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Abstract

Background: Parkinson disease (PD) is one of the most common neurological diseases. At present, because the exact cause is
still unclear, accurate diagnosis and progression monitoring remain challenging. In recent years, exploring the relationship between
PD and speech impairment has attracted widespread attention in the academic world. Most of the studies successfully validated
the effectiveness of some vocal features. Moreover, the noninvasive nature of speech signal–based testing has pioneered a new
way for telediagnosis and telemonitoring. In particular, there is an increasing demand for artificial intelligence–powered tools in
the digital health era.

Objective: This study aimed to build a real-time speech signal analysis tool for PD diagnosis and severity assessment. Further,
the underlying system should be flexible enough to integrate any machine learning or deep learning algorithm.

Methods: At its core, the system we built consists of two parts: (1) speech signal processing: both traditional and novel speech
signal processing technologies have been employed for feature engineering, which can automatically extract a few linear and
nonlinear dysphonia features, and (2) application of machine learning algorithms: some classical regression and classification
algorithms from the machine learning field have been tested; we then chose the most efficient algorithms and relevant features.

Results: Experimental results showed that our system had an outstanding ability to both diagnose and assess severity of PD.
By using both linear and nonlinear dysphonia features, the accuracy reached 88.74% and recall reached 97.03% in the diagnosis
task. Meanwhile, mean absolute error was 3.7699 in the assessment task. The system has already been deployed within a mobile
app called No Pa.

Conclusions: This study performed diagnosis and severity assessment of PD from the perspective of speech order detection.
The efficiency and effectiveness of the algorithms indirectly validated the practicality of the system. In particular, the system
reflects the necessity of a publicly accessible PD diagnosis and assessment system that can perform telediagnosis and telemonitoring
of PD. This system can also optimize doctors’ decision-making processes regarding treatments.

(JMIR Med Inform 2020;8(9):e18689) doi: 10.2196/18689
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Introduction

Parkinson disease (PD) is a long-term degenerative disorder of
the central nervous system that mainly affects the motor system.
In the early stages, the symptoms include tremor; rigidity;
slowness of movement; and difficulty with walking, talking,
thinking, or completing other simple tasks. Dementia becomes
common in the later stages of the disease. More than a third of
patients have experienced depression and anxiety [1]. Other
symptoms include sensory and sleep problems. In 2017, PD
affected more than 10 million people worldwide, making it the
second-most common neurological condition after Alzheimer
disease. Currently, there is no cure for PD [2]. Accurate
diagnosis, prognosis, and progression monitoring remain
nontrivial.

As reported in previous work [3,4], approximately 90% of
patients with PD develop voice and speech disorders during the
course of the disease, which can have a negative impact on
functional communication, thus leading to a decline in the
quality of life [5]. Reduced volume (ie, hypophonia), reduced
pitch range (ie, monotone), and difficulty with the articulation
of sounds or syllables (ie, dysarthria) are the most common
speech problems [6]. At the same time, many patients gradually
dislike communication because of their own language barriers,
which will cause more serious speech disorders and then form
a vicious circle. Note that the speech signal–based test is
noninvasive and can be self-administered. Hence, it has been
regarded as a promising approach in PD diagnosis, evaluation,
and progression monitoring, especially in the telediagnosis and
telemonitoring medical fields.

In this work, we built a publicly accessible real-time system to
efficiently diagnose and assess the severity of PD via speech
signal analysis. The most relevant works can be found in
Lahmiri et al [7] and Wroge et al [8]. They utilize similar
machine learning algorithms as those based on previously
proposed audio features [9-13]; however, their work neither
considered severity assessment of PD nor made a publicly
accessible app that allows for real-time mobile-aided PD
diagnosis or evaluation, which is actually a trend and even a
necessity in the current 4G and future 5G era for telediagnosis
and telemonitoring. For instance, the outbreak of coronavirus
disease 2019 (COVID-19) highlights the importance of
intelligent and accurate telehealth during disease epidemics.

