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Abstract

Background: Drug-drug interactions (DDIs) involving vitamin K antagonists (VKAs) constitute an important cause of in-hospital
morbidity and mortality. However, the list of potential DDIs is long; the implementation of all these interactions in a clinical
decision support system (CDSS) results in over-alerting and alert fatigue, limiting the benefits provided by the CDSS.

Objective: To estimate the probability of occurrence of international normalized ratio (INR) changes for each DDI rule, via the
reuse of electronic health records.

Methods: An 8-year, exhaustive, population-based, historical cohort study including a French community hospital, a group of
Danish community hospitals, and a Bulgarian hospital. The study database included 156,893 stays. After filtering against two
criteria (at least one VKA administration and at least one INR laboratory result), the final analysis covered 4047 stays. Exposure
to any of the 145 drugs known to interact with VKA was tracked and analyzed if at least 3 patients were concerned. The main
outcomes are VKA potentiation (defined as an INR≥5) and VKA inhibition (defined as an INR≤1.5). Groups were compared
using the Fisher exact test and logistic regression, and the results were expressed as an odds ratio (95% confidence limits).

Results: The drugs known to interact with VKAs either did not have a statistically significant association regarding the outcome
(47 drug administrations and 14 discontinuations) or were associated with significant reduction in risk of its occurrence (odds
ratio<1 for 18 administrations and 21 discontinuations).

Conclusions: The probabilities of outcomes obtained were not those expected on the basis of our current body of pharmacological
knowledge. The results do not cast doubt on our current pharmacological knowledge per se but do challenge the commonly
accepted idea whereby this knowledge alone should be used to define when a DDI alert should be displayed. Real-life probabilities
should also be considered during the filtration of DDI alerts by CDSSs, as proposed in SPC-CDSS (statistically prioritized and
contextualized CDSS). However, these probabilities may differ from one hospital to another and so should probably be calculated
locally.
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Introduction

Vitamin K antagonists (VKAs) in general and warfarin in
particular are among the most frequently prescribed
anticoagulants worldwide [1]. These drugs are used in the
primary or secondary prevention of all types of thrombosis
[1-3]. However, VKAs are associated with a significant risk of
adverse events, due to their narrow therapeutic window, inter-
and intra-individual variability, and numerous drug-drug
interactions (DDIs) [1,4,5]. The international normalized ratio
(INR) is an index of an anticoagulant’s effectiveness and the
risk of adverse events. In most indications, the INR should be
between 2 and 3 [4,6]. Frequent, close monitoring of the INR
is therefore essential, especially if the patient undergoes a
change in drug treatment or lifestyle (diet, alcohol intake, etc)
or develops new comorbidities [5,7,8].

As the list of drugs that interact with warfarin continues to grow
[5], clinicians must be vigilant when initiating treatment with
a VKA or when modifying drug prescriptions in VKA-treated
patients [1,5]. Although VKAs are not the only anticoagulants
concerned with the broader problem of DDI prevention [1], we
focused on the members of this drug class because their
biological activity can be easily measured.

Clinical decision support systems (CDSSs) provide valuable
assistance with VKA prescription because of the large number
of potential DDIs [9]. In the setting of computerized physician
order entry, the CDSS will indicate potential DDIs (especially
for new drug prescriptions) via pop-up alerts. In turn, the alerts
are based on DDI rules, which typically involve a pair of
interacting drugs and a potential outcome. Whenever the two
drugs are present, the DDI alert pops up and highlights the
potential outcome [10].

If the number of DDIs is large, however, the resulting
over-alerting [11-15] may produce “alert fatigue” [11], a mental
state close to overwork caused by the clinician's exposure to a
continuous flow of alerts, regardless of whether or not they are
relevant [11-16]. On average, only 5%-10% of these alerts are
taken into account by the clinician and prompt him or her to
reassess the drug prescription [17,18]. Alert fatigue can
contribute to physician burnout and has important safety
implications because it can cause physicians to ignore even the
most important warnings.

