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Abstract

Background: The linking of administrative data across agencies provides the capability to investigate many health and social
issues with the potential to deliver significant public benefit. Despite its advantages, the use of cloud computing resources for
linkage purposes is scarce, with the storage of identifiable information on cloud infrastructure assessed as high risk by data
custodians.

Objective: This study aims to present a model for record linkage that utilizes cloud computing capabilities while assuring
custodians that identifiable data sets remain secure and local.

Methods: A new hybrid cloud model was developed, including privacy-preserving record linkage techniques and container-based
batch processing. An evaluation of this model was conducted with a prototype implementation using large synthetic data sets
representative of administrative health data.

Results: The cloud model kept identifiers on premises and uses privacy-preserved identifiers to run all linkage computations
on cloud infrastructure. Our prototype used a managed container cluster in Amazon Web Services to distribute the computation
using existing linkage software. Although the cost of computation was relatively low, the use of existing software resulted in an
overhead of processing of 35.7% (149/417 min execution time).

Conclusions: The result of our experimental evaluation shows the operational feasibility of such a model and the exciting
opportunities for advancing the analysis of linkage outputs.

(JMIR Med Inform 2020;8(9):e18920) doi: 10.2196/18920
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Introduction

Background
In the last 10 years, innovative development of software apps,
wearables, and the internet of things has changed the way we
live. These technological advances have also changed the way
we deliver health services and provide a rapidly expanding
information resource with the potential for data-driven
breakthroughs in the understanding, treatment, and prevention
of disease. Additional information from patient devices,
including mobile phone and Google search histories [1],
wearable devices [2], and mobile phone apps [3], provides new

opportunities for monitoring, managing, and improving health
outcomes in new and innovative ways. The key to unlocking
these data is in relating details at the individual patient level to
provide an understanding of risk factors and appropriate
interventions [4]. The linking, integration, and analysis of these
data has recently been described as population data science [5].

Record linkage is a technique for finding records within and
across one or more data sets thought to refer to the same person,
family, place, or event [6]. Coined in 1946, the term describes
the process of assembling the principal life events of an
individual from birth to death [7]. In today’s digital age, the
capacity of systems to match records has increased, yet the aim

JMIR Med Inform 2020 | vol. 8 | iss. 9 | e18920 | p. 1http://medinform.jmir.org/2020/9/e18920/
(page number not for citation purposes)

Brown & RandallJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:adrian.brown@curtin.edu.au
http://dx.doi.org/10.2196/18920
http://www.w3.org/Style/XSL
http://www.renderx.com/


remains the same: linking records to construct individual
chronological histories and undertake studies that deliver
significant public benefit.

An important step in the evolution of data linkage is to develop
infrastructure with the capacity to link data across agencies to
create enduring integrated data sets. Such resources provide the
capability to investigate many health and social issues. A
number of collaborative groups have invested in a large-scale
record linkage infrastructure to achieve national linkage
objectives [8,9]. The establishment of research centers
specializing in the analysis of big data also recognizes the issue
of increasing data size and complexity [10].

As the demand for data linkage increases, a core challenge will
be to ensure that the systems are scalable. Record linkage is
computationally expensive, with a potential comparison space
equivalent to the Cartesian product of the record sets being
linked, making linkage of large data sets (in the tens of millions
or greater) a considerable challenge. Optimizing systems,
removing manual operations, and increasing the level of
autonomy for such processes is essential.

A wide range of software is currently used for record linkage.
System deployments range from single desktop machines to

multiple servers, with most being hosted internally to
organizations. The functional scope of packages varies greatly,
with manual processes and scripts required to help manage,
clean, link, and extract data. Many packages struggle with large
data set sizes.

Many industries have moved toward cloud computing as a
solution for high computational workloads, data storage, and
analytics [11]. An overview of cloud computing types and
service models is shown in Table 1. The business benefits of
cloud computing include usage-based costing, minimal upfront
infrastructure investment, superior collaboration (both internally
and externally), better management of data, and increased
business agility [12]. Despite these advantages, uptake by the
record linkage industry has been slow. One reason for this is
that the storage of identifiable information on cloud
infrastructure has been assessed as high risk by data custodians.
Although security in cloud computing systems has been shown
to be more robust than some in-house systems [13], the media
reporting of data breaches has created an impression of
insecurity and vulnerability [14]. A culture of risk aversion
leaves the record linkage units with expensive, dedicated
equipment and computing resources that require managing,
maintaining, and upgrading or replacing regularly.

