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Abstract

Background: Although most current medication error prevention systems are rule-based, these systems may result in alert
fatigue because of poor accuracy. Previously, we had developed a machine learning (ML) model based on Taiwan’s local databases
(TLD) to address this issue. However, the international transferability of this model is unclear.

Objective: This study examines the international transferability of a machine learning model for detecting medication errors
and whether the federated learning approach could further improve the accuracy of the model.

Methods: The study cohort included 667,572 outpatient prescriptions from 2 large US academic medical centers. Our ML
model was applied to build the original model (O model), the local model (L model), and the hybrid model (H model). The O
model was built using the data of 1.34 billion outpatient prescriptions from TLD. A validation set with 8.98% (60,000/667,572)
of the prescriptions was first randomly sampled, and the remaining 91.02% (607,572/667,572) of the prescriptions served as the
local training set for the L model. With a federated learning approach, the H model used the association values with a higher
frequency of co-occurrence among the O and L models. A testing set with 600 prescriptions was classified as substantiated and
unsubstantiated by 2 independent physician reviewers and was then used to assess model performance.

Results: The interrater agreement was significant in terms of classifying prescriptions as substantiated and unsubstantiated
(κ=0.91; 95% CI 0.88 to 0.95). With thresholds ranging from 0.5 to 1.5, the alert accuracy ranged from 75%-78% for the O model,
76%-78% for the L model, and 79%-85% for the H model.
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Conclusions: Our ML model has good international transferability among US hospital data. Using the federated learning
approach with local hospital data could further improve the accuracy of the model.

(JMIR Med Inform 2021;9(1):e23454) doi: 10.2196/23454
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Introduction

Medication errors are a major contributor to morbidity and
mortality [1]. Although the exact number of deaths related to
medical errors is still under debate, the To Err Is Human report
estimated that the figure might be approximately 44,000 to
98,000 per year in the United States alone [2]. Medication errors
also result in excess health care–related costs [3], which are
estimated at more than US $20 billion per year in the United
States. Preventable adverse drug events (ADEs) also appear to
be common not only in the hospital but also in the ambulatory
setting, with one estimate amounting to US $1.8 billion annually
for treating them [4,5]. Reducing medication errors is crucial
to enhance health care quality and improve patient safety.
However, considering the time and cost needed, it is impossible
for hospitals to double-check every prescription made by every
physician in real time.

To combat this problem, studies have shown that health
information technology (IT) presents a viable solution [6,7].
Among all IT tools, clinical decision support systems that can
provide real-time alerts have demonstrated perhaps more
effective in helping physicians to prevent medication errors
[8-11]. However, the impact of these applications has been
variable [12]. In addition, the vast majority of the currently
deployed alert systems are rule based, which means that they
have explicitly coded logic written to identify medication errors
[13-15]. However, these rule-based systems are generally set
to go off too frequently because of the lack of adaptability in
clinical practice, leading to alert fatigue, which in turn can
increase ADE rates [16-19].

Machine learning (ML) has shown promising results in medicine
and health care [20-22], especially in relation to clinical
documentation and prescription prediction [23-25].
Unsupervised learning, which is a type of ML algorithm used
to establish relationships within data sets without labels,
combined with a well-curated and large data set of prescriptions
has the potential to generate algorithmic models to minimize
prescription errors [26]. Previously, we had presented an ML
model that evaluated whether a prescription was explicitly
substantiated (by way of diagnosis or other medications) and
prevented medication errors from occurring. The model was
named as the appropriateness of prescription (AOP) model [27].
It contained disease-medication (D-M) associations and
medication-medication (M-M) associations that were identified
through unsupervised association rule learning. These
associations were generated based on prescription data from
Taiwan’s local databases (TLD), which had collected health
information from nearly the entire Taiwanese population (about
23 million people) for over 20 years [28]. The AOP model has
been validated in 5 Taiwanese hospitals and continues to have

high accuracy (over 80%) and high sensitivity (80%-96%),
highlighting the model’s potential to have a true clinical impact
[29].