More specifically, our system first collects the speech signals
of the subjects and then utilizes speech signal processing
techniques to extract a variety of speech impairment features;
it further utilizes advanced machine learning algorithms to
diagnose PD and analyze the disease severity. In our work, in
the speech signal feature-extraction stage, we utilized many
traditional and novel methods to obtain clinically meaningful
voice signal features, such as jitter, fine-tuning, recurrence
period density entropy, pitch period entropy, signal-to-noise
ratio, harmonics-to-noise ratio (HNR), and the mel frequency

cepstral coefficient [9-11]. We regarded the PD diagnosis task
as a classification problem and then utilized classical algorithms
(eg, support vector machine [SVM] and artificial neural network
[ANN]) to perform diagnosis. We formed the PD severity
assessment task into a regression problem, with the Unified
Parkinson Disease Rating Scale (UPDRS) score as the dependent
variable; the UPDRS is the most widely employed scale for
tracking PD symptom progression. Various regression
algorithms (eg, support vector regression [SVR] and least
absolute shrinkage and selection operator [LASSO] regression)
were tested. We then obtained the most suitable model by
comparing and blending different algorithms. In the end, we
developed a mobile phone app for our system to realize remote
diagnosis, severity evaluation, and progression monitoring of
PD, which will significantly reduce detection and prevention
costs.

The main structure of this paper is divided into four parts: (1)
description of the methods used in our system: data collection,
data preprocessing, feature extraction of speech signals,
classification, and regression problem formulation, (2) analysis
of our experimental results, (3) system description of our mobile
app, and (4) final discussion.

Methods

Data Collection
The speech signal data used in the experiment came from two
sources:

1. One part of the dataset came from the open data platform
from the University of California Irvine (UCI) Machine
Learning Repository, where three sets of parkinsonian
speech data with different characteristics were obtained.

2. The other part of the dataset was collected in collaboration
with the Department of Neurology, the First Affiliated
Hospital of Dalian Medical University, China. The data
recorded the voice signals of patients with PD.

In practice, the collected pronunciation content needs to be short
and reflect the patient's speech disorder to a certain extent. On
one hand, considering the need for different languages, dialects,
and accents as well as unclear pronunciations, we adopted the
continuous pronunciation method. Meanwhile, the control of
the vocal cords and airflow is also weakened due to the
weakening control of the pronunciation system of the nervous
system. On the other hand, since the relationship between the
vibration of the vocal cords and the speech disorder is relatively
strong, the vowels can better reflect the degree of speech
impairment [6,11,14]. Another fact is that the basic vowels in
different regions of the world are very similar, so it is more
reasonable to use vowels. The vowels used here are the five
long vowels with the following English phonetic symbols: [ɑ:],
[ :], [i:], [ :], and [u:]; the subjects are required to pronounce
them repeatedly. The collected syllables are shown in Table 1.
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Table 1. Collected syllables.

Duration (seconds)International phonetic symbol

3[ɑ:]

3[З:]

3[i:]

3

3[u:]

The UPDRS [15] is the most commonly used severity indicator
in clinical studies of PD. It is evaluated via filling out a form,
which requires considerable medical expertise, so it is difficult
for patients to perform self-testing using this scale. That explains
why we need automatic and artificial intelligence–powered
prediction tools. We collected the UPDRS score as the
dependent variable in our regression task. At present, UPDRS
version 3.0 is the most widely used version, and it can be divided
into four parts:

1. Mentation, behavior, and mood, including a total of four
questions (16 points).

2. Activities of daily living, including a total of 13 questions
(52 points).

3. Motor examination, including a total of 14 questions (108
points).

4. Treatment complications, including a total of 11 questions
(23 points).

In summary, UPDRS version 3.0 has a total of 42 questions and
the highest score is 199 points. The higher the UPDRS score,
the more serious the PD is. The third item, motor examination,
can reflect the severity of speech disorder. In practice, when
collecting the data, the doctor is required to evaluate the total
UPDRS score as well as the value of the motor examination
score.

