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Abstract

Background: Clinical named entity recognition (CNER), whose goal is to automatically identify clinical entities in electronic
medical records (EMRs), is an important research direction of clinical text data mining and information extraction. The promotion
of CNER can provide support for clinical decision making and medical knowledge base construction, which could then improve
overall medical quality. Compared with English CNER, and due to the complexity of Chinese word segmentation and grammar,
Chinese CNER was implemented later and is more challenging.

Objective: With the development of distributed representation and deep learning, a series of models have been applied in
Chinese CNER. Different from the English version, Chinese CNER is mainly divided into character-based and word-based
methods that cannot make comprehensive use of EMR information and cannot solve the problem of ambiguity in word
representation.

Methods: In this paper, we propose a lattice long short-term memory (LSTM) model combined with a variant contextualized
character representation and a conditional random field (CRF) layer for Chinese CNER: the Embeddings from Language Models
(ELMo)-lattice-LSTM-CRF model. The lattice LSTM model can effectively utilize the information from characters and words
in Chinese EMRs; in addition, the variant ELMo model uses Chinese characters as input instead of the character-encoding layer
of the ELMo model, so as to learn domain-specific contextualized character embeddings.

Results: We evaluated our method using two Chinese CNER datasets from the China Conference on Knowledge Graph and
Semantic Computing (CCKS): the CCKS-2017 CNER dataset and the CCKS-2019 CNER dataset. We obtained F1 scores of
90.13% and 85.02% on the test sets of these two datasets, respectively.

Conclusions: Our results show that our proposed method is effective in Chinese CNER. In addition, the results of our experiments
show that variant contextualized character representations can significantly improve the performance of the model.

(JMIR Med Inform 2020;8(9):e19848) doi: 10.2196/19848
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Introduction

Background
Electronic medical records (EMRs) are an important data
resource to describe patients’ disease conditions or treatment
processes. They are records written by clinicians using
unstructured free text to describe medical activities for
individual patients. By analyzing EMRs, a large amount of
patient-related medical knowledge can be mined [1]. With the
generation of a larger number of EMRs and the potential demand
for medical information services and medical decision support,
they have attracted much attention from researchers.

Clinical named entity recognition (CNER) aims to automatically
identify clinical entities in EMRs and classify them into
predefined categories, such as disease, image review, laboratory
examination, operation, drug, and anatomy [2]. CNER is the
key component of clinical text mining and EMR information
extraction research and is used for clinical decision support in
medical informatics [3]. At the same time, CNER can also
provide support for disease diagnosis and medical knowledge
base construction, so as to improve overall medical quality [4].
Compared with English CNER and due to the complexity of
Chinese word segmentation and grammar, Chinese CNER was
implemented later and is more challenging. As a public task,
Chinese CNER has been introduced three times at the China
Conference on Knowledge Graph and Semantic Computing
(CCKS), from 2017 to 2019, in order to promote the information
extraction of Chinese EMRs. In this paper, we conducted
research and experiments with our Chinese CNER approach,
based on the CCKS-2017 (Task 2) CNER dataset and the
CCKS-2019 (Task 1) CNER dataset.

CNER is generally performed as a sequence tagging problem
to identify and extract entity references related to clinical
medicine. For the English CNER task, several neural network
architectures have been proposed and achieved excellent
performance; among them, the most widely used system is a
combination of bidirectional long short-term memory (BiLSTM)
and conditional random fields (CRFs) [5-7]. Ma and Hovy [8]
presented the BiLSTM-convolutional neural network
(CNN)-CRF model with CNN and achieved an approximately
equal performance. Compared to named entity recognition
(NER) in other fields, Chinese CNER is more challenging.
Medical texts often use nonstandard abbreviations, or the same
entity has multiple forms; for example, “奥沙利铂” (oxaliplatin)
is the same as “奥沙利柏” (oxaliplatin) [9]. The more critical
problem is that the Chinese grammatical structure is more
complex than the English structure, and there is no natural
word-segmentation boundary in Chinese, which may lead to
word-segmentation error propagation in CNER [10]. In view
of the dependence of Chinese word segmentation, Zhang and
Yang [11] put forward an innovative lattice long short-term
memory (LSTM) model for Chinese NER. Lattice LSTM is
character based and effectively utilizes the corresponding
potential word information, which is superior to character-based
and word-based models in many Chinese general datasets.