As physicians in Taiwan are educated with the same
evidence-based guidelines as physicians in the United States,
in theory, the experience-based ML model generated from TLD
could be transferable to US clinical practice. However, there is
no validation study that examines the transferability of the
TLD-developed ML model in US health care systems. Although
there are a few research studies demonstrating the feasibility of
transferring ML models across health care institutions [30,31],
one of the major challenges to the transferability of ML models
in health care is that most of these models are trained using
single-site data sets that may be insufficiently large or diverse
[32]. Recently, federated learning has become an emerging
technique to address the issues of isolated data islands and
privacy, in which each distinct data federate trains their own
model with their own data before all the federates aggregate
their results [33]. In our study, we undertook a cross-national
multicenter study to validate the performance of the AOP model
in detecting the explicit substantiation of prescriptions using an
enriched data set from the electronic health record (EHR) system
of Brigham Women’s Hospital (BWH) and Massachusetts
General Hospital (MGH). Both are Harvard Medical School
teaching hospitals. To the best of our knowledge, this is the first
cross-national multicenter study to examine the transferability
of an ML model for the detection of medication errors. Detailed
analyses were conducted to evaluate the effectiveness of the
AOP model, and a federated learning approach was applied to
explore the potential to construct a model with better
performance using cross-national data sets.

Methods

Study Cohort
The study cohort comprised adult patients (aged ≥18 years) who
had received any prescription (with at least one diagnosis and
one medication) from clinicians affiliated to the Department of
Internal Medicine at BWH or MGH during an outpatient clinical
visit (the index visit) over 3 years, from January 1, 2017, to
December 31, 2019. We extracted the data from the Partners
HealthCare database, which has used an EPIC-based EHR
system (Epic Systems Corporation) since 2016. No prescriptions
were needed to be excluded because of missing values. We
collected data such as demographic characteristics (age, sex,
and ethnicity), diagnoses, problem lists, and prescribed
medications. The age, sex, and ethnicity distributions within
the BWH/MGH data set were as follows: age (years; mean 53.4,
SD 19.8), sex (male 36% and female 64%), ethnicity (White
80%, Black 8%, Hispanic 7%, Asian 3%, Others 2%). The
Partners Human Research Committee (Institutional Review
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Board protocol 2019P003566) approved this study’s protocol
and design.

For deidentification, patient names and medical record numbers
were removed from the data set, and a random study ID was
assigned to each patient. A total of 667,572 prescriptions were
included in the study. For data processing, we mapped the EPIC
and HCPCS (Healthcare Common Procedure Coding System)
medication coding systems to the RxNorm coding system and
then mapped the RxNorm coding system to the Anatomical
Therapeutic Chemical Classification System before we
password-protected, encrypted, and sent the data to the AOP
model. For prescriptions that were sampled to be evaluated by
human physicians to determine the AOP model’s performance,
additional clinical notes or office notes were requested to
provide clinical context.

Model Development
A detailed flowchart of the study design is shown in Figures
1-2. The original model (O model) used in this study was
constructed using the data of 1.93 billion outpatient prescriptions
in the TLD from January 1, 2011, to December 31, 2015. The
TLD, which contains data from over 25 million enrollees and
covered over 99% of Taiwanese residents’ medical records,
including cancer registry and mortality data [27]. Although the
ethnicity data were not directly coded into TLD, based on the
Taiwanese National Census data published in 2014 [34], over
97% of Taiwanese residents are of Asian ethnicity. The sex and
age distributions of the TLD were as follows: age (years; mean
46.6, SD 23.3) and sex (male 45% and female 55%). Previous
studies have validated the accuracy of diagnoses of major
diseases in the TLD [35,36]. We excluded 590 million
prescriptions for at least one of 2 reasons: (1) invalid or missing
disease and/or medication codes and (2) prescriptions given by