Note that the first part of the data is open source, and we can
easily download this data from UCI's official website. Therefore,
the datasets were mainly used to train the machine learning
models and verify the validity of the dysphonia features, all of
which have been integrated in our app system. This part of the
data will be introduced in detail in the Results section. The
second part of the data requires us to work closely with local
hospitals—we collected PD patients’ vocal data in a local
hospital; the data collection table is shown in Multimedia
Appendix 1. The Data Preprocessing section that follows
describes how we processed the second part of the data, which
has been implemented as a function in our app. We then
extracted the dysphonia features, which have also been
integrated as a function in our app system. Moreover, we tested

them with machine learning models, which have been trained
based on the first part of data, and achieved good results in the
PD diagnosis task. Until now, the number of collected Chinese
speech signals is still not big enough to train an effective model.
Therefore, our model within our app system was trained by the
first part of the data: the first and third datasets were used in
the diagnosis task and severity assessment task, respectively.
However, this app is continuously collecting new data, including
positive and negative samples. As the amount of data increases
in the future, we will utilize advanced technology, such as
transfer learning, to realize PD diagnosis and severity evaluation
for people in various regions.

Data Preprocessing
The initially collected voice signals cannot be directly used;
some preprocessing was required. This operation removed some
of the interference factors and paved the way for subsequent
feature extraction.  The formats of different audio files were
unified into the WAV file format, with 44,100 Hz sampling
frequency and two channels. These audio files were then
uploaded into the back-end server for storage.

The first step of data preprocessing is sampling frequency
conversion, that is, resampling, which can uniformly record the
speech frequency and reduce the amount of calculation by
down-clocking. In our work, only one channel of the speech
signal (ie, the left channel) is reserved, and then the sampling
frequency is converted to 10 kHz.

The second step is pre-emphasis. Since the low-frequency part
of speech signals tends to contain noise, we performed
pre-emphasis to filter out the low frequencies and improve the
resolution of the high-frequency part of speech signals. In our
work, a first-order, finite impulse response, high-pass digital
filter was used to achieve pre-emphasis [16]. The transfer
function is defined in equation 1 of Figure 1. In equation 1, a
is the pre-emphasis coefficient; generally, 0.9 < a < 1.0. Let
x(n) denote the voice sample value at time n. After the
pre-emphasis processing, the result is y(n) = x(n) – ax(n–1),
where a=0.9375.

JMIR Med Inform 2020 | vol. 8 | iss. 9 | e18689 | p. 3http://medinform.jmir.org/2020/9/e18689/
(page number not for citation purposes)

Zhang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Equations 1-10. FN: false negative; FP: false positive; MAE: mean absolute error; MSE: mean square error; RMSE: root mean square error;
TN: true negative; TP: true positive.

The third step is windowing and framing. The speech signal
was divided into some shorter signal segments (ie, frames) for
processing, which is the framing process, such that the signal
can be treated as stationary in the short-time window. In
practice, to reduce the impact of segmenting on the statistical
properties of the signal, we applied windowing to the temporal
segments. The frame width in our work was set as 25
milliseconds long, the frame shift was 10 milliseconds long,
and the Hamming window was leveraged as the window
function.

The fourth step is silent discrimination. Because there is no
guarantee that the collected audio files will always have sound,
it is necessary to filter out the blank periods of those sounds.
Therefore, silent discrimination, also known as voice endpoint
detection, was required. A common solution is to use
double-threshold methods [17], which are based on the

principles of short-time energy, short-term average amplitude,
and short-time zero-crossing rate. In our work, for the sake of
simplicity and algorithm efficiency, we utilized only short-term
energy as the principle for the double-threshold method. The
definition of short-term average energy is shown Figure 1,
equation 2.

For illustration, as is shown in Figure 2, we let Th and Tl denote
the upper and lower thresholds, respectively. The voiced part
must have a section above Th. The endpoint energy of the voiced
part is equal to Tl. N1 is the starting point, N2 is the ending point,
and w is the Hamming window. The fifth step is fundamental
frequency extraction. The fundamental frequency refers to the
lowest and theoretically strongest frequency in the sound, which
reflects the vibration frequency of the sound source. In our work,
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we adopted the most widely used autocorrelation method to extract the fundamental frequency.