Compared with statistical learning methods, which need to
design or extract hand-crafted features based on domain-specific

knowledge, deep learning methods usually use distributed
representation as the input feature. Traditional pretrained
character-embedding models, such as word2vec [12] and Global
Vectors for Word Representation (GloVe) [13], train embedding
based on their syntactic and semantic similarity in sentence-level
contexts, but the training result is a context-independent
character vector. In fact, a character may have completely
different meanings in different contexts. For instance, in the
sentence “考虑为腺癌，于5月30日给予TP方案化疗（紫杉
醇240MG静脉滴注，顺铂90MG腹腔灌注），过程顺利，
无明显副作用,” the meanings of both characters “顺” are
different depending on their context. Reasonably, the two
characters “顺” should have different vector representations.
The Embeddings from Language Models (ELMo) [14] model,
which provides deep contextualized word representations, allows
the same word to have different vector representations in
different sentences. The ELMo model was originally proposed
for English text and generates specific English word vectors for
each sentence, not character vectors. However, the lattice LSTM
model is essentially based on Chinese characters; therefore, we
modified the ELMo model to replace the character-encoding
layer with domain-specific Chinese characters as input, so that
the domain-specific ELMo embedding of Chinese characters
was obtained.

In this paper, we propose a lattice LSTM model combined with
a variant contextualized character representation and CRF layer
for Chinese CNER. By taking advantage of the lattice LSTM
structure, our approach can control the long-term state with the
combination of word information to make full use of EMR
information. Moreover, a variant ELMo model is projected into
the lattice LSTM model to help it obtain contextual semantic
information. Finally, a CRF layer is used to capture the
dependencies between adjacent labels. We can summarize the
main contributions of our work as follows:

1. We used the medical field texts to train domain-specific
character embedding and word embedding; since traditional
word embedding is difficult to use for capturing contextual
semantics, the addition of the variant ELMo model can help
the model combine the contextualized character
representations on the basis of character information and
potential word information.

2. This is the first time the variant ELMo embedding has been
integrated into the lattice LSTM model and applied to
Chinese CNER research. Compared with other prevalent
models, it has achieved relatively competitive results with
F1 scores of 90.13% and 85.02% on two Chinese CNER
datasets, respectively.

Prior Work

CNER
In the first research studies on CNER, rule-based methods [15]
and dictionary-based methods [16] were the most common
methods. For instance, Savova et al [17] and Zeng at al [18]
combined manual rules and heuristic rules to identify medical
entities with good results. Because of the grammatical
complexity of Chinese clinical texts, rule-based methods need
a lot of hand-crafted rules, which cannot identify enough entities
and are difficult to transfer to other fields. Statistical learning
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algorithms are mainly based on single-word classification or
sequence tagging, which can consider the tagging results of
adjacent words jointly [19,20]; these algorithms include support
vector machines (SVMs) [21], CRFs [22], and structured SVMs.
Finkel et al [23] used CRF to establish an automatic annotation
model for NER, which mainly considered the characteristics of
words, prefixes, parts of speech sequences, and word
morphologies. However, statistical learning methods rely heavily
on complex feature engineering and resources for specific tasks.
Collobert et al [24] took the lead in solving the NER problem
with a neural model, and used the word embedding as the input
feature. With the extensive application of deep learning in the
field of natural language processing (NLP), various neural
networks have been applied to sequence tagging tasks [25].

Systematic research on EMR entity recognition was initiated
by i2b2 (Informatics for Integrating Biology and the Bedside)
as a public evaluation task in 2010 [26]. This evaluation first
classified EMR entities [27], mainly identifying three types of
entities: medical problems, treatment, and examination. For
Chinese CNER, Feng et al [28] first carried out CNER research
on Chinese EMRs, using the CRF model and manually compiled
dictionaries. In the Chinese CNER, the open dataset is extremely
lacking, and only the CCKS evaluation tasks published the
datasets; they were published three times, between 2017 and
2019. The BiLSTM-CRF model, with self-taught and active
learning proposed by Xia and Wang [29], reached an F1 score
of 88.98% on the CCKS-2017 CNER dataset. Since there is no
clear word-boundary information in Chinese text, Chinese
CNER systems can be generally divided into character-based
and word-based methods. However, the character-based method
may lose word-level information, while the word-based method
suffers from word-segmentation error propagation.

Word Embedding
In general, the deep learning method uses word embedding
trained from a large-scale unlabeled corpus as a model input
instead of feature engineering. The most representative,
pretrained word vectors—word2vec [12], GloVe [13], and a

semisupervised learning method [30]—can capture fine-grained
semantic and syntactic information from unlabeled text. Most
of the pretrained word-embedding models are trained on the
general corpus, and the semantic similarity measurement built
for a general purpose is not effective in a specific field. In
specific fields such as clinical text mining, there are many
clinical entities and syntactic blocks that contain rich domain
information, and the semantics of words are closely related to
them; therefore, we need to use a specific corpus to train
domain-specific embedding [31].

