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Abstract

Background: Smartphones have made it possible for patients to digitally report symptoms before physical primary care visits.
Using machine learning (ML), these data offer an opportunity to support decisions about the appropriate level of care (triage).

Objective: The purpose of this study was to explore the interrater reliability between human physicians and an automated
ML-based triage method.

Methods: After testing several models, a naïve Bayes triage model was created using data from digital medical histories, capable
of classifying digital medical history reports as either in need of urgent physical examination or not in need of urgent physical
examination. The model was tested on 300 digital medical history reports and classification was compared with the majority vote
of an expert panel of 5 primary care physicians (PCPs). Reliability between raters was measured using both Cohen κ (adjusted
for chance agreement) and percentage agreement (not adjusted for chance agreement).

Results: Interrater reliability as measured by Cohen κ was 0.17 when comparing the majority vote of the reference group with
the model. Agreement was 74% (138/186) for cases judged not in need of urgent physical examination and 42% (38/90) for cases
judged to be in need of urgent physical examination. No specific features linked to the model’s triage decision could be identified.
Between physicians within the panel, Cohen κ was 0.2. Intrarater reliability when 1 physician retriaged 50 reports resulted in
Cohen κ of 0.55.

Conclusions: Low interrater and intrarater agreement in triage decisions among PCPs limits the possibility to use human
decisions as a reference for ML to automate triage in primary care.

(JMIR Med Inform 2020;8(9):e18930) doi: 10.2196/18930
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Introduction

Health care digitalization has the potential to mitigate increasing
primary care workloads [1,2]. Time-constrained primary care
physicians (PCPs) interrupt patient queries within the first 30
seconds of consultations [3], contributing to inadequate
gathering of medical histories [4,5]. To reduce PCP workload
and to ensure patients are directed to the appropriate level of
care, nurse-led telephone triage is commonly used [6,7].
However, nurses face similar time constraints as physicians,
which results in incomplete gathering of medical histories [8]
and inappropriate levels of care recommended in up to 31% of
cases [9,10].

Leveraging the wide use of smartphones, a large portion of
patient history can today be acquired before the patient interacts
with his/her health care provider. Automated patient
interviewing software has been shown to gather reliable and
relevant clinical information [11], and may thus save clinicians
time and reduce workloads.

Existing “symptom checkers” can provide triage
recommendations directly to patients. However, their accuracy
is low, ranging from 33% to 78%, with higher accuracy reported
only for more acute conditions [12]. Furthermore, patient
adherence to symptom checker recommendations seems low at
just 65% [13], compared with 81%-100% adherence to advice
from triage nurses [7]. Thus, clinician decision-support software
may be a better solution for optimizing triage.

With rapid developments in machine learning (ML), labeled
automated patient interviewing software data offer a promising

opportunity for enhancing triage software accuracy, providing
appropriate access to primary care. Recent research shows
promising utility of ML to aid in emergency department triage
compared with commonly used algorithms [14]. However, the
performance of such a system compared with human triage has,
to the best of our knowledge, never been evaluated. Furthermore,
ML research in the primary care setting is lacking, despite over
60% of health care visits being conducted in primary care [15].

Thus, this study sought to investigate interrater reliability
between human physicians and an automated ML-based triage
method, as well as evaluating interrater reliability of triage
decisions between a panel of physicians assessing the same
patient histories from an automated patient interviewing
software.

Methods

Context
The automated patient interviewing software technology used
in this study (produced by Doctrin AB, Stockholm, Sweden) is
being used by several primary care providers in Sweden since
2017. Patients access the platform using their smartphone, tablet,
or computer, choosing their chief complaint from a prespecified
list. An automated medical history is then taken, allowing
patients to briefly formulate ideas, concerns, and expectations
in free-form text, and subsequently answer a symptom-specific
multiple-choice survey. The software selects suitable subsequent
survey questions based on the patient’s answers (Table 1).

Table 1. Examples of automated patient interviewing software survey questions. Chosen answers subsequently appear in reports used for triage.

Answer formatSurvey question

Short answer: specify number of days, months or years“How long have you had a cough?”

Multiple choice (one option allowed):

“Not changing”

“Getting worse”

“Improving”

“Gone away”

“How has your cough been since it started”

Multiple choice (multiple options allowed):

“Runny nose”

“Shortness of breath”

“Chest pain”

“Sore throat”

“Swollen glands”

“Fever”

“Do you have any of the following symptoms?”

Multiple choice:

“37°C”

[…]

“Over 40 C”

If a patient reports fever: “What was the highest temperature you
have had when you measured it?”