Figure 2. Principle of the double-threshold method. N1: starting point; N2: ending point; Th: upper threshold; Tl: lower threshold.

The short-term autocorrelation function is defined in Figure 1,
equation 3. We need to obtain the first positive peak point,
Rxx(kf), after crossing the zero point in sequence Rxx(k), and 1/kf

is the extracted fundamental frequency.

Note that the audio files may be mixed with unknown noise,
which can cause a sudden jump at some points. These points
are called wild points or outliers. Therefore, it is necessary to
initially remove the wild points. We first calculated the average

value of the fundamental frequency of the audio and then deleted
the point that was too far from the average value.

Dysphonia Features
In 2012, Tsanas et al summarized 132 features of speech
impairments [11]. Considering the speed requirement of the
real-time system, the selected model cannot use all of the
features. The final selected features [18-23] are illustrated in
Table 2.
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Table 2. Dysphonia features.

DescriptionClassification and dysphonia features

Pitch [18] (fundamental frequency)

Mean of pitchF0_mean

Max of pitchF0_max

Min of pitchF0_min

Median of pitchF0_median

SD of pitchF0_std

Jitter [18] (pitch period perturbation)

JitterJitter

Absolute jitterJitter_abs

5 adjacent points’ jitterJitter_PPQ5

3 adjacent points’ jitterJitter_rap

Difference of 3 adjacent points’ jitterJitter_ddp

Shimmer [18] (amplitude perturbation)

Shimmer: percentageShimmer

Shimmer: decibels (dB)Shimmer_dB

5 adjacent points’ shimmerShimmer_APQ5

3 adjacent points’ shimmerShimmer_APQ3

Difference of 3 adjacent points’ shimmerShimmer_dda

11 adjacent points’ shimmerShimmer_APQ11

Harmonics-to-noise ratio (HNR) and noise-to-harmonics ratio (NHR)
[19]

Mean of HNRHNR_mean

SD of HNRHNR_std

Mean of NHRNHR_mean

SD of NHRNHR_std

Nonlinear feature

Detrended fluctuation analysis [20]DFA

Recurrence period density entropy [21]RPDE

Correlation dimension [22]D2

Pitch period entropy [23]PPE

Problem Formulation

Diagnosis
Because the predicted value in PD diagnosis is discrete and
binary, it can be regarded as a two-category classification
problem. This paper chose the following classical classification
algorithms: (1) SVM, (2) ANN, (3) Naive Bayes, and (4) logistic
regression.

Severity Assessment
Because the predicted value (ie, the UPDRS score) is continuous
in the assessment of the severity of speech impairment in PD,

it can be seen as a regression problem. This paper chose the
following classical regression algorithms: (1) SVR, (2) linear
regression, and (3) LASSO regression.

Results

Overview
We should initially introduce some indicators to evaluate the
quality of the algorithms. First, for a two-category classification
problem, there are usually the following classification results,
as seen in Table 3.
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Table 3. Classification confusion matrix.

Predictive negative classPredictive classClass

False negative (FN)True positive (TP)Actual positive class

True negative (TN)False positive (FP)Actual negative class

Then, the indicators are generally employed to evaluate the
classification effect (see Figure 1, equations 4-7). The accuracy
represents the proportion of subjects who are classified correctly
out of the total number of subjects; precision indicates the
proportion of real patients who are predicted to be sick; recall
indicates the proportion of patients who are predicted to be sick;
and the F1 value is the harmonic mean of the accuracy rate and
the recall rate. In our PD diagnosis task, if a normal user is
detected to be sick, the impact is usually not large, since we can
continue to check the result using various clinical methods.
However, if a model fails to detect PD, the impact is relatively
large. Hence, the most important indicator is the recall rate.