traditional Chinese medicine doctors. The remaining 1.34 billion
prescriptions were used to generate the D-M and M-M
associations. In summary, the data comprised 2.39 billion
diagnoses coded in the International Classification of Disease
v.10-Clinical Modification format and 4.14 billion medications
coded according to the ATC classification system. We then
applied the method described in our previous study to construct
the AOP model [28]. In brief, the AOP model determined a
prescription to be substantiated if each medication appearing
in the prescription could be explained by a relevant disease
and/or medications on the same prescription. However, if there
were one or more medications in a prescription that could not
be explained by any of the diagnoses within the same
prescription, then the prescription would be viewed as
unsubstantiated. The ratio between the joint probability of the
D-M and the M-M associations was calculated as previously
described (termed as the Q value) [27]. To develop a more
sophisticated model that considers both age and sex, we
calculated different Q values for different sex and age groups
(5 years as an age group). To address the issue of pseudo
association (eg, insulin may be explained by hypertension
because hypertension and type 2 diabetes mellitus are common
comorbidities), we only used the D-M association that had the
highest Q value and discarded the Q values of the remaining
D-M associations. The threshold value (α) was defined as 1 by
default, which is commonly used in association rule mining
studies [37]. If the Q value was greater than α, then the
association was defined as a positive D-M or M-M association;
if the Q value was less than α, then the association was defined
as a negative D-M or M-M association. If both the D-M and
M-M associations were positive with respect to a single
prescription, then only our model considered a prescription to
have been substantiated.

Figure 1. Research flowchart of the original model, local model, and hybrid model development. TLD: Taiwan's local databases.
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Figure 2. Research flowchart of the test set development.

To construct the local model (L model), a validation set with
8.98% (60,000/667,572) of the prescriptions was first randomly
sampled to form a validation set, and the remaining 91.02%
(607,572/667,572) of the prescriptions served as the training
set. We then applied the same abovementioned method to
construct the L model with the training set (Figure 1). Using a
federated learning approach, we assessed the Q values from
both the O and L models. If a D-M or M-M association was
observed in both the O and the L models, then we selected the
Q values with a higher frequency of co-occurrence between the
2 models to ultimately develop the hybrid model (H model).

Test Set Development
To establish the final test set, we first used the O model (with
α=1) to evaluate the validation set (Figure 2), which resulted
in the classification of a group of substantiated prescriptions
and a group of unsubstantiated prescription groups. We
randomly sampled 300 prescriptions from each group and then
combined them with their respective clinical scenarios (based
on the clinical note of the same visit when the prescription was
prescribed) to form an enriched test set to ensure that there
would be sufficient numbers of unsubstantiated prescriptions
for further analysis. Two licensed physicians, blinded to the
percentage of model-determined substantiated or unsubstantiated
prescriptions within the test set, independently examined each
set of these randomly sampled prescriptions. The severity of
each unsubstantiated prescription was further classified as
potentially life-threatening, serious, or significant following the
definitions as previously described [38]. A life-threatening,
unsubstantiated prescription was defined as the potential to
cause symptoms that, if left untreated, would put the patient at