Most of the embedding models only produce
context-independent representation for each word, so it is
difficult to obtain contextual semantic information. Current
research focuses on contextual vector representation; for
example, context2vec [32] uses the LSTM model to encode
context around a center word or some unsupervised language
model [33]. Devlin et al [34] proposed a pretrained language
model, Bidirectional Encoder Representations from
Transformers (BERT), which achieved state-of-the-art results
in many NLP tasks. This paper adopts the contextualized
word-embedding (ie, ELMo) model introduced by Peters et al
[14] and modifies it to adapt to Chinese characters.

Methods

Model

Overview
In this section, we propose the ELMo-lattice-LSTM-CRF model
in detail; its architecture is shown in Figure 1. First, we
concatenated the ELMo embedding and the word2vec
embedding as the input of the character-embedding part of the
lattice LSTM model. Second, embedding of the subsequence
from lexicon D was used as the input of the word-embedding
part. Finally, a CRF layer was used to predict the label
probability. We illustrate these three parts of the
ELMo-lattice-LSTM-CRF model with real clinical text (ie, “胃
体粘膜” [gastric mucosa]) as an example.
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Figure 1. Architecture of the ELMo-lattice-LSTM-CRF model. B-IMG: beginning of image entity; c: cell memory; CRF: conditional random field;
ELMo: Embeddings from Language Models; h: hidden state; I-IMG: inside of image entity; LSTM: long short-term memory; superscript c: character
sign; superscript w: word sign; x: embedding of a character or word.

Lattice LSTM
The lattice LSTM model can be regarded as an extension of the
character-based method, which takes the addition of character
embedding and weighted-word embedding as the input of the
model. The input is a sequence of m characters as (c1, c2,..., cm),
together with words that are obtained by matching the clinical
text in lexicon D. We used the Gensim word2vec tool to train
the unlabeled clinical corpus to obtain domain-specific character
embedding and word embedding. This clinical corpus includes
the CCKS-2017 CNER dataset, the CCKS-2019 CNER dataset,
the unlabeled corpora provided by these two tasks, a health care
and learning community [35], and the China National
Knowledge Infrastructure (CNKI) medical abstracts [36], with
a total of 526,631 sentences. In the known literature, there is
no publicly available medical domain lexicon D, so we use the
annotated entities in the Chinese CNER datasets provided by
the CCKS-2017 and CCKS-2019 datasets and the dictionaries
captured through open sources; finally, we built a medical

terminology dictionary at a scale of about 23 kB. The term wd
b,e

denotes the subsequence of matching lexicon D in clinical text,
beginning with character index b and ending at index e, as an

example in Figure 1; the subsequence wd
1,2 is “胃体” (gastric),

and wd
1,4 is “胃体黏膜” (gastric mucosa). The term xw

b,e is the

embedding of subsequence wd
b,e. The character-level recurrent

LSTM functions are shown below:

fct = σ (Wct
f [hc

t–1, x
c
t]) + bf (1)

oc
t = σ (Wct

o [hc
t–1, x

c
t]) + bo (2)

ict = σ (Wct
i [hc

t–1, x
c
t]) + bi (3)

(cc
t)~ = tanh (Wct

c[hc
t–1, x

c
t]) + bc(4)

cc
t = f ct × cc

t–1 + ict × (cc
t )~ (5)

hc
t = oc

t × tanh (cc
t) (6)

where ict, o
c
t, f

c
t, and cc

t represent input, output, forget gates,
and the cell memory, respectively. W and b are model
parameters and σ ( ) denotes the sigmoid function.

A word cell cw
b,e, which is calculated by the following formula,

is used to represent the recurrent state of xw
b,e:

fwb,e = σ (Wwt
f [xw

b,e, h
c
b]) + bf (7)

iwb,e = σ (Wwt
i [xw

b,e, h
c
b]) + bi (8)

(cw
b,e)~ = tanh (Wwt

c [xw
b,e, h

c
b]) + bc (9)
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cw
b,e = fwb,e × cc

b + iwb,e × (cw
b,e)~ (10)

where iwb,e is the input gate and fwb,e is the forget gate. Compared
with the standard LSTM model, there is no output gate for word
units, since label prediction is only on the character sequence.

At each time step, multiple information cw
b,e flows into cc

t

through recurrent paths. Take the previous clinical text as an

example: the input resources for cc
4 include xc

4 (“膜” [mucosa]),

cw
3,4 (“粘膜” [mucosa]), and cw

1,4 (“胃体黏膜” [gastric

mucosa]). We add all cw
b,e with weights b ̃∈(b ̃|iwb ̃,e ∈D) to

cc
e; an additional gate icb,e controls the contribution of each

subsequence into cc
e:

icb,e = σ ([xc
e, c

w
b,e]) + bl (11)

The function for calculating cell values cc
t becomes equation

12. Among them, the gate values icb,t and icj are normalized

(sum to 1) to αc
b,t and αc

t:

cc
t = ∑weightsα

c
b,t × cw

b,t + αc
t × (cc

t)~ (12)

The final hidden vectors hc
t are still calculated according to

equation 6. According to the above deduction, we find that the
lattice LSTM model can focus on relevant words dynamically
during NER labeling and can make comprehensive use of the
character information and word information of clinical text.