Several approaches to decreasing over-alerting and alert fatigue
have been developed and tested. These include (1) changing
the way alerts are displayed [19-25], (2) refining the alerts’
relevance by filtering them according to clinical veracity
[10,11,17,20,21,26-29] or postalert quality assessment by a
group of practitioners [29], and (3) managing chronological
aspects [19-21,23,24,30]. It has also been suggested that the
relevance of alerts can be increased by taking into account the
level of evidence for the DDI [20,21] and the seriousness of the
outcome [10,17,20,21,27,29,31]. Although this approach appears

to improve the situation [10,29,31], experts continue to disagree
about how the DDI rules should be classified and how alerts
should be displayed [10,32,33].

Another approach involves calculating the likelihood of a given
outcome when the DDI rule’s criteria are met; the rules could
be turned off if the likelihood is low. This feature has been
requested by physicians [20,21,27] and has been theoretically
specified as a “statistically prioritized and contextualized CDSS”
(SPC-CDSS) [34]. In these CDSSs, the conditional empirical
probabilities of adverse drug events (ADEs) are computed by
reuse of electronic health records (EHRs) [35,36].

The strategic objective of this study was to generate empirical
evidence in favor of SPC-CDSSs. The operational objective
was to compute empirical conditional probabilities of outcome
for VKA-related DDI prevention rules, via data reuse of EHRs.

Methods

Overview
This was a retrospective cohort study. The study population
comprised all the inpatient stays from 2007 to 2014 in a set of
French, Danish, and Bulgarian hospitals (see Inpatient Stays
section) participating in the European “Patient Safety through
Intelligent Procedures“ (PSIP) project [37]. A set of DDI rules
was defined, including causes (a VKA and another drug) and
potential outcomes (VKA potentiation or inhibition, as defined
in the Set of DDI Rules section). The causes and the potential
outcomes were retrospectively tracked over time in the data set,
and the probability of each outcome was estimated automatically
for each DDI rule.

Inpatient Stays
We reanalyzed 96,378 inpatient stays in a French community
hospital, 53,635 inpatient stays in a group of Danish community
hospitals, and 6880 inpatient stays in a Bulgarian hospital. Only
stays with at least one laboratory INR result and at least one
day with VKA administration were included. Those data had
been collected exhaustively during routine patient care. The
available data [9] included (1) demographic and administrative
information (eg, age, gender, and dates), (2) diagnoses coded
according to the International Statistical Classification of
Diseases and Related Health Problems, 10th Revision [38], (3)
daily drug administrations, encoded using the Anatomical
Therapeutic Chemical (ATC) Classification System terminology
[39], and (4) laboratory results encoded using the Clinical
Nomenclature for Properties and Units terminology [40].

Set of DDI Rules
We used the combined results of three literature reviews
(Holbrook et al [7], Nutescu et al [5], and Di Minno et al [1])
to identify DDI rules involving VKAs. After deduplication, a
list of 149 DDIs (available in Multimedia Appendix 1) was
created. We then mapped the drug names to ATC codes [39]
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by taking into account the active substances and the
administration route. The ATC mapping was inclusive and,
when appropriate, also involved ATC codes relating to drug
combinations.

Of the 149 DDIs, 7 were excluded because they corresponded
to drugs without ATC terms. Two drugs had the same ATC
code (amoxicillin + tranexamic acid, and amoxicillin +
clavulanate) and were therefore combined in 1 DDI. The
remaining drugs were variously analgesics, antipyretics, and
immunological agents (n=21), anti-infectives (n=47),
cardiovascular and anti-hypertensive drugs (n=29), central
nervous system drugs (n=19), and other drugs (n=25).
Ultimately, we obtained 107 drugs that might potentiate VKAs
and 34 drugs that might inhibit VKAs (including 4 drugs that
belonged to both categories). A final set of 141 DDI rules was
obtained for drug administration. The same number of rules
was obtained for drug discontinuation, leading to 2×141 rules
in total.