Table 1. Overview of cloud computing types and service models.

DescriptionName

Types of cloud computing

All computing resources are located within a cloud service provider that is generally accessible via the internet.Public

Computing resources for an organization that are located within the premises of the organization. Access is typically through local
network connections.

Private

Cloud services are composed of some combination of public and private cloud services. Public cloud services are typically leveraged
in this situation for increasing capacity or capability.

Hybrid

Service models

The provider manages physical hardware, storage, servers, and virtualization, providing virtual machines to the consumer.IaaSa

In addition to the items managed for IaaS, the provider also manages operating systems, middleware, and platform runtimes. The
consumer leverages these platform runtimes in their own apps.

PaaSb

The provider manages everything, including apps and data, exposing software endpoints (typically as a website) for the consumer.SaaSc

aIaaS: Infrastructure as a Service.
bPaaS: Platform as a Service.
cSaaS: Software as a Service.

To leverage the advantages of cloud computing, we need to
explore operational cloud computing models for record linkage
that consider the specific requirements of all stakeholders. In
addition, linkage infrastructure requires the development and
implementation of robust security and information governance
frameworks as part of adopting a cloud solution.

Related Work
Some research on algorithms that address the computational
burden of the comparison and classification tasks in record
linkage has been undertaken. Most work on distributed and
parallel algorithms for record linkage is specific to the
MapReduce paradigm [15], a programming model for processing
large data sets in parallel on a cluster. Few sources detail the

comparison and classification tasks themselves, with the focus
on load balancing algorithms to address issues associated with
data skew. These works attempt to optimize the workload
distribution across nodes while removing as many true negatives
from the comparison space as possible [16-19]. Load balancing
algorithms typically use multiple MapReduce jobs and different
indexing methods to tackle the data skew problem. Indexing
methods include standard blocking [17,18], density-based
blocking [16], and locality sensitive hashing (LSH) [20], with
varying success in optimizing the workload distribution.

Pita et al [21] have built on the MapReduce-based work and
demonstrated good performance and quality using a Spark-based
workflow for probabilistic linkage. Spark was chosen for
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in-memory processing, ease of programming, scalability, and
the new resilient distributed data set model. Like MapReduce,
Spark continues to be used to address the issues with linkage
and data skew on larger data sets. Spark solutions for full entity
resolution are being developed, with different indexing
techniques used to address workload distribution. The SparkER
tool by Gagliardelli et al [22] uses LSH, meta-blocking, and a
block purging process to remove high-frequency blocking keys.
Mestre et al [23] presented a sorted neighborhood
implementation with an adaptive window size, which uses three
Spark transformation steps to distribute the data and minimize
data skew.

Outside of the Hadoop ecosystem, which MapReduce and Spark
are a part of, there have been some efforts to address the linkage
of larger data sets through other parallel processing techniques.
Sehili et al [24] presented a modified version of PPJoin, called
P4Join, that can parallelize record matching on graphics
processing units (GPUs), claiming an execution time
improvement of up to 20 times. Despite its potential for
significant improvements in runtime performance, there has not
been any further work published on P4Join using larger data
sets or on clusters of GPU nodes. More recently, Boratto et al
[25] evaluated a hybrid algorithm using both GPUs and central
processing units (CPUs) with much larger data sets. Although
restricted to single (highly specified) machines, these evaluations
show promise provided that the approach can be applied within
a compute cluster. Again, there is not yet any further work
available.

The blocking techniques used in these studies are based on the
same techniques used for traditional probabilistic and
deterministic linkages [15]. There are many blocking techniques
used in these conventional approaches to record linkages that
reduce the comparison space significantly, even when running
a linkage on a single machine [26]. However, these approaches
become inefficient as data set sizes become larger. They also
come with a trade-off; the creation of blocks that reduce the
comparisons required for linkage will inevitably reduce the
coverage of true matches, resulting in more missed matches.