Short answer: specify number of days“How many days in a row have you had fever?”

Answers are presented to a PCP as a summarized report for
review and further doctor–patient communication may occur
asynchronously through a live text chat (eVisit). Physicians can

prescribe medications, order laboratory samples, provide patient
information, or remain available online for up to 72 hours for
conservative management. Anonymized data from the automated
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patient interviewing software report and subsequent chat are
saved in a database used for this study. Clinical decisions
regarding triage and treatment are, however, recorded separately
in the patient medical record and were not accessible for study.

Data for Classification
Data used in this study were composed of 2 subsets. The first
subset consisted of 300 automated patient interviewing software
reports labeled by a selected expert PCP with over 10 years of
clinical experience and a year of experience with online
consultations. The reports represented the 10 most common
chief complaints in the platform (common cold, cough, eye
redness, genital problems, hay fever, rash, headache, sinus
symptoms, sore throat, and urinary tract infections) with an
equal marginal distribution between chief complaints.
Automated patient interviewing software reports were triaged
by the expert PCP to one of 4 levels: (1) Start a digital
chat-based consultation; (2) Refer the patient to a primary care
center for nonurgent care; (3) Refer the patient to a primary care
center for urgent care; or (4) Refer the patient to the emergency
department.

The second subset was 300 new automated patient interviewing
software reports labeled by a panel of 5 PCPs (1 intern [AE], 2
residents, and 2 specialists). Sample sizes were chosen for
feasibility reasons. Each PCP individually triaged automated
patient interviewing software reports with an identical
distribution of chief complaints as in the first subset. Each
automated patient interviewing software report was labeled with
a triage level as determined by a majority vote by the panel.

Triage categories in both subsets were then dichotomized into
2 triage levels used for further analyses: (1) No need for urgent
physical examination (triage levels 1 and 2) or (2) Need of
urgent physical examination (triage levels 3 and 4).

Exclusion Criteria
Because of incorrect formatting of one of the reports in the
triage interface used by the panel, 299 automated patient
interviewing software reports were triaged instead of 300.

Automated patient interviewing software reports describing
cases with an ongoing medical contact or a different chief
complaint from the one specified were classified as inappropriate
for triage, which occurred in 37 reports classified by at least
one panel member. These were manually reviewed by one of
the authors (AB) for inclusion or exclusion by expert opinion,
resulting in the exclusion of 17 cases from the analysis.

If the panel voting strategy did not result in a majority for 1
triage level, the automated patient interviewing software report
was also excluded from the analysis, which occurred in 6 cases.

Initially, 22 automated patient interviewing software reports
had missing triage data from some panel members. After
applying the exclusion criteria, 16 automated patient
interviewing software reports with missing triage data remained
for analysis.

Model Analyses
To examine the potential of our ML-based approach for triage,
we used the available data and corresponding dichotomized

triage categories in a series of classification tests with 3
classifiers: (1) a simple linear naïve Bayes classifier, which
assumes statistical independence of input features; (2) logistic
regression, commonly used for binary classification problems;
and (3) random forest, an ensemble decision tree approach,
which is considered particularly suitable for high-dimensional
problems.

Because of many questions from the automated patient
interviewing software reports only appearing very rarely in the
small-sized training data, feature space was reduced by only
including those which were used in more than 5% of the training
samples. This resulted in 243 features. As a few fields included
brief free-form text, the classifiers were trained and tested both
with and without information extracted from these text data.
Text was handled by first removing common Swedish stop
words. The remaining commonly used words appearing in more
than 10% of the training samples were included as a
bag-of-words model where each word was treated as an input
feature to the classifier [16]. This resulted in a total of 53
features.

First, we trained the models on the first subset and tested them
in a single pass on the second subset with labels based on the
majority vote of the 5 PCPs. We complemented this analysis
with a cross-validation approach on the data without text
information to better estimate generalization capabilities across
the 2 subsets of data. We performed 10-fold cross-validation
by dividing the union of the 2 subsets into 10 data clusters,
where the mixture of the 2 subsets in 9 out of 10 clusters was
used for training and the remaining cluster accounting for 10%
(ie, 1/10) served as a test set. By applying this scheme 10 times
with different 10% test folds, we could obtain an estimate of
the second moment of the generalization classification
performance. The cross-validation results were followed up
with a nonparametric Friedman test.