risk for death. A serious, unsubstantiated prescription was
defined as there is the potential to cause symptoms associated
with a severe level of harm but not great enough to be
considered life-threatening. A significant, unsubstantiated
prescription was defined as there is the potential to cause
symptoms that, although harmful to the patient, pose little or
no threat to the patient’s functional status. Quality checks were
performed throughout the study period by reviewing the
physician reviewers’ responses to each set of randomly sampled
prescriptions, as described above. In each of these prescriptions,
there may have existed one or several medications that led to
the judgment of an unsubstantiated prescription. We asked the
physician reviewers to highlight the problematic medications
within a prescription. Tables 1 and 2 display a sample of
reviewer-determined substantiated or unsubstantiated
prescriptions from the final test set, with problematic
medications highlighted in red. To evaluate the physicians’
confidence regarding their classification of adequate
substantiation and the severity of potential adverse effects, we
asked them to rate their decisions on a 6-point scale, as described
previously [4]. We excluded the prescription if one of the
physicians rated their confidence level lower than 4 (ie,
corresponding to a confidence level <50%). Any differences
between the 2 physician reviewers’ judgments about the
classification of substantiation and severity of potential adverse
effects were resolved by discussion. If a discussion was
insufficient to resolve the problem, then a senior physician was
consulted and the final decision was made. Through this entire
process, we generated the ground truths for whether each of
these 600 prescriptions was explicitly substantiated by a declared
diagnosis and/or other medications.
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Table 1. An example of a substantiated prescription as determined by physician reviewers. The patient was a 74-year-old woman with a history of
rheumatoid arthritis, hypertension, and moderate aortic stenosis, who presented with shortness of breath that had become worse than 1 year ago, and
for whom ankle edema had been noted in the last couple of weeks.

Disease and medication nameCode

ICD-10-CMa code

Nonrheumatic aortic (valve) stenosisI35.0

Hypertensive disorderI10

Raynaud’s diseaseI 73.0

HyperlipidemiaE78.5

ATCb code

AspirinB01AC06

AtorvastatinC10AA05

FurosemideC03CA01

LosartanC09CA01

aICD-10-CM: International Classification of Disease-10-Clinical Modification
bATC: Anatomical Therapeutic Chemical.

Table 2. An example of unsubstantiated prescription as determined by physician reviewers. The patient was a 76-year-old man who presented with an
unsteady gait and for management of his anticonvulsant medications.

Disease and medication nameCode

ICD-10-CMa code

Unspecified abnormalities of gait and mobilityR26.9

Generalized idiopathic epilepsy and epileptic syndromes, not intractable, without status
epilepticus

G40.309

ATCb code

Simvastatin cC10AA01

Methotrexate sodiumL01BA01

LevetiracetamN03AX14

OmeprazoleA02BC01

JantovenB01AA03

HydroxycholoroquineP01BA02

Folic acidB03BB01

aICD-10-CM: International Classification of Disease-10-Clinical Modification
bATC code: Anatomical Therapeutic Chemical code.
cMedications that could not be explained by the patient’s listed diagnoses were italicized.

Evaluation
To compare the performances of the O, L, and H models, the
performance of each model on the final test set was measured
using sensitivity, specificity, negative predictive value (NPV),
positive predictive value (PPV; positive=unsubstantiated
prescription), and accuracy. To examine the effect of α on model
performance, we adjusted α from .5 to 1.5 (ie, α∈[.5; 1.5]).

Statistical Analysis
We used a 2-tailed Student t test for measuring continuous
variables with a normal distribution and presented the results
as mean (SD). The chi-square test was used to compare

categorical data, and the results were presented as counts and
percentages. For data with skewed distributions, we computed
their median and IQR values and used the Wilcoxon rank-sum
test for comparison [39]. The Cohen kappa coefficient (κ)
statistic was applied to measure the interrater agreement of
physicians on whether prescriptions were substantiated.
Statistical analyses were performed using R version 3.6.2 [40].

Results

The interrater agreement for the substantiation (or not) of
prescriptions for the test set was high (κ=0.92; 95% CI 0.89 to
0.95). With substantiated prescriptions, the agreement was also
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good for assessing severity (κ=0.84; 95% CI 0.73 to 0.95). In
total, 4 prescriptions were excluded from the test set because
of insufficient physician-reviewer confidence levels (scores
lower than 3). Among the remaining 596 prescriptions, 232
prescriptions were determined to be unsubstantiated and 364
prescriptions were deemed substantiated. No unsubstantiated
prescription was judged to be life-threatening. Among the 232
unsubstantiated prescriptions, 27 (11.6%) prescriptions were
found to be associated with serious potential ADEs and 205
(88.4%) were determined to be associated with significant
potential ADEs.