Much of the work in distributed linkage algorithms is focused
on performance, often at the expense of linkage accuracy.
Adapting these blocking techniques to distribute workload across
many compute nodes has reduced the comparisons efficiently.
Unfortunately, this increased efficiency has impacted the
accuracy further, reducing comparisons at the expense of
missing more true matches. There is still a trade-off between
performance and accuracy, and further work is required to
address it.

Data Flow and Release for Record Linkage
As data custodians are responsible for the use of their data,
researchers must demonstrate to custodians that all aspects of

privacy, confidentiality, and security have been addressed. The
release of personal identifiers for linkage can be restricted, with
privacy regulations such as the Health Insurance Portability and
Accountability Act Privacy Rules [27] or EU regulations [28]
mandating the use of encrypted identifiers. Standard record
linkage methods and software are often unsuitable for linkage
based on encrypted identifiers. Privacy-preserving record linkage
(PPRL) techniques have been developed to enable linkage on
encrypted identifiers [29]. These techniques typically use Bloom
filters to store encrypted identifiers, a probabilistic data structure
that can be used to approximate the equality of two sets. The
emergence of these PPRL methods means that data custodians
are not required to release personal identifiers. The use of PPRL
methods in operational environments is still in its infancy, with
limited tooling available. Available software includes the
proprietary LinXmart [30], an R package called PPRL developed
by the German Record Linkage Center [31], LSHDB [32],
LinkIT [33], and Secure Open Enterprise Master Patient Index
[34]. There is little published data on how much these systems
are used outside of the organizations that created them. PPRL
is a key technology that greatly opens the acceptability of cloud
solutions for record linkage.

Record Linkage Process
Record linkage typically follows a standard process for the
matching of two or more data sets, as shown in Figure 1. The
data sets first undergo some preprocessing, a cleaning and
standardization step to ensure consistency with the formatting
of fields across data sets. The next step (indexing) attempts to
reduce the number of record-level comparisons required (the
latter often referred to as the comparison space), removing
comparisons that are most likely to be false matches. The
indexing step typically groups data sets into overlapping blocks
or clusters based on sets of field values and can provide up to
99% reduction in the comparison space. Record pair
comparisons occur next, within the blocks or clusters determined
during the indexing step; this comparison step is the most
computationally expensive and often requires large data sets to
be broken down into smaller subsets. Classification of the record
pairs into matches, nonmatches, and potential matches results
in groups of entities (or individuals) based on the match results.
Potential matches can be assessed manually or through special
tooling to determine whether they should be classified as
matches or nonmatches. A common approach to grouping
matches is to merge all records that link together into a single
group; however, different approaches can be used to reduce
linkage error [35]. Analysis of the entity groups is the last step,
where candidate groups are clerically reviewed to determine if
and how the records in these groups should be regrouped.
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Figure 1. Typical data matching process.

This paper presents 2 contributions to record linkage. First, it
offers a model for record linkage that utilizes cloud computing
capabilities while providing assurance that data sets remain
secure and local. Lessons learned from many real-world record
linkage projects, including several PPRL projects, have been
instrumental in the design of this cloud model [30,36,37].
Second, the use of containers to distribute linkage workloads
across multiple nodes is presented and evaluated within the
cloud model.

Methods

Design of a Cloud Model for Record Linkage
The standard record linkage process relies on one party (known
as the trusted third party [TTP]) having access to all data sets.
Handling records containing identifiable data requires a sound
information governance framework with controls in place that
manage potential risks. Even with a well-managed information
security system in place, access to some data sets may still be
restricted. The TTP also requires infrastructure that can help
manage data sets, matching processes and linkage key
extractions over time. As the number and size of data sets grow,
the computational needs and storage capacity must grow with
it. However, the computation requirements for data linkage are
often sporadic bursts of intense workloads, leaving expensive
hardware sitting idle for extended periods.

Dedicated data linkage units in government and academic
institutions exist across Australia, Canada, and the United
Kingdom, acting as trusted third parties for data custodians.
These data linkage units were established from the need to link
data for health research at the population level. Some data
linkage units are involved in the linkage of other sectors such
as justice; however, the primary output of these organizations
is linked data for health research. It is essential that a cloud

model for record linkage takes into account the linkage practices
and processes that have been developed by these organizations.

Our cloud model for record linkage addresses the limitations
of data release and the computational needs of the linkage
process. Data custodians and linkage units retain control of their
identifiable information, while the matching of data sets between
custodians occurs within a secure cloud environment.