We then obtained DDIs, in the form “VKA & administration
of DrugX → outcome” and “VKA & discontinuation of DrugX
→ reverse outcome,” where the “DrugX” term was a drug that
potentially interacted with VKAs, and the “outcome” term was
defined as VKA potentiation (INR≥5) or inhibition (INR≤1.5).

Statistical Analysis
In descriptive analyses, qualitative variables were reported as
the number and percentage for each category, and quantitative
variables were reported as the mean and standard deviation (SD)
for symmetric data distributions or the median and interquartile
range (IQR) for asymmetric data distributions.

The main objectives of the statistical analysis were to follow
up each inpatient stay in which a VKA was administered, detect
outcomes over time, and estimate odds ratios (ORs) for the
second drug in the DDI rule. The following procedure was
applied for each DDI rule. The “VKA & tramadol → INR≥5”
rule serves here as an example. Figure 1 shows the data
transformation process for a hospital stay with VKA and
tramadol (an “exposed stay,” left side) and a stay with VKA
but no tramadol (a “nonexposed stay,” right side). The
observation periods were designed to reflect each drug’s onset
of action and postdiscontinuation duration of action. An
“exposed” inpatient started the day after the two drugs had been
administered together and ended 4 days after the first of the two
was discontinued or after both were discontinued on the same
day. A “nonexposed” inpatient started on the day after the VKA
had been administered and stopped 4 days after the VKA had
been discontinued. The observation period was searched for the
outcome (Figure 1).

Figure 1. Data management: definitions of the inpatient stays included in the analysis. Time advances from left to right. INR: international normalized
ratio. VKA: vitamin K antagonist.

For each drug, we used the same approach to test whether drug
discontinuation would lead to the opposite outcome. For
instance, the “VKA & tramadol → INR≥5” rule also enabled
us to test the “VKA & tramadol discontinuation → INR≤1.5”
rule.

We first computed the unadjusted OR (95% confidence limits
[CLs]) for the exposure and the outcome, using the Fisher exact
test [41]. We then performed a multivariable logistic regression
to predict the outcome. The covariates were the studied drug,
age, albuminemia, pre-albuminemia, creatininemia, aspartate
transaminase/alanine transaminase (ASAT/ALAT) levels,
thyroid stimulating hormone (TSH) level, and N-terminal-pro
brain natriuretic peptide (Nt-proBNP) (the last five of these
covariates are surrogate markers for malnutrition, kidney failure,
liver failure, dysthyroidism, and heart failure, respectively). We
thus obtained the adjusted OR (95% CLs). Lastly, the model’s

covariates were selected in a stepwise procedure, yielding the
“stepwise OR” (95% CLs) [42].

Quantitative variables were placed in classes when the effect
was not linear (“ref” denotes the reference class): Age was
classified as “<70” (ref), “70-79,” and “≥80”. The albuminemia
was classified in g/L as “<30” and “≥30” (ref). Pre-albuminemia
was classified in g/L as “<0.07,” “0.07-0.10,” and “≥0.11” (ref).
Creatininemia was classified in mg/L as “≤15” (ref), “16-24,”
and “≥25”. ASAT/ALAT levels were classified in IU/L as
“<250” (ref) and “≥250”. TSH levels were classified in mU/L
as “0.5-5” (ref) and “<0.5 or >5”. Lastly, Nt-proBNP was
classified in pg/mL as “<450” (ref) and “≥450”. We inferred
missing values with normal (reference) values. All statistical
analyses were performed with R software (R Foundation for
Statistical Computing).
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Ethics
In line with the French, Danish, and Bulgarian legislations on
reuse of deidentified data collected during routine medical care,
approval by one or more institutional review boards was not
required. The study procedures complied with principles
outlined in the Declaration of Helsinki.

