographics, vital signs, comorbidities, and
laboratory test results to predict patients that are likely to
develop ARDS. Of these variables, laboratory levels of alanine
aminotransferase (ALT), the presence of myalgias, and elevated
hemoglobin were found to be the most predictive features. The
overall accuracy of predicting ARDS was 80%. Moreover, using
ALT alone, the model achieved an accuracy of 70%. Zhang et
al [147] built a DL diagnostic and prognostic predictive model
to detect COVID-19 and identified variables associated with
risk factors for early intervention and monitoring of the disease.
The study comprised 3777 patients (5468 CT scans) to
differentiate COVID-19 pneumonia from other types of
pneumonia and normal controls. The AUROC of the model was
reported as 0.97.

Distributed AI Architecture and Transfer Learning
The emergence of COVID-19 has encouraged public health
agencies and scientific communities to share data and code,
either by building data repositories or adopting federated AI
models [13,181]. Moreover, transfer learning was adopted to
fast-track AI model development, especially using imaging data.

Distributed AI Architecture
In general, DL techniques are employed to improve prediction
accuracy by training models on large volumes of data [182]. In
our review, several studies applied AI techniques, either using
smaller imaging datasets specific to the organization, or mid-
to large-sized datasets from publicly available repositories.
However, there are substantial costs associated with the
development and maintenance of such repositories [183]. To
overcome data size and cost limitations, Xu et al [110] proposed
a decentralized AI architecture to build a generalizable model
that is distributed and trained on in-house client datasets,
eliminating the need for sharing sensitive clinical data. The
proposed framework is in the early phase of adoption and needs
technical improvements before it is widely employed by
participating health care organizations.

Transfer Learning
There are classification challenges associated with the diagnosis
of COVID-19 using patients’ radiological imaging data, which
consists of multiple steps. In general, the initial steps involved
in image classification are preprocessing, annotation, and feature
extraction. Annotation of radiological images is time-consuming
and depends on the sheer expense of the expert radiologist.
Several strategies have been proposed to address this challenge,
such as self-supervised and transfer learning techniques. Our

review identified a study by Wang et al [145] that used a transfer
learning strategy to aid COVID-19 diagnostic and prognostic
analyses. The study used a 2-step transfer learning strategy:
first, the model was trained on a large lung cancer CT dataset
(n=4106) along with epidermal growth factor receptor gene
sequencing to learn associations between chest CT image and
micro-level lung functional abnormalities. Thereafter, the model
was trained and validated to differentiate COVID-19 from other
pneumonia (AUC 0.87-0.88) and viral pneumonia (AUC 0.86)
types. We believe such techniques will significantly improve
the computational costs associated with training the models.

Summary Points and Recommendations
The aim of this study was to perform a comprehensive literature
review on the role of AI to tackle the current COVID-19
pandemic. The scope of our study was not restricted to a specific
application, but to cover all possible areas used by AI-based
approaches. The major findings from various COVID-19 studies
and the recommendations for future research provided therein
are enlisted below.

• RT-PCR remains the gold standard confirmatory test for
COVID-19. However, this laboratory test has low
sensitivity; therefore, future models should combine
radiological images (eg, CT and X-ray), clinical
manifestations, and laboratory test results for better
accuracy.

• AI model performance might be biased due to lack of
adequate sample size from small-scale studies. We suggest
that newer studies should utilize data from national and
international collaborative COVID-19 repositories. In
addition, decentralized AI architecture should be adopted
to eliminate the need for sharing sensitive clinical data.

• Most studies included at least some of the effective clinical
variables for the prediction of COVID-19 progression. We
have provided a comprehensive list of the variables used
in the different studies and the best performing models
reported therein. A detailed analysis of these variables
should be performed to identify variables that are corelated
with COVID-19 progression. Such variables should also
be considered for future predictive models.

• Few studies have conducted a sentiment analysis using
social media content and reported specific negative impacts
on people’s mental health conditions due to the COVID-19
lockdown. Recent advancements in NLP techniques, such
as transformers-based models and hybrid models, have been
rarely used for sentiment analysis. We recommend that
newer studies employ these advancements for improved
analyses.

• Majority of the studies rarely provided details on how the
AI model predictions were interpreted. Interpretable AI
models allow end users to understand and improve model
performance. Users can accept or decline the
recommendations when such models are used as a clinical
decision support tool.

Limitations
This review has some inherent limitations. First, there is a
possibility of studies missed due to the search methodology
used. Second, we excluded 5 publications for which the full
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texts were not available, and this may have introduced bias.
Third, we included studies that were available as preprints.
Finally, a comparison of AI model performance was not possible
in the quantitative descriptive analysis, as variables, sample
size, and data sources varied across the selected studies. This
systematic review includes publications that were available
online as of June 27, 2020. As the COVID-19 pandemic
progresses, we intend to perform another review on the studies
published after the aforementioned date.

Conclusions
In this systematic review, we assembled the current COVID-19
literature that utilized AI methods in the area of applications

ranging from tracking, containing, and treating viral infection.
Our study provides insights on the prospects of AI on the 3
identified COVID-19 themes—CE, EDD, and DP—highlighting
the important variables, data types, and available COVID-19
resources that can assist in facilitating clinical and translational
research. Our study sheds light on AI applications as a potential
drug discovery and risk stratification tool. In addition, our
analysis suggested that AI-based diagnostic tools are highly
accurate in detecting the presence of the SARS-CoV-2 by using
radiological imaging data and can be employed as a decision
support tool.
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