We made an attempt at investigating the key input features that
had a decisive role in classification. To this end, we ranked the
coefficients in the regression models built using naïve Bayes
and logistic regression methods as well as variable importance
with a random forest approach [17]. We employed the
correlation of rank, Kendall τ estimator, to examine the
consistency of feature ranking produced by the 3 classifiers:

τ = [(nc – nd)]/[n(n – 1)/2]

where n is the number of features, nc is the number of
concordant feature pairs, and nd is the number of discordant
feature pairs. The pairwise relation between feature pairs (fi, gi)
and (fj, gj) is considered as concordant if the ranking order
between features f is the same as for features g, that is, rank (fi,)
> rank (fj,) and rank (gi,) > rank (gj,), or rank (fi,) < rank (fj,),
and rank (gi,) < rank (gj,). If neither of these relation pairs is
preserved, feature pairs are referred to as discordant.

Finally, in order to exploit diagnostic evaluation made by each
individual PCP in the second data subset, rather than directly
considering the majority vote as the data sample label, we built
5 independent naïve Bayes classifiers. Each one of them was
trained on labels from the second subset corresponding to 1 of

JMIR Med Inform 2020 | vol. 8 | iss. 9 | e18930 | p. 3https://medinform.jmir.org/2020/9/e18930
(page number not for citation purposes)

Entezarjou et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the 5 panel PCPs. We then evaluated the majority vote of the
dichotomized responses of individual classifiers and employed
a cross-validation scheme to estimate generalization properties.

Human Versus Model Analysis
To measure the agreement between the PCPs and a classification
model, we chose a naïve Bayes approach (referred to as “the
model”). Cohen κ [18] was calculated to evaluate interrater
reliability of triage level within the panel, as well as interrater
reliability between the model results and the panel:

κ = (po – pe)/(1 – pe)

where po is the observed ratio of agreement between 2 raters
and pe is the probability of chance agreement. Cohen κ provides
a measure of agreement between raters while accounting for
chance agreements. This is in contrast to percentage agreement,
which merely quantifies the ratio of cases with the same
classification in relation to different classifications made by 2
or more assessors, without accounting for chance agreements.
A Cohen κ<0.20 is generally regarded as low, 0.21-0.40 as fair,
0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00
as almost perfect agreement [18].

Additional Analyses
To explore how the brief free-form text influenced the
classification, the classifier was retrained without features
extracted from the brief free-form text. This analysis was
conducted with a linear naïve Bayes approach.

To evaluate intrarater reliability of the training data, 50 of the
300 automated patient interviewing software reports available

were chosen for retriage by the same expert PCP. These reports
were chosen randomly from the full set but checked to include
an even variation of all available symptoms. Cohen κ was used
to assess agreement with prior triage.

Furthermore, to evaluate the impact of missing data on our
results, we reran the analyses with automated patient
interviewing software reports with missing triage data excluded.

Ethical Considerations
The study was approved by the Swedish Ethical Review
Authority on April 24, 2019 (reference number 2019-01516).

Data Sharing Statement
Data on triage decisions made by panel members and our expert
PCP are available to the Department of Clinical Sciences in
Malmö at Lund university, to the Department of Computational
Science and Technology at the Royal Institute of Technology,
and to Doctrin AB, Stockholm Sweden 10 years following
publication. Data can be accessed for a prespecified purpose
after approval by all 3 parties above.

Results

Comparisons Between the Three Models
After exclusion, 276 automated patient interviewing software
reports were usable as labeled test-set data (Figure 1). The
single-pass test results as well as cross-validation outcomes are
presented in Table 2. There was no evidence for rejecting the
null hypothesis (P>.10), so the performance of all 3 classifiers
is considered comparable even though one can observe a trend
favorable for random forest.

Figure 1. Flowchart of automated patient interviewing software report exclusion criteria.
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Table 2. Classification results obtained with naïve Bayes, logistic regression, and random forest in a single-pass test as well as in 10-fold cross-validation
over the entire combined data set.

10-fold cross-validation (the first and second

subsets combined), %a
Test results (training on the first and test on the
second data subset), %

Classifier

66.6 (7.6)64.1Naïve Bayes

64.5 (9.0)60.1Logistic regression

69.5 (7.7)67.4Random forest

aThe values for cross-validation are the mean and standard deviation of the classification accuracy obtained over 10 test folds.

Five Classifiers Versus One
Mean cross-validation accuracy calculated using the ensemble
performance (majority vote) of the 5 naïve Bayes classifiers,
each trained on the labels of one panel member, was 65.3% (SD
8.2%). Comparing this with the model, that is, the single naïve
Bayes classifier (mean cross-validation accuracy 66.7% [SD
8.0%]), the null hypothesis could not be rejected (Wilcoxon
signed-rank test, n=10, P>.24).