Results

Inpatient Stays
The overall study database included 156,893 inpatient stays, of
which the 4047 (2.58%) with VKA administration were
analyzed. The mean age (Figure 2) was 75.9 years (SD 12.0),
and there were 2356 women (58.2%).

Figure 2. Age pyramid of the patients.

The median length of stay was 9 days (IQR 6-15), and there
were 162 in-hospital deaths (4.00%). The VKA administered
was fluindione in 3256 cases (80.5%), warfarin in 553 cases
(13.7%), acenocoumarol in 227 cases (5.6%), and another VKA
or several different VKAs in 11 cases (0.3%).

Empirical Probabilities of Outcomes for Each DDI
Rule
For some DDI rules, fewer than 3 cases of concomitant
administration with a VKA were observed in the database, so
we did not compute the ORs. The corresponding drugs were as
follows:

There were 76 drugs analyzed upon initiation:

• Analgesics, anti-inflammatories, and immunologic agents:
cyclosporine, etodolac, interferon, leflunomide,
mercaptopurine, nabumetone, phenylbutazone, piroxicam,
rofecoxib, sulindac, tolmetin, and trastuzumab.

• Anti-infectives: azithromycin, cefamandole, cefazolin,
chloramphenicol, efavirenz, etravirine, fosamprenavir,
gatifloxacin, griseofulvin, itraconazole, levamisole,
miconazole (vaginal suppositories), nafcillin, nalidixic acid,
ribavirin, saquinavir, sulfisoxazole, voriconazole,
terbinafine, nevirapine, and ritonavir (the last 3 drugs were
involved in 6 DDI rules).

• Cardiovascular drugs: cholestyramine, clofibrate,
gemfibrozil, indomethacin, lovastatin, metolazone,
ticlopidine, and ubidecarenone.

• Central nervous system (CNS) drugs: chlordiazepoxide,
chloral hydrate, disulfiram, entacapone, felbamate,
fluvoxamine, methylphenidate, phenytoin, propofol, and
trazodone.

• Other drugs: anabolic steroids, cimetidine, danazol, ethanol,
etretinate, fluorouracil, gemcitabine, glucagon, ifosphamide,
influenzae vaccine, levonorgestrel, paclitaxel, raloxifene,
sulfamethoxazole, sulfinpyrazone, tolterodine, topical
salicylates, troglitazone, and zafirlukast (sulfinpyrazone
was involved in 2 DDI rules).

There were 106 drugs analyzed upon discontinuation:

• Analgesics, anti-inflammatories, and immunologic agents:
azathioprine, celecoxib, cyclosporine, etodolac, interferon,
leflunomide, mercaptopurine, mesalazine, nabumetone,
phenylbutazone, piroxicam, rofecoxib, sulfasalazine,
sulindac, tolmetin, and trastuzumab.

• Anti-infectives: azithromycin, cefamandole, cefazolin,
chloramphenicol, doxycycline, efavirenz, erythromycin,
etravirine, fosamprenavir, gatifloxacin, griseofulvin,
isoniazid, itraconazole, levamisole, miconazole (oral gel),
miconazole (topical gel), miconazole (vaginal
suppositories), moxifloxacin, nafcillin, nalidixic acid,
nevirapine, norfloxacin, ribavirin, ritonavir, saquinavir,
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sulfisoxazole, terbinafine, tetracycline, and voriconazole
(nevirapine, ribavirin, and ritonavir were involved in 6 DDI
rules).

• Cardiovascular drugs: bezafibrate, bosentan, chelation
therapy, cholestyramine, clofibrate, disopyramide,
dronedarone, ezetimibe, fenofibrate, fluvastatin,
gemfibrozil, indomethacin, lovastatin, metolazone, orlistat,
propafenone, quinidine, telmisartan, ticlopidine, and
ubidecarenone.

• CNS drugs: barbiturates, carbamazepine, chlordiazepoxide,
chloral hydrate, disulfiram, duloxetine, entacapone,
felbamate, fluvoxamine, methylphenidate, phenytoin,
propofol, quetiapine, ropinirole, sertraline, and trazodone.