The performances of the O, L, and H models with different
thresholds (ranging between 0.5 and 1.5) are shown in Table 3.
For the O model under different thresholds, the sensitivity
ranged from 82% to 92%, the specificity ranged from 70% to
76%, PPV ranged from 66% to 68%, NPV ranged from 83%
to 92%, and accuracy ranged from 75% to 78%. For the L model
at different thresholds, the sensitivity ranged from 76% to 85%,
the specificity ranged from 73% to 76%, PPV ranged from 67%
to 68%, NPV ranged from 70% to 80%, and accuracy ranged
from 76% to 78%. For the H model with different thresholds,
the sensitivity ranged from 56% to 79%, the specificity ranged
from 87% to 93%, PPV ranged from 80% to 85%, NPV ranged
from 74% to 86%, and accuracy ranged from 79% to 85%.

Table 3. Performance comparison between different models under different threshold values (α) based on 596 physician-validated cases of ground
truth.

H ModeldL ModelcO ModelbThreshold

value (α)a

AccuNPVPPVSpeSenAccuNPVPPVSpeSenAccuiNPVhPPVgSpefSene

0.840.870.800.870.790.780.880.670.730.850.750.830.660.700.921.5

0.840.860.800.880.790.770.870.670.740.830.780.920.660.710.911.4

0.850.870.810.880.790.770.870.670.740.830.790.920.670.710.901.3

0.850.860.830.900.780.770.870.670.740.820.790.920.670.710.901.2

0.850.860.840.900.780.780.870.680.750.820.780.870.680.730.891.1

0.850.860.840.910.760.770.860.670.750.810.790.900.680.740.881.0

0.840.710.850.910.740.770.850.670.750.800.790.900.680.740.880.9

0.830.830.850.920.700.770.840.670.760.780.790.890.680.740.860.8

0.820.810.850.920.650.770.840.680.760.770.780.880.680.750.840.7

0.800.790.840.930.610.760.830.680.760.760.780.870.680.750.830.6

0.790.770.840.930.560.760.830.670.760.760.780.870.680.760.820.5

aThe ratio between the joint probability of the disease-medication (D-M) and the medication-medication (M-M) associations were calculated as previously
described in the Methods (termed the Q value). If the Q value was greater than α, then this association was defined as a positive disease-medication
(D-M) or medication-medication (M-M) association. However, if the Q value was less than α, then this association was defined as a negative D-M or
M-M association. Our model considered a prescription to have been substantiated only if both the D-M and M-M associations were positive with respect
to a single prescription.
bO model: original model.
cL model: local model.
dH model: hybrid model.
eSen: sensitivity.
fSpe: specificity.
gPPV: positive predictive value.
hNPV: negative predictive value.
iAccu: accuracy.

A comparison of the substantiated prescription and
unsubstantiated prescription groups, as determined by the
physician reviewers, is summarized in Table 4. The average
ages (SD) in the substantiated prescription group and the
unsubstantiated prescription group were 70.3 years (SD 12.7)
and 68.1 years (SD 14.2), respectively. None of the patient
characteristics (ie, sex, age) were significantly associated with

unsubstantiated prescriptions (P=.72 and P=.05, respectively).
The substantiated prescription group had a higher number of
diagnoses than the unsubstantiated group (median 3 [IQR 3] vs
median 2 [IQR 3]; P<.001). In contrast, the unsubstantiated
prescription group had higher numbers of medications than the
substantiated group (median 2 [IQR 1] vs median 3 [IQR 4.75];
P<.001).
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Table 4. Comparison of patient characteristics between the substantiated and unsubstantiated prescription groups.