Decisive Features for Classification
Because the 3 classification approaches offer insights into
feature weighing in the regression function that determines the
classification boundary, we investigated more closely the
distribution of such feature importance factors (see the
“Methods” section). The results are inconclusive as the
distribution is rather uniform and the pairwise correlations
between feature rankings, Kendell τ (see the “Methods” section),
produced by the classifiers are moderate (max 0.32 between
naïve Bayes and random forest). This result implies that the
given average level of accuracy can be achieved based on
different sets of features.

Agreement Between Model and Human Triage
Because there was no statistically significant difference in the
performance reported by the 3 classifiers, we decided to rely
on the naïve Bayes approach in the next stages of our work due
to its intuitive linear formulation. Cohen κ between the naïve
Bayes model and the panel majority vote triage was 0.17 (Table
3), with 64% agreement. Excluding the information contained
in brief free-form text resulted in the corresponding Cohen κ
of 0.15. Within the reference group, average Cohen κ was 0.20,
ranging from 0.10 to 0.30.

These results did not differ when analyses were rerun with
missing cases excluded. No statistically significant difference
in distribution of chief complaint symptoms could be found
between reports with and without missing data (chi-square test,
P>.99).

Using panel majority vote as the gold standard, the model
correctly classified 74% (138/186) of nonurgent cases, but only
42% (38/90) of urgent cases. Adding free-form text data had a
negligible effect on these numbers (Table 4).

When 50 automated patient interviewing software reports were
selected for retriage by our selected expert PCP, Cohen κ was
0.55 with 78% agreement between retriage and previous triage.

Table 3. Assessment of the triage performance: agreement between the naïve Bayes model and each panel member as well as their majority vote, and

average interrater agreement among the panel members.a

Panel member versus rest panel members (Cohen κ)Panel member versus naïve Bayes model (Cohen κ)Panel

0.210.09PCP1

0.210.03PCP2

0.180.24PCP3

0.210.08PCP4

0.170.13PCP5

N/A0.17Majority vote

aPCP1 had the least amount of clinical experience, whereas PCP4 and PCP5 had the most amount of clinical experience.

Table 4. Contingency table of model triage with panel majority vote as the gold standard.

Falsely urgentTruly nonurgentFalsely nonurgentTruly urgent

26% (48 out of 186
cases voted nonurgent)

74% (138 out of 186
cases voted nonurgent)

58% (52 out of 90
cases voted urgent)

42% (38 out of 90
cases voted urgent)

Naïve Bayes model trained on full information
including brief free-form text

27% (51 out of 186
cases voted nonurgent)

73% (135 out of 186
cases voted nonurgent)

58% (52 out of 90
cases voted urgent)

42% (38 out of 90
cases voted urgent)

Naïve Bayes model trained with brief free-form
text information excluded
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Discussion

Principal Results
To our knowledge, this is the first study to evaluate human
versus ML performance in primary care triage based on a
digitalized patient history. The first principal finding of this
investigation was that interrater reliability in human triage using
automated patient interviewing software reports is low (Cohen
κ 0.20). Consequently, our second principal finding was that
interrater triage reliability between a statistical model trained
on automated patient interviewing software reports and a human
panel was low (Cohen κ 0.17).

Findings were robust when cases with missing triage data were
excluded from the analysis. The performance of the model was
mostly decided by the surveys as removing the free-form text
had only marginal impact on Cohen κ (reduced to 0.15).
Furthermore, the intrarater reliability was moderate, as seen by
retriage of 50 automated patient interviewing software reports
by the same PCP (Cohen κ 0.55).

Comparison With Prior Work
While we acknowledge that κ values seldom are comparable
across studies [19], previous data have generally found high
interrater reliability between triage nurses [20-22]. However,
these studies were conducted in high-acuity emergency
department settings, where indicators of urgency arguably are
more clearly defined [23].

The primary care setting presents a particular challenge in that
conditions are of low acuity, making the line between urgent
and nonurgent care more difficult to draw. This is supported by
the low intrarater agreement for our expert PCP as well as the
low agreement between our panel members. Indeed, acquiring
a true gold standard for triage is a well-known issue [24].
“Correct” triage is difficult to define, and thus difficult to label
and automate using ML. We could not identify any particular
features in the data that were linked to the model’s triage
decision. As far as the clinicians are concerned, we did not study
their clinical reasoning before reaching a triage decision, that
is, we do not know on which features their decision was based.