• Other drugs: anabolic steroids, cimetidine, danazol ethanol,
etretinate, fluorouracil, gemcitabine, glucagon, ifosphamide,
influenzae vaccine, levonorgestrel, paclitaxel, raloxifene,
sulfamethoxazole, sulfinpyrazone, tamoxifen, tolterodine,
topical salicylates, troglitazone, zafirlukast, and oxolamine
(sulfinpyrazone was involved in 2 DDI rules).

For other drugs, at least 3 cases of concomitant administration
with a VKA were observed.

Upon initiation, 47 drugs did not appear to have a statistically
significant impact on the INR:

• Analgesics, anti-inflammatories, and immunologic agents:
celecoxib, dextropropoxyphene, methylprednisolone,
mesalazine, and sulfasalazine.

• Anti-infectives: amoxicillin, amoxicillin+β-lactamase
inhibitor, clarithromycin, ciprofloxacin, dicloxacillin,
doxycycline, erythromycin, fluconazole, isoniazid,

levofloxacin, miconazole (oral gel), miconazole (topical
gel), moxifloxacin, nafcillin, nevirapine, norfloxacin,
ofloxacin, ribavirin, ritonavir, terbinafine, tetracycline,
tranexamic acid, and trimethoprim;sulfamethoxazole.

• Cardiovascular drugs: bezafibrate, chelators, diltiazem,
disopyramide, dronedarone, ezetimibe, fenofibrate,
fluvastatin, propafenone, propranolol, quinidine, and
telmisartan.

• CNS drugs: barbiturates, carbamazepine, citalopram,
duloxetine, fluoxetine, quetiapine, ropinirole, and sertraline.

• Other drugs: acarbose, ketoconazole, sucralfate, and
tamoxifen.

Upon discontinuation, 14 drugs did not appear to have a
statistically significant impact on the INR:

• Anti-infectives: cloxacillin, dicloxacillin, rifampicin,
t e i c o p l a n i n ,  t r a n ex a m i c  a c i d ,  a n d
trimethoprim;sulfamethoxazole.

• Cardiovascular drugs: candesartan, propranolol,
rosuvastatin, and simvastatin.

• CNS drugs: citalopram and fluoxetine.
• Other drugs: acarbose and sucralfate.

The results of the DDI rules for which at least one OR was
significant are summarized in Table 1 (for drug initiation) and
Table 2 (for drug discontinuation). The “n” column always
refers to the number of stays with a VKA and the given drug,
although the OR was always estimated for 4047 stays. All of
the drugs evaluated in the tables were associated with a
protective effect.
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Table 1. Drugs interacting with VKAs upon initiation and that had at least one significant OR (in all cases, 4047 stays are analyzed).