ELMo
Unlike most widely used, pretrained word-embedding models,
ELMo [14] word representations are calculated by the entire
input sentence. The sentence first passes through a convolutional
character-encoding layer; it is then sent to the two-layer
bidirectional language model (BiLM) layer, and the resulting
vector is sent to the scalar mixer layer to get the ELMo
embedding. Specifically, given a sequence of N tokens (t1, t2,...,
tN), a BiLM computes and combines the current tokens’ tk
probabilities in both the forward and backward directions. Its
goal is to maximize the following likelihood values:

∑N
k=1 (logp (tk|t1,…,tk–1; θx, θLSTM(right),θs) + logp

(tk|tk+1,…,tN; θx, θLSTM(left), θs)) (13)

Where θx, θs, θLSTM(right), and θLSTM(left) are the token
representation, the Softmax layer, and the forward- and
backward-direction LSTM parameters, respectively.

For each token tk, an L-layer BiLM calculates a set of 2L+1
representations as follows:

Rk = {XLM
k, hLM

k,j(right), hLM
k,j(left)|j=1,…,L} =

{hLM
k,j|j=0,…,L} (14)

Where hLM
k,0 is the token layer and hLM

k,j = [hLM
k,j(right);

hLM
k,j(left)] for each BiLSTM layer.

For these representations, the paper makes a scalar mixer with
the following formula:

ELMotask
k = E(Rk; θ

task) = ϒtask∑L
j=0 stask

j hLM
k,j (15)

Here, stask is the Softmax-normalized weight, and the scalar

parameter ϒtask is used to scale the whole ELMo vector.

In the specific application, the model is pretrained on a
large-scale unlabeled corpus. After the model is trained, a new
sentence is input to get the contextualized ELMo embedding
of each word in the current context. The original ELMo model
was proposed for English text, and English words are divided
into English character sequences as input, resulting in ELMo
embedding of English words. Che et al [37] applied ELMo to
multiple languages, including Chinese. They used the Chinese
word-segmentation tools to segment text into words, and then
used the ELMo model to obtain the contextualized word
embedding.

In the method we proposed, in addition to the standard input of
the lattice LSTM model, we integrated the domain-specific,
pretrained ELMo embedding of Chinese characters as one of
the input features. For obtaining the ELMo embedding of
Chinese single characters, we used space to cut the corpus into
single-character forms. Then, we modified the ELMo model;
the architecture of the variant ELMo model is shown in Figure
2. We removed the convoluted character-encoding layer, and
the embedding of Chinese characters was used as the input for
training, with the dimension of character embedding set to 100.
The input-sentence embedding was sent to the two-layer
BiLSTM layer and two-layer representations were obtained. In
the original work, the hidden size of the LSTM unit was set to
be larger, and the dimension needed to be mapped to 512
through the linear layer, so that the output vector dimension of
each character by each BiLSTM layer would be 1024. In our
approach, we also modified the linear layer and mapped the
hidden size of the LSTM cell to 50 through the linear layer; the
output vector dimension of each token by each BiLSTM layer
become 100. We then concatenated the input-sentence
embedding and two-layer representations of the two-layer
BiLSTM; the resulting vector was sent to the scalar mixer layer.
Finally, pretrained ELMo embedding of Chinese characters was
obtained by equation 15. At the pretrained stage of the ELMo
model, we used the same unlabeled clinical corpus as done with
the training-character embedding. In the application, a clinical
sentence was sent into the pretrained ELMo model, so the ELMo
embedding was obtained.
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Figure 2. Architecture of the variant Embeddings from Language Models (ELMo) model. concat: concatenate; LSTM: long short-term memory.

CRF

A CRF layer is used on hidden vectors (hc
1, h

c
2,..., h

c
t). The

CRF decodes hc
t into k-dimensional vectors, which denote label

prediction probabilities. The score of the prediction sequence
y = (y1, y2, y3,..., yn) is computed by the following formula:

S(X,y) = ∑n
i=1 pi,j +∑n+1

i=1 Ay(i–1),y(i) (16)

where pi,j denotes the probability of label j for word i, A
represents the tagging transition matrix, and Ai,j represents the
score of the transition from label i to j.

Finally, the conditional probability P(y|X) is calculated as
follows:

P(y|X) = exp(score(X,y)) / ∑y’exp(score(X,y’)) (17)

where X = (x1, x2, x3,..., xn), which represents the character
sequence input.