Interpretation
A well-known bottleneck for the creation of reliable ML
algorithms is the lack of large enough amounts of labeled
training data but this study calls the reliability of labels
themselves into question. Labeled data need to be consistent
across different raters and over time. Consequently, while adding
more automated patient interviewing software data to the
training set exploited by the model could improve interrater
reliability with humans, the interrater reliability between the
humans themselves sets a limit on how useful an algorithm
could be if labels are fully decided from human data. While the
addition of free-form text did not offer any advantage to the
performance of the model, as assessed by our gold standard, it
is possible that larger amounts of free-text data would allow the
model to leverage these data for improved performance.

Human clinical decision making is likely more prone to be
affected by externalities such as stress and mental fatigue [25].

Such externalities may have been present to different extents
among our panel, resulting in markedly variable triage decisions
compared with each other and the model.

Furthermore, the low agreement between the panel and the
model in our study may be due to the fact that variation in
human interpretation of text-based cues from automated patient
interviewing software data in a primary care setting [26]
prevents PCPs from determining urgency as consistently as the
model, given access to the same amount of data. It should be
noted, however, that in the clinical setting, PCPs would acquire
additional data through the eVisit chat before making a triage
decision.

The model is trained on triage data from a senior expert PCP,
but results show no trend toward higher agreement between
more senior PCPs and the model. This suggests that triage
decision making depends more on other factors such as PCP
temperament and risk aversion than mere experience [27].

Accepting the panel majority vote as the gold standard,
nonurgent cases were more often classified correctly compared
with urgent cases (74% [138/186] vs 42% [38/90], respectively),
even though higher triage accuracy would be expected for urgent
conditions where red flags are more well-defined [12]. Selection
bias through a disproportionately larger amount of training data
on nonurgent automated patient interviewing software reports
may explain part of this disparity. On the contrary, this
disproportionality may still be representative of a primary care
cohort which would utilize such a digital tool for mostly low
acuity conditions. However, given the low agreement between
panel members, one may also question the suitability of use of
the panel majority vote as the gold standard.

Strengths
This study has several strengths. First, it is one of few studies
comparing human with ML performance using the same test
data set for both groups. It is uniquely conducted in an eVisit
primary care setting, where the need for reduced workload is
high and where the ML algorithm has access to the same data
as the clinician in the eVisit setting would. This contrasts with
clinical or electronic health record–based ML tools which may
not have access to key clinical data not recorded in the electronic
health record [28]. Our data set was largely complete with only
1.4% missing data points. We also used training set data
independent of validation test-set data, which is not always the
case in other published research in the field [29]. Finally, the
findings add nuance to the existing literature of ML versus
human physicians [30].

Limitations
The results should be interpreted with consideration to several
limitations. Our sample is not representative of a physical
primary care population, as reports were acquired from an online
consultation service database of self-selected patients being less
likely to have life-threatening conditions [31]. Our data did not
allow for out-of-sample external validation, as we do not know
how these automated patient interviewing software reports ended
up being triaged in their clinical setting. Lack of external
validation also means that our low interrater reliability was
likely overestimated [29]. However, even if externally valid
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endpoint data could aid in defining a decision as “correct”
retrospectively [32], defining “correct” triage prospectively may
not be possible as some clinical outcomes cannot be predicted.
In addition, the lack of consensus and use of a voting strategy
in our panel are unconventional methods of defining a gold
standard to compare ML-based performance and make
comparison with other studies difficult. Future studies may use
consensus techniques such as Delphi [33], incorporating PCP
and emergency physician expertise, to mitigate lack of panel
triage consensus.

Given the lack of agreement between our panel PCPs, using 1
expert PCP to provide training data may not be optimal.
However, we did not observe any significant differences in
cross-validation accuracy in this model compared with the
ensemble performance of 5 models separately trained by each
panel member.

Finally, our data set did not allow us to evaluate how the
temporal provision of data affects the triage process in a way
that would mimic the iterative clinical decision-making process.
Thus, training data sets which make this possible may open up

new opportunities for devising ML approaches that better mimic
the human decision-making process.

Practical Implications
This study refutes implementation of the current ML model to
fully automate binary triage in primary care, despite naïve Bayes
being a reasonable ML algorithm to approach this problem.
However, in the clinical setting, these reports are used as
decision support in the interaction with patients, implying that
uncertainties may be addressed by further interaction with the
patient. Further development of the model with the suggestions
made above may allow for fully automated triage in the future.

Conclusions
While digitalized patient histories have the potential to mitigate
primary care workloads, leveraging patient history data to
automate triage with ML methods is challenging given the
difficulty for human physicians to triage consistently in a
primary care setting. Future research should evaluate if external
validation and temporal provision of training data may improve
automated triage performance, as well as attempt to better
identify which features drive triage decisions in a primary care
setting.
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