Tenets of the Record Linkage Cloud Model
The adopted model was founded on 3 overarching design
principles:

1. The privacy of individuals in the data is protected. One of
the most important responsibilities for data custodians and
linkage units is information security. Data sets contain
private, and often sensitive, information on people, and it
is vital that appropriate controls are in place to mitigate any
potential risks. Some data sets have restrictions on where
they can be held, requiring them to be kept local and
protected. All computation and storage within the cloud
infrastructure must be done on privacy-preserved versions
of these data sets.

2. Computation and storage are outsourced to the cloud
infrastructure. Computation requirements for data linkage
are often sporadic bursts of intense workloads, followed by
periods of low use or even inactivity. The ability to
provision resources for computation as and when required
means you only pay for what you use. This computation is
generally associated with large sets of input and output data,
so it makes sense to keep these data as close to the
computation as possible. Storage may not necessarily be
cheap, but many cloud computing providers guarantee high
levels of durability and availability, with encryption and
redundancy capabilities.

3. Cloud platform services are used over infrastructure
services. Once data are stored within a cloud environment,
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additional Platform as a Service offerings for analysis of
the data should be leveraged. These are managed services
over the top of infrastructure services (such as virtual
machines) and can be started and stopped as needed.

High-Level Architectural Model
Not all storage and computation can be performed within a
cloud environment without impacting privacy; the storage of
raw identifiers (such as name, date of birth, and address) must
often remain on-premises. The heavy-computational workloads
for record linkage, the record pair comparisons and
classification, are therefore undertaken on privacy-preserved
versions of these data sets. These privacy-preserved data sets
must be created on premises and uploaded to cloud storage. The
remainder of the linkage process continues within the cloud

environment. However, some parts of the classification and
analysis steps may be done interactively by the user from an
on-premises client app, annotating results from cloud-based
analytics with locally stored details (ie, identifiers). An overview
of the components and data flows involved in the hybrid TTP
model is shown in Figure 2. This model satisfies our cloud
model tenets and provides the linkage unit with the ability to
scale their infrastructure on-demand. The matching
(classification) component can utilize scalable platform services
available by the cloud provider to match large privacy-preserved
data sets as required. All major cloud providers have platform
services that can provide computation on-demand for the
processing of big data. The linkage map persists as it contains
no identifiable information and can also be analyzed using
available cloud platform services.

Figure 2. Hybrid cloud trusted third party model. PP: privacy-preserved; TTP: trusted third party.

Keeping identifiers at the data custodian level (on-premises)
while matching on privacy-preserved data within cloud
infrastructure enables linkages of data sets between data
custodians. This model does not require any raw identifiers to
be released, and thus, a hybrid model is no longer necessary.
The TTP can then be hosted fully in the cloud, as shown in
Figure 3. There are 2 immediate ways to achieve this: either

one of the custodians manages the cloud infrastructure
themselves or an independent third party controls it and provides
it as a service to all custodians. A custodian could act as a TTP
for all custodians involved in the linkage if this is acceptable
to the parties involved. Otherwise, it may be more amenable to
go with an independent TTP.

Figure 3. Full cloud trusted third party model. PP: privacy-preserved; TTP: trusted third party.
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Although the full cloud TTP model may be useful in some
situations, it is unlikely that this would be a desirable model
with the dedicated data linkage units. Processes in cleaning,
standardization, and quality analysis with personal identifiers
have developed and matured over many years. Switching to a
model where they no longer have access to personal identifiers
would affect the accuracy of the linkage and ultimately the
quality of the health research that used the linked data. The
hybrid model replaces only the matching component, allowing
many existing linkage processes to remain.

Scaling Computation-Heavy Workloads
Record pair comparison and classification tasks are the most
computationally intensive tasks in the linkage process, although
they are heavily affected by the indexing method used. The
single process limitation of most linkage apps makes it difficult
to cater to increasingly large data sets, regardless of indexing.
Increasing memory and CPU resources for these single-process
apps provides some ability to increase capacity, but this may
not be sustainable in the longer term.