Model Implementation
In order to evaluate the performance of our approach, we
implemented a series of basic models for comparison, as listed
below:

1. Char-BiLSTM-CRF. This is a character (char)-based
baseline model [29] without word segmentation;
domain-specific character embedding was used as input.
The pretrained character embedding was trained using the
self-constructed clinical corpus mentioned in the Lattice
LSTM section, and its dimension is 100.

2. BERT-BiLSTM-CRF. We used the pretrained
RoBERTa_middle embedding model [38,39]—an improved

version of BERT—as the input into the BiLSTM layer
instead of the character embedding.

3. Word-BiLSTM-CRF. This is a word-based baseline model
with reference to Wu et al [40]. We used the jieba
segmentor [41], which includes the lexicon D, to segment
the corpus. The Chinese word embedding in the medical
field was trained by the word2vec tool, and the dimension
was set to 100.

4. Word-BiLSTM-CRF (char CNN). On the basis of the
word-based baseline model, the character-level embedding
of words or subsequences was introduced [8]. The Chinese
character in a word or subsequence is the smallest semantic
unit, which carries certain information. The dimension of
character-level embedding was set to 50, and the embedding
lookup table was randomly initialized. The final state of
character-level embedding was obtained by a CNN model;
it was then concatenated with the word embedding to obtain
the distributed representation of the word subsequence.

5. Word-BiLSTM-CRF (char LSTM). Similar to the above
structure, the difference is that the LSTM model was used
to encode character-level embedding [42].

6. ELMo-lattice-LSTM-CRF. This structure was our proposed
method. The pretrained word2vec character embedding was
combined with the medical field, pretrained, ELMo
character embedding as the character part input of the
model. The word subsequence was obtained by matching
sentences in lexicon D, and its embedding was the same as
that of the word-based baseline model.

Parameter Settings
In this study, we cut sentences into character sequences and
limited the length to no more than 200. The BIO (beginning,
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inside, outside) schema was taken to annotate the entity. As
mentioned earlier, the pretrained character embedding, word
embedding from lexicon D, and ELMo embedding were all
100-dimensional vectors. The number of layers of LSTM was
1 and the hidden size was 200. We set the epoch to 10, the batch
size to 1, and the dropout rate was 0.5. We adopted categorical
cross-entropy to compute the loss function. A stochastic gradient

descent optimizer, with a learning of 0.015 and decay rate of
0.05, was used to update parameters. The detailed settings of
hyperparameters are shown in Table 1; similar parameters were
used in other baseline models. On two Chinese CNER datasets,
we used the same parameters, embedding, and lexicon to
evaluate our method. Finally, we used the deep learning
framework pytorch [43] to implement our model.

Table 1. Hyperparameter settings of the proposed approach.

ValueParameter

100Character-embedding size

100Embeddings from Language Models (ELMo) embedding size

100Word-embedding size

0.5Dropout rate

200Long short-term memory (LSTM) hidden size

1LSTM layer

0.015Learning rate

0.05Learning rate decay

10Epoch

1Batch size

Results

Dataset and Evaluation Metrics
We conducted experiments based on two datasets, both of which
were processed to delete privacy in the annotation phase. The
first dataset was the CCKS-2017 CNER dataset, which contains
1596 labeled EMRs with five categories of clinical entities,
including diseases, symptoms, exams, treatments, and body
parts. We divided the dataset into two parts: 1198 EMRs were
taken as a training set and 398 EMRs were taken as test set.
Sequences that are too long will lead to the deterioration of
model performance, so punctuation was used to split EMRs into
sentences [11]. Therefore, the training set contained 7906
sentences and the test set contained 2118 sentences. The detailed

distribution of the count of different types of entities is shown
in Table 2.

The second dataset was the CCKS-2019 CNER dataset, which
contains 1000 labeled EMRs. We divided the dataset into 900
training EMRs (5872 sentences) and 100 test EMRs (612
sentences). There were six categories of clinical entities in the
dataset: disease, image, laboratory, operation, drug, and
anatomy. The detailed distribution of the count of different types
of entities is shown in Table 3.

In this paper, we used standard evaluation metrics, such as
precision, recall, and F1 scores, to evaluate model performance.
Meanwhile, the evaluation metrics were strict, which requires
that the true label and prediction label have exactly the same
entity name, same boundary, and same entity type.

Table 2. The distribution of entities in the China Conference on Knowledge Graph and Semantic Computing (CCKS)-2017 clinical named entity
recognition (CNER) dataset.

Number of entities in each categoryDataset

Body partTreatmentExamSymptomDiseaseSentence

10,7191048954678317227906Training set

3021465314323115532118Test set

Table 3. The distribution of entities in the China Conference on Knowledge Graph and Semantic Computing (CCKS)-2019 clinical named entity
recognition (CNER) dataset.