P valueUnsubstantiated prescriptionsSubstantiated prescriptionsCharacteristics

.72156/76249/115Sex (male/female)

.0568.1 (14.2)70.3 (12.7)Age (years), mean (SD)

<.0012 (3)3 (3)Number of diagnoses, median (IQR)

<.0013 (4.75)2 (1)Number of medications, median
(IQR)

In total, 32 medication classes appeared in the unsubstantiated
prescription group. The top 7 medication classes most frequently
associated with unsubstantiated prescriptions, categorized into
potential severity classes (serious and significant), are shown
in Table 5. In general, the most frequent medication classes
were opioid analgesic (n=34), benzodiazepine (BZD; n=27),
selective serotonin reuptake inhibitor (SSRI; n=17), nonopioid
analgesic (n=16), proton pump inhibitor (PPI; n=15),
antihistamine (n=14), and anticoagulant (n=13). For the serious
severity class, the most frequent medication classes were opioid
analgesic (n=20), BZD (n=6), anticoagulant (n=5), β-blocker
(n=4), angiotensin-converting enzyme inhibitor/angiotensin II
receptor blocker (n=4), antipsychotic (n=3), and anticholinergic
(n=3). As for the significant severity class, the most frequent

medication classes were BZD (n=21), SSRI (n=16), PPI (n=15),
and opioid analgesic (n=14).

Under α=1, 11.6% (27/232) of the cases from the
unsubstantiated prescription group, which were determined as
unsubstantiated by the O model (true positive), were determined
as substantiated by the H model (false negative). Among these
cases, opioid analgesic (n=9) was the most common medication
class. In contrast, 17.0% (62/232) of thecases from the
substantiated prescription group, which were determined as
unsubstantiated by the O model (false positive), were then
determined as unsubstantiated by the H model (true negative).
Opioid analgesic (n=18) was the most common medication class
in these cases.
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Table 5. The top 7 medication classes most frequently associated with unsubstantiated prescriptions as determined by physician reviewers are shown
across the different classes of severity. There were no unsubstantiated prescriptions that were considered to be life-threatening in our study.

Times each medication class appears, nMedication class

Total

34Opioid analgesic

27BZDa

17SSRIb

16Nonopioid analgesic

15PPIc

14Antihistamine

13Anticoagulant

Seriousd

20Opioid analgesic

6BZD

5Anticoagulant

4β-blocker

4ACEi/ARBe

3Antipsychotic

3Anticholinergic

Significantf

21BZD

16SSRI

15PPI

14Opioid analgesic

12Anticonvulsant

12Antihistamine

11Nonopioid analgesic

aBZD: benzodiazepine.
bSSRI: selective serotonin reuptake inhibitor.
cPPI: proton pump inhibitor.
dA serious, unsubstantiated prescription was defined as having the potential to cause symptoms associated with a severe level of harm but not great
enough to be considered life-threatening.
eACEi/ARB: angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker.
fA significant, unsubstantiated prescription was defined as having the potential to cause symptoms that, while harmful to the patient, pose little or no
threat to the patient’s functional status.

Discussion

Principal Findings
We evaluated the performance of the AOP ML model,
developed in Taiwan, in determining whether prescriptions have
been explicitly substantiated using EHR data from 2 large US
academic hospitals. We found that the model performed well
and that a hybrid learning approach had a higher accuracy than
the individual model under most thresholds, exhibiting better
specificity and NPV. This result indicates that additional efforts
to retrain the model with training data from the local health care

system holds promise in further improving the performance of
the AOP model.

With TLD, researchers have identified several significant
associations with high clinical impact, such as the association
between nucleoside analogs and the risk of post liver resection
hepatocellular carcinoma recurrence, and risk factors for
poststroke dementia [41-43]. The thesis of the AOP model is
that prescriptions solely comprising common D-M combinations
in a large database, such as TLD, have a higher possibility of
being substantiated. In contrast, medications less frequently
prescribed for a given disease are more likely to be
unsubstantiated. Although physicians in Taiwan are educated
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and trained with US guidelines, there are some differences in
clinical practice between the 2 health care systems.