Although MapReduce appears to be a promising paradigm for
addressing large-scale record linkage, 2 issues emerge. First,
they consider only the creation of record pairs, whether matches
or potential matches, without any thought as to how these record
pairs are to come together to form entity groups. The grouping
task is also an important part of the data matching process, and
the grouping method used can significantly reduce matching
errors [35]. Second, MapReduce algorithms do not appear to
be readily used, if at all, within an operational linkage
environment. Organizational change can be slow, and there is
much investment in the existing matching algorithms and apps
currently used. It may be operationally more acceptable to
continue using these apps where possible.

The comparison and classification tasks of the record linkage
process are an embarrassingly parallel problem if the indexing
task can produce disjoint sets of record pairs (blocks) for
comparison. With the rapid uptake of containerization and the
availability of container management and orchestration
capability, a viable option for many organizations is to reuse
existing apps deployed in containers and run in parallel.
Matching tasks on disjoint sets can be run independently and
in parallel. The matches and potential matches produced by
each matching task can, in turn, be processed independently by
grouping tasks. The number of sets that are run in parallel would
then only be limited by the number of container instances
available.

Indexing solutions are imperfect on real-world data; however,
producing disjoint sets for matching is difficult without an
unacceptable drop in pairs completeness (a measure of the

coverage of true positives). There is inevitably some overlap
between blocks, as multiple passes with different blocking keys
are typically used to ensure accurate results. This overlap
prevents independent processing and can be handled in 1 of the
2 ways: (1) the blocks of pairs for classification can be
calculated in full before duplicates are removed and the
classification task can be run or (2) duplicate matches and
potential matches are removed following the classification task.
The main disadvantage of option 1 is that this requires a
potentially massive set of pairs to be created upfront, as the
comparison space is typically orders of magnitude larger than
the set of matches and potential matches. Many linkage systems
combine their indexing and classification tasks for efficiency,
and it is often easier to ignore duplicate matches until
completion. The disadvantage of option 2 is that overlapping
block sets result in overlapping match sets, preventing the
independent grouping of matches from each classification task.

Regardless of the indexing method used to reduce the
comparison space for matching, the resulting blocks require
grouping into manageable size bins that can be distributed to
parallel tasks. A bin, therefore, refers to a subset of record pairs
grouped together for efficient matching. Block value frequencies
are calculated across data sets and used to calculate the size of
the total comparison space. Records from these data sets are
then copied into separate bins such that each bin has a
comparison space of approximately equal size to every other
bin.

Using this method, the comparison and classification of each
bin are free to be executed on whatever compute capability is
available. A managed container cluster is an ideal candidate;
however, the container’s resources (CPU, memory, and disk)
and the bin characteristics (eg, maximum comparison space)
need to be carefully chosen to ensure efficient resource use.

Development and Experimental Evaluation of the
Prototype
An evaluation of the hybrid cloud linkage model was conducted
through the deduplication of different sized data sets on a
prototype system. The experiments were designed to evaluate
parallel matching using an existing matching app on a cluster
of containers; to measure encryption, transfer, and execution
times; and to assess the remote analysis of the matching pairs
created.

A prototype system was developed with the on-premises
component running on Microsoft Windows 10 and the cloud
components running on Amazon Web Services (AWS). The
prototype focused on the matching part of the linkage model
and utilized platform services where available. These services
are described in Table 2.
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Table 2. Amazon Web Services used.

DescriptionAWSa

Provides an object (file) storage service with security, scalability, and durability.S3

A fully managed extract, transform, and load service, providing table definition, schema discovery, and cataloging. Used in
conjunction with S3 to expose cataloged files to other AWS services.

Glue

A managed state machine with workflows involving other AWS. The output of a step that uses a particular service can then
be used as the input for the next step.

Step function

A fully managed service for running batches of compute jobs. Compute resources are provisioned on-demand.Batch

An interactive query service for analyzing data in S3 using standard Structured Query Language.Athena

aAWS: Amazon Web Services.

Test Data
Three synthetic data sets were generated to simulate
population-level data sets: 7 million records, 25 million records,
and 50 million records. Although 7 million records may not
necessarily represent a large data set, a 50 million record data
set is challenging for most linkage units. The data sets were
created with a deliberately large number of matches per entity
to increase the comparison space and to challenge the matching
algorithm.