Number of entities in each categoryDataset

AnatomyDrugOperationLaboratoryImageDiseaseSentence

75241586932116794037555872Training set

8982421163734362612Test set
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Experiments Results
In order to get convincing experimental results, we ran each
model five times and calculated the average precision, recall,

and F1 scores as the final results. Table 4 shows the results of
various models with different architectures on the test set of
two Chinese CNER datasets.

Table 4. Results of various models with different architectures on two datasets.

CCKS-2019 CNER datasetCCKSa-2017 CNERb datasetModel

F1 score, %Recall, %Precision, %F1 score, %Recall, %Precision, %

80.8380.0181.6787.8186.7888.86Charc-BiLSTMd-CRFe (baseline)

80.1280.6779.5886.8986.3787.42BERTf-BiLSTM-CRF

79.8580.0779.6386.1086.3385.87Word-BiLSTM-CRF (baseline)

82.2081.7282.6987.5686.9088.23Word-BiLSTM-CRF (char CNNg)

82.8982.2183.5888.5887.3489.86Word-BiLSTM-CRF (char LSTMh)

85.0285.3584.6990.1390.0690.20 jELMoi-lattice-LSTM-CRF

aCCKS: China Conference on Knowledge Graph and Semantic Computing.
bCNER: clinical named entity recognition.
cchar: character.
dBiLSTM: bidirectional long short-term memory.
eCRF: conditional random field.
fBERT: Bidirectional Encoder Representations from Transformers.
gCNN: convolutional neural network.
hLSTM: long short-term memory.
iELMo: Embeddings from Language Models.
jThe best experimental results are italicized.

We observed that the character-based baseline model was better
than the BERT-BiLSTM-CRF model, which is also character
based and used the state-of-the-art pretrained BERT embedding.
The main reason for this result is that BERT embedding was
trained on the general field corpus rather than on the
domain-specific corpus, which reflects the complexity of
Chinese clinical texts. The character-based baseline model was
better than the word-based baseline model as a whole, which
shows that the character-based method can make better use of
medical text information in Chinese CNER tasks.

It can be seen from the table that the word-BiLSTM-CRF (char
LSTM) model outperformed the character-based and word-based
baseline models and obtained competitive F1 scores of 88.58%
and 82.89% on two datasets, respectively. This shows that the
introduction of character-level embedding in the word-based
method can make relatively full use of character and word
information and can effectively improve the performance of the
model. In addition, we also observed that the LSTM model
captured the character-level semantic information of words
better than did the CNN model.

From the results, we observed that the ELMo-lattice-LSTM-CRF
model we proposed, which integrates lattice LSTM structure
and variant pretrained ELMo embedding, achieved excellent

results compared with the other models on both Chinese CNER
datasets. This was seen with the F1 scores that reached 90.13%
on the CCKS-2017 CNER dataset and 85.02% on the
CCKS-2019 CNER dataset. Compared with the
word-BiLSTM-CRF (char LSTM) model, the F1 scores of our
method on both datasets were significantly improved by 1.55%
and 2.57%, respectively. Table 5 shows the results of our method
compared with previous representative systems on these two
datasets [42,44,45].

The system in the first line [42] also used both Chinese character
embedding and word embedding as feature representations, and
an external health domain lexicon was adopted, which achieved
an F1 score of 87.95% on the CCKS-2017 CNER dataset. The
system in the second line [44] was similar to that in this paper.
It adopted a lattice LSTM structure and used an adversarial
training approach to improve the performance of the model; it
achieved a good result, with an F1 score of 89.64%. The results
show that our method surpassed these two systems by 2.18%
and 0.49%, respectively. For the CCKS-2019 CNER dataset,
Li et al [45] achieved the top performance by adopting the
method of transfer learning and ensemble; our method obtained
a similar score. By comparing our method with the previous
models, the effectiveness of our method is evident.
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Table 5. Comparative results between our approach and previous systems on two datasets.

CCKS-2019 CNER datasetCCKSa-2017 CNERb datasetModel

F1 score, %Recall, %Precision, %F1 score, %Recall, %Precision, %

———87.95——dRecurrent neural network (charc-word)
[42]

———89.6490.2888.98ATe-lattice-LSTMf-CRFg [44]

85.16 j—————FSh-TLi (ensemble) [45]

85.0285.3584.6990.1390.0690.20Our approach

aCCKS: China Conference on Knowledge Graph and Semantic Computing.
bCNER: clinical named entity recognition.
cchar: character.
dData not available.
eAT: adversarial training.
fLSTM: long short-term memory.
gCRF: conditional random field.
hFS: fully shared.
iTL: transfer learning.
jThe best experimental results are italicized.