Stepwise OR (95% CLs)Adjusted OR (95% CLs)ORa (95% CLsb)nOutcomeDrug

Analgesics, anti-inflammatories, and immunologic agents

0.66 (0.53, 0.8)0.66 (0.53, 0.8)0.69 (0.56, 0.85)1023INRc≥5Acetaminophen

0.47 (0.36, 0.6)0.47 (0.36, 0.6)0.49 (0.38, 0.63)731INR≥5Acetylsalicylic acid

0.17 (0.04, 0.53)0.18 (0.04, 0.55)0.18 (0.03, 0.64)19INR≤1.5Azathioprine

0.63 (0.47, 0.82)0.63 (0.47, 0.82)0.65 (0.48, 0.86)486INR≥5Tramadol

Anti-infectives

0.28 (0.08, 0.85)0.28 (0.08, 0.84)0.35 (0.08, 1.2)15INR≤1.5Cloxacillin

0.47 (0.24, 0.84)0.47 (0.24, 0.84)0.58 (0.29, 1.08)98INR≥5Metronidazole

0.28 (0.13, 0.55)0.28 (0.13, 0.54)0.36 (0.16, 0.73)41INR≤1.5Rifampicin

0.37 (0.19, 0.68)0.37 (0.19, 0.7)0.36 (0.18, 0.7)48INR≤1.5Teicoplanin

Cardiovascular drugs

0.77 (0.62, 0.95)0.77 (0.62, 0.95)0.83 (0.67, 1.02)856INR≥5Amiodarone

0.64 (0.46, 0.87)0.64 (0.46, 0.87)0.66 (0.47, 0.91)345INR≥5Atorvastatin

0d0d0 (0, 0.82)6INR≤1.5Bosentan

0.44 (0.33, 0.59)0.45 (0.33, 0.6)0.42 (0.31, 0.56)225INR≤1.5Candesartan

0.35 (0.3, 0.39)0.34 (0.3, 0.4)0.33 (0.29, 0.38)1955INR≤1.5Furosemide

0.4 (0.27, 0.59)0.4 (0.27, 0.59)0.48 (0.32, 0.71)294INR≥5Heparin (unfractionated)

0.47 (0.28, 0.75)0.47 (0.28, 0.75)0.48 (0.28, 0.79)181INR≥5Rosuvastatin

0.52 (0.33, 0.79)0.52 (0.33, 0.79)0.45 (0.28, 0.68)254INR≥5Simvastatin

Other drugs

0.6 (0.42, 0.84)0.6 (0.42, 0.84)0.64 (0.44, 0.91)292INR≥5Allopurinol

0.55 (0.33, 0.86)0.55 (0.33, 0.86)0.62 (0.36, 1)155INR≥5Omeprazole

aOR: odds ratio.
bCL: confidence limit.
cINR: international normalized ratio.
dThe 95% CLs were not computable.
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Table 2. Drugs interacting with VKAs upon discontinuation and that had at least one significant OR (in all cases, 4047 stays are analyzed).

Stepwise OR (95% CLs)Adjusted OR (95% CLs)ORa (95% CLsb)nOutcomeDrug

Analgesics, anti-inflammatories, and immunologic agents

0.16 (0.11, 0.22)0.16 (0.11, 0.22)0.18 (0.12, 0.25)251INRc≤1.5Acetaminophen

0.2 (0.12, 0.33)0.21 (0.12, 0.33)0.2 (0.11, 0.33)114INR≤1.5Acetylsalicylic acid

0.21 (0.06, 0.57)0.21 (0.06, 0.57)0.22 (0.05, 0.66)22INR≤1.5Dextropropoxyphene

0.18 (0.11, 0.29)0.19 (0.11, 0.29)0.19 (0.11, 0.3)129INR≤1.5Methylprednisolone

0.15 (0.08, 0.24)0.14 (0.08, 0.24)0.16 (0.08, 0.27)109INR≤1.5Tramadol

Anti-infectives

0.18 (0.13, 0.26)0.19 (0.13, 0.27)0.21 (0.14, 0.3)216INR≤1.5Amoxicillin

0.22 (0.15, 0.32)0.23 (0.16, 0.32)0.25 (0.17, 0.36)199INR≤1.5Amoxicillin;clavulanate