Data generation was conducted using a modified version of the
Febrl data generator [38], an open-source data linkage system
written in Python. Frequency distributions of the names and
dates of birth of the population of Western Australia were used
to generate the synthetic data sets. Randomly selected addresses
were sourced from Australia’s National Address File, a publicly
available data set [39]. Each data set contained first name,
middle name, last name, date of birth, sex, address, and postcode
fields. Each field had its own rate of errors and distribution of
types of errors. These were based on previously published
synthetic data error rates, deliberately set high to challenge
matching accuracy [40]. Type of errors included replacement
of values, field truncation, misspellings, deletions, insertions,
use of alternate names, and values set to missing. Records had
anywhere between zero to many thousands of duplicates within
the data sets.

All available fields were used for matching in a probabilistic
linkage. Two separate blocks were used: first name initial and
last name Soundex, and date of birth and sex. Each pair output
from the matching process included two record IDs, a score, a
block (strategy) name, and the individual field-level comparison
weights used to calculate the score.

Experiments
The on-premises component first transformed data sets
containing named identifiers into a privacy-preserved state using
Bloom filters. String fields were split into bigrams that were
hashed 30 times into Bloom filters 512 bits in length. Numeric
fields (including the specific date of birth elements) were
cryptographically hashed using hash-based message
authentication code Secure Hash Algorithm 2 (SHA2). These
privacy-preserved data sets were compressed (using gzip) before
being uploaded to Amazon’s object storage, S3. A configuration
file was also uploaded, containing the necessary linkage
parameters required for the probabilistic linkage. An AWS step
function (a managed state machine) was then triggered to run
through a set of tasks to complete the deduplication of the file
as defined in the parameter file.

All step function tasks used on-demand resource provisioning
for computation. A compute cluster managed by AWS Batch
was configured with a maximum CPU count of 40 (10×c4.xlarge
instance type). Each container was configured with 3.5 GB
RAM and 2 CPUs, allowing up to 20 container instances to run
at any one time.

The first task ran as a single job, splitting the file into many
bins of approximately equal comparison space, using blocking
variables specified in the configuration file. By splitting on the
blocking variables, the comparison space for the entire linkage
remains unchanged. Each bin was stored in an S3 location with
a consistent name suffixed with a sequential identifier. The
second task ran a node array batch job, with a job queued for
each bin to run on the compute cluster. Docker containers
running a command-line version of the LinXmart linkage engine
were executed on the compute nodes to deduplicate each bin
independently. AWS Batch managed the job queue, assigning
jobs to available nodes in the cluster, as shown in Figure 4.
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Figure 4. Matching jobs running on compute cluster (one job per bin).

LinXmart is a proprietary data linkage management system,
and the LinXmart linkage engine was used because of our
familiarity with the program and its ability to run as a Linux
command-line tool. It accepts a local source data set and
parameter file as inputs and produces a single pairs file as
output. There were no licensing issues running LinXmart on
AWS in this instance, as our institution has a license allowing
unrestricted use. This linkage engine could be substituted, if
desired, for others that similarly produce record pair files. The
container was bootstrapped with a shell script that downloaded
and decompressed the source files from S3 storage, ran the
linkage engine program, and then compressed and uploaded the

resulting pairs file to S3 storage. Each job execution was passed
a sequential identifier by AWS Batch, which was used to
identify a source bin datafile to download from S3 and mark
the resulting pair file to upload to S3.

The third step function task classified and cataloged all new
pairs files, using AWS Glue, making them available for use by
other AWS analytical services. The results for each original
data set were then able to be presented as a single table, although
the data itself were stored as a series of individual text files.
The prototype’s infrastructure and data flow are shown in Figure
5.

Figure 5. Prototype on Amazon Web Services. AWS: Amazon Web Services; PPRL: privacy-preserved record linkage.

Once the deduplication linkages were complete, the on-premises
component of the prototype was employed to query each data
set’s pair table. The queries were typical of those used following
a linkage run: pair count, pair score histogram, and pairs within
a pair score range. This query component used the AWS Athena
application programming interface (API) to execute the queries,
which used Presto (an open-source distributed query engine) to
apply the ad hoc structured query language queries to the
cataloged pairs tables.