Discussion

Overview
By comparing the experimental results, we notice that our
method has excellent performance on the Chinese CNER task,
which surpassed the character-based and word-based methods.
In the future, we will conduct ablation experiments to further
explore the influence of the lattice LSTM structure and ELMo
embedding on the model performance.

Dataset Analysis
First, we analyzed the two Chinese CNER datasets. Figure 3
shows the distribution of the relative locations of clinical entities
in the training set of the two datasets.

From the figure, we can intuitively observe that the distribution
of entity locations in the two datasets is similar and relatively

uniform; however, the distribution of entities from the
CCKS-2019 CNER dataset is obviously more sparse than that
of the CCKS-2017 CNER dataset. This indicates that the
CCKS-2019 dataset labels were relatively unbalanced and there
were more outside labels, which explains the reason why the
results from the same models using CCKS-2017 CNER dataset
were superior to those using the CCKS-2019 CNER dataset.
Meanwhile, Tables 2 and 3 showed that there were very few
image entities and laboratory entities in the test set—34 and 37,
respectively—compared with the training set from the
CCKS-2019 CNER dataset. This means that the distribution of
labels in the test set and training set from the CCKS-2019 CNER
dataset was quite different, which is another reason for the
weaker performance by the model when using the CCKS-2019
CNER dataset.
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Figure 3. Distribution of relative locations of entities in two Chinese clinical named entity recognition (CNER) datasets. CCKS: China Conference on
Knowledge Graph and Semantic Computing.

Effectiveness of the Lattice LSTM Model
The comparison of the results of the standard lattice LSTM
model and the character-based and word-based methods from
using the two datasets is shown in Table 6. From the table, we
observe that the performance of the standard lattice LSTM
model surpassed that of the char-BiLSTM-CRF and
word-BiLSTM-CRF (char LSTM) models. Compared with the
better-performing word-BiLSTM-CRF (char LSTM) model,
the performance of the model using the lattice LSTM on
CCKS-2017 CNER dataset improved by 0.84%; the performance

on the CCKS-2019 CNER dataset significantly improved by
1.29%. Although the word-BiLSTM-CRF (char LSTM) and
lattice LSTM models used the same word embedding and
lexicon, the word-BiLSTM-CRF (char LSTM) model first uses
the lexicon for word segmentation, which imposes a hard
restriction on the use of its subsequences, while the lattice LSTM
model is free to consider lexicon words. This provides evidence
that the lattice LSTM model can dynamically integrate potential
word information, is superior to the character-based and
word-based methods, and can achieve excellent performance
in solving the Chinese CNER problem.

Table 6. Comparison of results between character-based or word-based methods and the lattice long short-term memory (LSTM) model on two datasets.

CCKS-2019 CNER datasetCCKSa-2017 CNERb datasetModel

F1 score, %Recall, %Precision, %F1 score, %Recall, %Precision, %

80.8380.0181.6787.8186.7888.86Charc-BiLSTMd-CRFe (baseline)

82.8982.2183.5888.5887.3489.86 gWord-BiLSTM-CRF (char LSTMf)

84.1883.2785.1189.4289.1889.66Lattice-LSTM-CRF

aCCKS: China Conference on Knowledge Graph and Semantic Computing.
bCNER: clinical named entity recognition.
cchar: character.
dBiLSTM: bidirectional long short-term memory.
eCRF: conditional random field.
fLSTM: long short-term memory.
gThe best experimental results are italicized.
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Effectiveness of ELMo Embedding
Table 7 shows the comparative results of different types of
character embedding that were added to the lattice LSTM model
using the two CNER datasets. The first line is the standard lattice
LSTM model, and the second line is an embedding with equal
dimensions and random initialization. It can be seen that there
were slight improvements on both datasets, which may be due
to the increase in parameters. In the third line, the character
embedding trained by the GloVe tool [13] was added, and the

F1 scores on the two datasets reached 89.70% and 84.62%,
respectively, which shows that the addition of domain-specific
character embedding is effective. The performance of the
ELMo-lattice-LSTM-CRF (ML [many languages]) model, with
pretrained ELMo representation for multiple languages [37,46],
was slightly reduced compared to the standard
lattice-LSTM-CRF model. This is likely because the pretrained
ML model was trained on the general field corpus, so there was
the problem of semantic inaccuracy.

Table 7. Comparison of different types of character embedding added to the lattice long short-term memory (LSTM) model using two clinical named
entity recognition (CNER) datasets.