0.09 (0.02, 0.27)0.09 (0.02, 0.27)0.11 (0.02, 0.35)30INR≤1.5Ciprofloxacin

0.06 (0, 0.34)0.07 (0, 0.36)0.1 (0, 0.69)11INR≤1.5Clarithromycin

0.24 (0.07, 0.69)0.23 (0.06, 0.68)0.33 (0.08, 1.08)16INR≤1.5Fluconazole

0.16 (0.04, 0.49)0.16 (0.04, 0.5)0.19 (0.04, 0.69)18INR≤1.5Levofloxacin

0.24 (0.09, 0.58)0.24 (0.09, 0.57)0.29 (0.1, 0.76)26INR≤1.5Metronidazole

0.27 (0.13, 0.51)0.27 (0.13, 0.52)0.3 (0.14, 0.6)47INR≤1.5Ofloxacin

Cardiovascular drugs

0.27 (0.15, 0.46)0.28 (0.16, 0.47)0.25 (0.14, 0.44)83INR≤1.5Amiodarone

0.14 (0.01, 0.82)0.14 (0.01, 0.84)0.16 (0, 1.34)7INR≤1.5Atorvastatin

0.11 (0.02, 0.4)0.12 (0.02, 0.41)0.11 (0.01, 0.45)20INR≤1.5Diltiazem

0.33 (0.2, 0.51)0.33 (0.2, 0.51)0.42 (0.25, 0.66)246INR≥5Furosemide

0.18 (0.1, 0.29)0.18 (0.11, 0.29)0.19 (0.11, 0.31)115INR≤1.5Heparin (unfractionated)

Other drugs

0.24 (0.04, 1.01)0.23 (0.03, 0.98)0.28 (0.03, 1.46)9INR≤1.5Allopurinol

0d0d0 (0, 0.67)7INR≤1.5Ketoconazole

0.17 (0.05, 0.46)0.18 (0.05, 0.47)0.18 (0.04, 0.52)26INR≤1.5Omeprazole

aOR: odds ratio.
bCL: confidence limit.
cINR: international normalized ratio.
dThe 95% CLs were not computable.

Discussion

Principal Findings
In this study, all the drugs that reportedly interact with VKAs
either lacked a statistically significant association or were
associated with a statistically significant reduction in risk. Our
results suggest that an empirical evaluation of DDIs (as has
been suggested for an SPC-CDSS) could help to refine the alerts
issued by a CDSS [34]. Our objective was to determine which
drugs were associated with an increased risk of bleeding or
thrombosis (compared with baseline), rather than to discover
which drugs indeed interact with VKAs. It should also be borne
in mind that the risk baseline was not zero but corresponded to
the actual risk to which inpatients in a given hospital were
exposed. This risk was already quite high, and the purpose of
a CDSS is to warn physicians when this risk will be accentuated.

Hence, our present findings do not contradict the current body
of academic knowledge about these drugs.

In all included hospitals, various CDSSs were active before the
time of the study. In all of them, the physicians asked for all
the alerts to be deactivated. Indeed, physicians were under alert
fatigue. Those bad experiences led them to set up the PSIP
European Project [9], whose purpose was to find “intelligent”
ways to prevent adverse drug events. This paper stands in
continuation of the PSIP Project.

Discussion of the Method
Our study had several strengths. First, the drugs for evaluation
were identified through a systematic review of the literature.
Second, the study was population-based; in contrast to clinical
trials, it was possible to analyze real-life drug administrations,
ill-advised drug combinations, and patients with several
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comorbidities. Along with the INR values, we also took account
of the chronology of the drug prescriptions and discontinuations.

Our observational study also had several limitations. First, the
number of exposed patients was too small for many drugs.
Consequently, our study was not powerful enough to provide
firm evidence of an increase or a decrease in the probability of
outcomes. This limitation highlights the shortcomings of the
SPC-CDSS concept. A reasonable attitude would be to ignore
statistical filtering when the number of cases in the learning
database is too small. Second, the dose levels of the drugs
involved in the DDIs have not been evaluated. Therefore, it
cannot be excluded that patients were overdosed or underdosed,
which could falsely affect our results. Third, polypharmacy was
common (especially in the elderly population; the mean age
was 75.9 years) but could not be fully taken into account.
Therefore, an outcome counted for one DDI rule could
potentially be due to another DDI rule being administered
concomitantly to the patient. Fourth, we considered that data
were not missing at random and so imputed missing data with
normal values; in routine clinical care, nonmeasured parameters
are more likely to be normal. Lastly, we used the same onset
time (1 day) and discontinuation time (4 days) for each drug,
even though the pharmacokinetics differed. Naturally,
pharmacokinetics of other possibly interacting drugs are not
similar: some of them have a short half-life, and others have a
long half-life. Moreover, the kinetics of the interaction cannot
be directly inferred from the half-life. Taking this into account
would require having a precise description of the mechanisms
of all interactions, which is not possible.