Results

Design of a Cloud Model for Record Linkage
The cloud model data matching process is shown in Figure 6.
Essentially, every step in the record linkage process from
indexing to group analysis is pushed to cloud infrastructure.
Preprocessed data sets are transformed into a privacy-preserved
state (masking) and uploaded to the cloud service for linking.
The services within the cloud boundary now act as a TTP. The
quality assurance and analysis steps sit on the boundary of the
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cloud as computation and query occur on the hosted cloud
infrastructure, but the interactive analysis is performed by the
analysis client on premises. If the analysis client has access to
one or more of the raw data sets used in the linkage, these data

can be annotated onto query results, giving the clerk more
informed decisions and an experience to which they are
accustomed.

Figure 6. New cloud model data matching process.

As shown in the high-level architectural model in Figure 7, the
demographic data (containing personal identifiers) continue to
remain on premises with the data custodian. Responsibilities of
the data custodians are limited to data transformation and quality
assurance management. The responsibilities of the cloud services
are covered under 4 main categories: project configuration,
matching, linkage map, and analytics and visualization. The
project configuration includes the services required for
coordinating projects within and across separate data custodians.
Privacy-preserved data sets are stored here as well as metadata

on the data sets as a result of analysis and verification performed
on the uploaded data sets. The matching category includes all
match processing (classification) and pairs output as well as
services for providing recommendations on linkage parameters
(such as m and u likelihood estimates for probabilistic linkages)
for linkages between privacy-preserved data sets [41]. The
linkage map category holds the entity group information, the
map between individual records, and the group in which they
belong. This category also contains services for processing and
creating groups from pairs as well as quality estimation and
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analysis. Analytics and visualization contain all analytical services provided to the on-premises clients.

Figure 7. High-level architecture of record linkage cloud model. PPRL: privacy-preserved record linkage.

This model also allows computation to be pushed onto
inexpensive, on-demand hardware in a privacy-preserving state
while retaining the advantage of seeing raw identifiers during
other phases of the linkage process (eg, quality assurance and
analysis).

Experimental Evaluation of the Prototype
Each deduplication consisted of a single node job to split the
data set into multiple bins, followed by a node array job for the
matching of records within each bin. The split of data into bins
is shown in Figure 8. In this example, all records with the same
Soundex value will end up in the same bin.

Figure 8. Datafiles split into independent bins (by Soundex block values) for matching. DOB: date of birth.
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The total comparison space was calculated using the blocking
field frequencies in the data set. These frequencies represent
the number of times each blocking field value occurs in the
data, providing the ability to calculate the number of
comparisons that will be performed for each blocking field
value. First, the comparison space for each blocking field was
calculated using the frequency of the value within the file. The
total comparison space was the sum of each, and the bin count
was determined by dividing this by the maximum desired
comparison space for a single bin. The blocking field value with
the largest comparison space was assigned to the first bin. The
blocking field value with the next largest comparison space was
assigned to the second bin. This process continued for each

blocking field value, returning to the first bin when the end was
reached. A file was created for each bin, which was then
independently deduplicated. Blocking field values with a very
high frequency are undesirable as they are usually less useful
for linkage and are costly in terms of computation. Any blocking
field value with a frequency higher than the maximum desired
comparison space was discarded.

The total comparison space used for each data set, along with
the bin count and pair count, is presented in Table 3. The two
blocks used for the creation of separate bins for distribution
across the processing cluster resulted in some duplication of
comparisons and, thus, duplication of pairs.

Table 3. Comparison space and pairs created during classification.

Pairs files size (GB)Unique pairs, nTotal pairs, nBins, nComparison space, nData set size (millions)

9415,444,583634,544,432282,745,977,0097

221,594,343,9612,169,337,6469318,458,616,86625

443,260,509,5614,424,983,77627053,848,633,90750

Approximately 60% of the time was spent on comparison and
classification by each container (Figure 9). Much of the time
was spent managing data in and out of the container itself.
Splitting a data set into bins for parallel computation took

between 7% (4/54 minutes) and 14% (35/247 minutes) of the
total task time, a reasonable sacrifice considering the scalability
factor this gives for the classification jobs. Provisioning of the
compute resources took between 2 and 4 min for each data set.

Figure 9. Task execution time (in minutes) and the proportion of total time.

Running times of ad hoc queries on data sets are shown in Table
4; these were each executed 5 times on the client and run

through the AWS Athena API. The mean execution time did
not vary greatly across the differently sized data sets. With a
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simple count query taking around 25 seconds, there appears to
be some initial setup time for provisioning the backend Presto
cluster. This is expected and should not be considered an issue,

particularly with all queries of the largest data set of 4.4 billion
pairs taking less than 1 min to execute.