CCKS-2019 CNER datasetCCKSa-2017 CNERb datasetModel

F1 score, %Recall, %Precision, %F1 score, %Recall, %Precision, %

84.1883.2785.1189.4289.1889.66Lattice-LSTMc-CRFd

84.3783.6585.1089.5590.32 e88.79Random-lattice-LSTM-CRF

84.6283.9085.3289.7089.7789.63GloVef-lattice-LSTM-CRF

83.1584.0982.2389.2988.6989.90ELMog-lattice-LSTM-CRF (MLh)

85.0285.3584.6990.1390.0690.20ELMo-lattice-LSTM-CRF

aCCKS: China Conference on Knowledge Graph and Semantic Computing.
bCNER: clinical named entity recognition.
cLSTM: long short-term memory.
dCRF: conditional random field.
eThe best experimental results are italicized.
fGloVe: Global Vectors for Word Representation.
gELMo: Embeddings from Language Models.
hML: many languages.

The experimental results show that our proposed method was
the best among all the methods, and it exceeded the standard
lattice LSTM model by 0.71% and 0.84% on two datasets,
respectively. These results demonstrate that the pretrained ELMo
embedding trained on the medical corpus can further improve
the performance of the model. After adding the pretrained ELMo
embedding, the model used character information and weighted
potential word information in sentences through the lattice
LSTM structure; the model also obtained the domain-specific
contextualized character representations, so as to obtain the rich
semantic information of the EMRs, which is conducive to

improving the performance of the model in the Chinese CNER
task.

Error Analysis
We carried out error analysis on each entity category and on
the reasons for misclassification. As shown in Table 8, we
compared the results of our method with those of the
char-BiLSTM-CRF model and the word-BiLSTM-CRF (char
LSTM) model with respect to various entity categories: disease,
image, laboratory, operation, drug, and anatomy. Since the
distribution of results was similar, only the results of the
CCKS-2019 CNER dataset are used for illustration.
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Table 8. Comparison of the results regarding each entity category when using the China Conference on Knowledge Graph and Semantic Computing
(CCKS)-2019 clinical named entity recognition (CNER) dataset.

F1 scores for each entity category, %Model

AllAnatomyDrugOperationLaboratoryImageDisease

80.8380.2588.7483.61 d74.4177.7580.23Chara-BiLSTMb-CRFc

82.8984.5691.8681.5477.4180.5681.45Word-BiLSTM-CRF (char LSTMe)

85.0283.7997.0582.1278.2885.2383.66ELMof-lattice-LSTM-CRF

achar: character.
bBiLSTM: bidirectional long short-term memory.
cCRF: conditional random field.
dThe best experimental results are italicized.
eLSTM: long short-term memory.
fELMo: Embeddings from Language Models.

From the table, our method showed a significant improvement
regarding image and drug entities, with F1 scores 4.67% and
5.19% higher than the previous best results; in particular, the
F1 score for the drug entity reached 97.05%. Through analysis,
we determined that the improvement of image entities was
mainly due to the fact that image entities are mostly compound
words in Chinese CNER, such as “心脏彩超” (color Doppler
ultrasound of the heart), “腹部彩超” (color Doppler ultrasound
of the abdomen), and “肝脏彩超” (color Doppler ultrasound
of the liver). For instance, “心脏彩超” is often divided into two
parts: the anatomy entity “心脏” (heart) and the image entity
“彩超” (color Doppler ultrasound). In the drug entity, single
characters in terms such as “奥沙利铂” (oxaliplatin) and “希
罗达” (Xeloda) are almost meaningless or even interfere with
semantic understanding. Lattice LSTM improves the accuracy
by constructing a medical domain lexicon and dynamically
integrating word information. However, we noticed that all the
methods did not perform well regarding the laboratory entity.
This may be because laboratory entities are more complex than
other entity types, in which mixed representations occur more
often, such as “ca74-2,” “间接coombs试验” (indirect Coombs
test), and “g6pd活性试验” (glucose-6-phosphate dehydrogenase
[G6PD] activity test); in addition, entities can be too short, such

as “氯” (chlorine), “hb,” and “ph.” This is still a great challenge
for the research of Chinese CNER; it is also the direction in
which future research is heading.

Conclusions
By introducing the lattice LSTM model and a variant ELMo
language model, this paper proposes a new Chinese CNER deep
learning method. Our approach allows the model to coordinate
the use of the character information and potential word
information and takes advantage of contextualized character
presentations, so as to make full use of EMR information.
Finally, we used the CRF layer to capture the dependency
between adjacent labels. We constructed a series of experiments
on two Chinese CNER datasets to evaluate the performance of
the model.  The results showed that the
ELMo-lattice-LSTM-CRF model that we proposed achieved
excellent results, with F1 scores of 90.13% and 85.02% on the
two datasets, respectively, which exceeded the performance of
the standard lattice-LSTM-CRF model and achieved a
competitive system. Overall, the results show that our approach
for Chinese CNER is effective and can be used in future
research. In future work, we will further generalize our model
to improve its applicability and apply it to other small datasets
through transfer learning methods.
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