Therefore, a validation study is necessary to assess the
transferability of such an ML model. Nowadays, research
focusing on externally validating a health care ML model is
rarely conducted [32], which is partly because of the expectation
of poor transferability of complex ML models [44]. The overall
results in this study showed a reasonable accuracy (78%-76%
for the O model and 85%-79% for the H model), which
demonstrated that the AOP model has the potential to be
transferrable among the US clinical data sets. In this study, we
found that the H model had the highest accuracy, which might
be due to the fact that the O model was trained with sufficient
amount of data so as to allow the supplementation of the
performance of the L model to achieve better performance. To
the best of our knowledge, this is the first multicenter study to
specifically address the issue of international transferability of
an ML model for the detection of medication errors, which can
pave the path for other validation studies of this kind.

Alert fatigue can potentially cause physicians to ignore
important clinical alerts, which lead to unwanted medication
errors. Alert fatigue occurs if there is a high frequency of
nonactionable and false alarms [8]. Most of the current CPOE
(computerized physician order entry) systems use rule-based
alerts to support clinical decision making. However, previous
research has shown high overridden alert rates to rule-based
alerts within the EMR, ranging from 49% to 96% [45].
ML-based approaches, which generate an alert based on past
real-world prescribing behaviors extracted from a large database,
appear to be an attractive approach to address alert fatigue and
improve patient safety. Previous researchers have explored the
feasibility of using an ML-based outlier detection system to
detect medication errors. They found that three-fourth of the
alerts generated by the system were determined to be valid based
on 300 chart review results, after the modified algorithm model
was created with data from 373,993 patients [26]. We applied
a different ML approach and used a different database with
more training data (over 1.3 billion) to construct our model, and
our results were comparable. Another recent study estimated
that an ML-based system could potentially save US $1.3 million
in an outpatient setting through the prevention of adverse events,
hinting at additional economic benefits that such systems may
offer [46].

Among unsubstantiated prescriptions, 11.6% were found to be
associated with potential ADEs, a finding that is similar to the
number reported by Gandhi et al (13%) [4]. We found that
patient characteristics were not significantly associated with
unsubstantiated prescriptions, which suggests that the strategy
to improve the prescription process for all patients may be more
effective than focusing on specific patient subgroups.
Interestingly, a similar finding was also demonstrated in a study
of hospitalized patients [47]. In this study, we showed that
higher numbers of medications were found to be significantly
associated with unsubstantiated prescriptions than with
substantiated prescriptions. Polypharmacy has long been a
significant issue among older adults and is a known risk factor
for adverse medical outcomes [48]. Although currently there
are tools to assist in the identification of potentially inappropriate

medications, such as the Screening Tool of Older People’s
Prescriptions and the Screening Tool to Alert to Right Treatment
criteria, no single tool has been shown to be sufficient in
reducing the risk of unnecessary polypharmacy—it is likely
that a combination of approaches may work best [49].
Furthermore, these criteria require physicians to make separate
calculations, which might add additional cognitive burden and
disrupt the clinical workflow.

Our model shows the potential to automatically identify
unsubstantiated medications when a physician updates the
patient’s active problem list, which can assist with the
deprescribing process and potentially reduce pill burden. We
further investigated which medication classes were most
frequently associated with unsubstantiated prescriptions, and
the opioid analgesics ranked the highest. It is worth noting that
opioid analgesics also ranked as the top medication in
prescriptions when predictions differed between the O and the
H model, which reflects the different prescribing behaviors with
respect to opioid analgesics between Taiwan and the United
States. Clinical decision support tools could potentially play a
role in actively managing opioid prescription behavior and
provide the correct guidance [50]. Our study processed the data
extracted from the EPIC-supported CPOE system, and
successfully generated validation results. As EPIC is currently
being used in multiple large US health care systems, it shows
that our AOP model, while originally developed based on the
TLD, may be applied in the US clinical environment. We
envision that the AOP model will be integrated with the current
CPOE system as an application to fire alerts on potentially
inappropriate prescriptions in real time once physician
prescribers complete their prescription in the system. If this
model is validated with unenriched clinical data for use in
clinical practice, then we also foresee that such an application
may be able to suggest a list of recommended diagnoses for an
unsubstantiated medication; alternatively, such an application
may help to prompt physician prescribers to address potential
medication errors (eg, medications attributed to the wrong
patient). Another potential application would be to automatically
facilitate medical record completeness during the error-prone
medication reconciliation process [51].