The INR is a surrogate marker and does not necessarily reflect
clinical outcomes. Indeed, a high INR does not always result
in bleeding, nor does a low INR in thrombosis. Furthermore,
some DDI interactions for VKAs may lead to clinical outcomes
without any change in the INR. However, these clinical
outcomes would not have been measured as frequently as the
INR was, and the measurements would have been less reliable.
Although this would be an issue in automated ADE detection,
this approximation is still acceptable when the objective is to
filter alerts and identify risk factors.

The number of different patients was 3101 for 4047 stays.
Correlation between patients was not taken into account. This
attitude can be justified as follows. The calibration of the CDSS
is carried out based on statistical individuals that correspond to
solicitations of the inference engine and not to physical persons.
If some specific patients are more often hospitalized, it makes
sense to overweight their statistical properties in the CDSS.

Discussion of the Results
The statistically significant associations observed for some
drugs should not be interpreted as proof of a causal relationship.
Indeed, many drugs are associated with specific clinical contexts
(ie, indication bias). Those contexts are variously related to the
patient (eg, treatments for Alzheimer disease and age), the
context of care (eg, antibiotics and bacterial infection), or the
prescriber (eg, a cardiologist who is used to prescribing VKAs

and avoids DDIs). It should be noted that our present results do
not cast doubt on our current body of pharmacological
knowledge per se; however, they do challenge the commonly
accepted idea whereby this knowledge alone should be used to
filter or rank DDI rules [20,21,27]. We suggest that “real-life”
empirical probabilities might be more appropriate for these
purposes: an alert should be flagged up because there is an actual
ADE risk (considering the context, ie, confounding factors, the
patient, and the prescriber) and not only a theoretical risk.
Perhaps the root of the problem is not so much the DDIs, but
the pathological context of the patient. Our hypothesis is that
for patients who are doing well, DDIs have a relatively limited
impact, due to physiological adaptability. On the other hand,
for patients with multiple comorbidities, DDIs have a stronger
impact [43,44]. However, using empirical probabilities to
automatically filter or rank DDI rules raises a number of issues;
the probabilities would have to be updated frequently and
computed separately in various contexts [35].

Potential Impact on Future CDSSs
These probabilities could be used to improve CDSSs in two
ways, both of which have been suggested and tested in the
literature [35,36,45]: first, to deactivate DDI rules that are
associated with an empirical probability below a chosen
threshold, and second, to show physicians past cases with
outcome to improve their adherence to remaining alerts. The
SPC-CDSS concept was recently introduced [34]. The idea is
to automatically reuse actual clinical data and search for
outcomes (INR≥5, for instance). To prevent the occurrence of
an outcome, the SPC-CDSS automatically estimates the
conditional probability of an outcome for each rule, assuming
that its conditions are met. When the probability is too low (and
if there are enough patients), the corresponding alerts are
automatically deactivated. In our present work, we used a type
1 error of 5%. A higher threshold (eg, 10%) would remove
fewer alerts. The threshold could then be tuned according to the
individual physician’s level of risk aversion and alert tolerance.
This calculation could also be performed separately for each
medical specialty, to take account of the context. This could
include latent variables (eg, mean patient characteristics,
comorbidities, and the reason for admission), organizational
characteristics, and physician characteristics.

As reported in the literature [36,46,47], our present findings
confirmed that the reuse of EHR data is an effective way of
identifying likely ADEs. Indeed, active postmarket surveillance
of drugs must be based on the reuse of data from EHRs and,
more specifically, on the inpatient setting; the latter has not
been extensively studied [48].

Conclusion
After calculating the probability that specific medications would
interact with VKAs in real life, we found that many of the
medications did not show the predicted DDIs. We suggest that
EHR data can be automatically mined to filter DDI rules and
thus improve CDSSs.
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