Table 4. Mean execution times for sample queries on full pairs set.

Sample queriesPairs count (millions)Data set size (millions)

Fetch pairs in score range 15-16 (seconds)Pair score histogram (seconds)Count (seconds)

5152266357

535627216925

545224442450

In terms of costs associated with the use of AWS cloud services
for our evaluation, there were 2 main types. First, the cost of
on-demand processing, which is typically charged by the second.
This totaled just over US $20 for the linkage processing used
for all 3 data sets. The second is the cost of storage, which is
charged per month. To retain the pairs files generated for all 3
data sets, it cost only US $2 per month. Querying data via the
Athena service is currently charged at US $5 per terabyte
scanned.

Discussion

Principal Findings
Our results show that an effective cloud model can be
successfully developed, which extends linkage capacity into
cloud infrastructure. A prototype was built based on this model.
The execution times of the prototype were reasonable and far
shorter than one would expect when running the same software
on a single hosted machine. Indeed, it is likely that on a single
hosted machine, the large data set (50 million) would need to
be broken up into smaller chunks and linkages on these chunks
run sequentially.

The splitting of data for comparison into separate bins worked
well for distributing the work and mapped easily to the AWS
Batch mechanism for execution of a cluster of containers. The
creation of an AWS step function to manage the process from
start to end was relatively straightforward. Step functions
provide out-of-the-box support for AWS Batch. However,
custom Lambda functions were required to trigger the AWS
Glue crawler and retrieve the results from the first data-split
task so that the appropriate size batch job could be provisioned.

As the fields used for splitting the data were the same as those
used for blocking on each node, the comparison space was not
different from running a linkage of the entire data set on a single
machine. With the same comparison space and probabilistic
parameters, the accuracy of the linkage is also identical. Having
a mechanism for distributing linkage processing on multiple
nodes with no reduction in accuracy is certainly a massive
advantage for data linkage units looking to extend their linkage
capacity.

The AWS Batch job definition’s retry strategy was configured
with five attempts, applying to each job in the batch. This
provides some resilience to instance failures, outages, and
failures triggered within the container. However, in our
evaluation, this feature was never triggered. The timeout setting

was set to a value well beyond what was expected as jobs that
time out are not retried, and our prototype did not handle this
particular scenario. Although our implementation of the step
function provided no failure strategies for any task in the
workflow, handling error conditions is supported and retry
mechanisms within the state machine can be created as desired.
An operational linkage system would require these failure
scenarios to be handled.

Improvements to the prototype will address some of the other
limitations found in the existing implementation. For example,
S3 data transfer times could be reduced by using a series of
smaller result files for pairs and uploading all of these in parallel.
The over-matching and duplication of pairs could be addressed
by improving the indexing algorithm used to split data. Although
there is inevitably going to be some overlap of blocks, our naïve
implementation could be improved. Our algorithm for
distributing blocks attempts to distribute workload as evenly as
possible based on the estimated comparison space. Discarding
overly large blocks helps prevent excessive load on single
matching nodes. However, it relies on secondary blocks to match
the records within and only partly prevents imbalanced load
distribution. The block-based load balancing techniques
developed for the MapReduce linkage algorithms can be applied
here to mitigate data skew further, where record pairs are
distributed for matching instead of blocks.

As improvements to PPRL techniques are developed over time,
these changes can be factored in with little change to the model.
Future work on the prototype will look to extend the capability
of PPRL to use additional security advances such as
homomorphic encryption [42] and function-hiding encryption
[43].

Conclusions
The model developed and evaluated here successfully extends
linkage capability into the cloud. By using PPRL techniques
and moving computation into cloud infrastructure, privacy is
maintained while taking advantage of the considerable
scalability offered by cloud solutions. The adoption of such a
model will provide linkage units with the ability to process
increasingly larger data sets without impacting data release
protocols and individual patient privacy. In addition, the ability
to store detailed linkage information provides exciting
opportunities for increasing the quality of linkage and advancing
the analysis of linkage outputs. Rich analytics, machine learning,
automation, and visualization of these additional data will enable
the next generation of quality assurance tooling for linkage.
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