This study has several limitations. First, even though we
performed random sampling when we constructed the test set,
it is possible that the selected prescriptions may present some
bias because of a relatively small sample size (600
prescriptions), which might also explain why there were no
unsubstantiated, physician-determined, life-threatening
prescriptions in the test set. We did not apply common ML
evaluation methods such as cross-validation or bootstrapping
because of limited labeled data. However, considering the time
and effort needed by a physician to evaluate whether a
prescription was explicitly substantiated, we believe that using
randomized sampling to construct a test set of 600 prescriptions
was a reasonable approach for a preliminary model validation
study. As the incidence of prescribing error was reported to be
approximately 1%-2% [52], we used randomized sampling to
construct an enriched, balanced test set to ensure that there were
sufficient unsubstantiated prescriptions included for further
analysis. Although using an enriched test set might lead to an
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overestimation of the model performance, this study is a critical
step for preliminary AOP model validation, and we plan to
validate our model in less enriched, more real-world data sets
in the near future. The current AOP model only considered the
patient’s sex, age, diagnoses, and medications. However,
patients’ lab data and chief complaints may also impact
prescribing behavior. We also did not compare the performance
of the AOP model with the legacy rule-based alert systems built
into the current EHR to confirm the value added by our model.
The current AOP model did not consider dose-dependent errors.
However, this issue is unlikely to undermine the value of the
AOP model because identifying a dose-dependent error is a
relatively straightforward rule-based question, and most of the
current CPOE systems have built-in alert systems for detecting
dose-dependent error [53,54]. It is worth noting that although
our models’ sensitivities were good but not perfect, most
medication error alert systems in use today are not designed to
identify potential medication errors originating from D-M
mismatch. In addition, our physician reviewers determined the
severity of unsubstantiated prescriptions based on the prescribed
medications instead of observing the ADEs in a real-world
setting. It is possible that medication with the potential to cause

serious ADE did not cause a serious event (eg, due to
noncompliance). In this study, we only evaluated outpatient
data from one specialty. Further work is needed to assess the
AOP model’s performance prospectively in an inpatient setting
and across different medical specialties to determine its actual
impact on drug-prescribing behaviors. Finally, we constructed
a federated learning model based on a data set with a
predominantly Asian population (Taiwanese) and a data set
with US patients, who had considerable differences in ethnic
proportions. Further studies will be required to explore the
contribution of ethnicity in the model’s predictive performance.

Conclusions
In this preliminary study, we found that the AOP ML model
based on TLD had good transferability with US prescription
data in an outpatient setting. We also found that a model built
with a federated learning approach, which combined models
developed from TLD data and US local data, could further
improve its accuracy as compared with models developed from
each individual data set. This type of ML approach holds
promise in improving alert fatigue, which has often been a major
issue in traditional, rule-based alert systems.
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BWH: Brigham and Women’s Hospital
BZD: benzodiazepines
EHR: electronic health record
H model: hybrid model
IT: information technology
L model: local model
MGH: Massachusetts General Hospital
ML: machine learning
MOE: Ministry of Education
MOST: Ministry of Science and Technology
NPV: negative predictive value
O model: original model
PPI: proton pump inhibitor
PPV: positive predictive value
SSRI: selective serotonin reuptake inhibitors
TLD: Taiwan's local databases
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