Second, for a regression problem, if the total number of samples
is N, the true value of the i-th sample is Ti, and the predicted

value is Pi, then the indicators in equations 8-10 (see Figure 1)
are available. Among the indicators, mean absolute error (MAE)
measures the average magnitude of the errors in a set of
predictions, without considering their direction; mean square
error (MSE) and root mean square error (RMSE) are quadratic
scoring rules that also measure the average magnitude of the
error. However, both MSE and RMSE give a relatively higher
weight to large errors. As a result, they are more useful when
large errors are particularly undesirable.

According to the characteristics of the dataset, different
experiments were performed on the three kinds of datasets
downloaded from UCI. The characteristics of these datasets are
shown in Table 4.

Table 4. Characteristics of three datasets from the University of California Irvine.

Dataset 3Dataset 2Dataset 1Data characteristics

2009/10/292014/06/122008/06/26Creation date (year/month/day)

Number of subjects

424823Parkinson disease

0208Non-Parkinson disease

58751208195Number of records (ie, samples)

182622Number of features

RegressionClassification and regressionClassificationTask

All results are based on experiments with 5-fold cross validation.
To evaluate our models’ efficiency and effectiveness, for the
PD diagnosis (ie, classification task), the ratio of the training
set to the validation set was 4:1 in the first two datasets. We
then used a dataset collected from a local hospital as the test
dataset. The data collection table is shown in Multimedia
Appendix 1. We collected a dataset that included 14 PD patients

and 30 non-PD patients in total. For the PD severity evaluation
(ie, regression task), the ratio of training set to the validation
set to the testing set was 4:1:1 in the third dataset. The testing
results are shown in the following paragraphs.

For the first set of data [9], we conducted classification
experiments according to a combination of linear and nonlinear
features; the final result is shown in Table 5.

Table 5. Classification results for the first set of data.

F1 score (%)Recall (%)Precision (%)Accuracy (%)Algorithm

92.5597.0388.8988.74 aSupport vector machine

90.1891.3289.9785.71Logistic regression

92.4594.2691.1688.68Neural network (single layer)

92.7193.3892.5588.63Neural network (double layer)

75.2162.3796.0269.24Naive Bayes

aItalics represent the highest values.

We can see that the combination of linear and nonlinear features
for the diagnosis of PD patients is feasible and effective. The
SVM algorithm achieved higher accuracy and recall rate, and
the Naive Bayes algorithm had the worst effect. According to
the previous discussion, the recall rate is the most important

indicator. At the same time, considering the speed requirement
of the mobile app, our system finally leveraged the SVM
algorithm to perform the PD patient diagnosis. From Multimedia
Appendix 2, we can see that these features have small P values,
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especially for the nonlinear features, which statistically show
the effectiveness of these features.

For the second set of data [24], we conducted classification
experiments using only linear features, and the final result is
demonstrated in Table 6.

Table 6. Classification results for the second set of data.

F1 score, %Recall, %Precision, %Accuracy, %Algorithm

73.9883.71 a66.3766.71Support vector machine

72.8479.0867.6866.56Logistic regression

75.8981.5471.1370.78Neural network (single layer)

75.4080.8171.4570.29Neural network (double layer)

67.1973.7861.8059.36Naive Bayes

aItalics represent the highest values.

It can be clearly seen that using only linear features for PD
diagnosis brings about a poor model performance, which is
consistent with the conclusion from Tsanas et al [11] that
feeding linear features into speech models is not very
satisfactory. Meanwhile, some researchers claimed that
nonlinear features are more effective [23], and another PD

speech dataset analysis study [24] also obtained similar results.
In particular, our experimental results showed that the SVM
algorithm achieved a relatively high recall rate.

For the third set of data (ie, regression) [25], we tested multiple
regression algorithms on the third dataset. The final result is
illustrated in Table 7.

Table 7. Regression results on the third dataset.

Root mean square errorMean square errorMean absolute errorAlgorithm

9.749495.13448.0786Linear regression

5.835734.12023.7699 aSupport vector machine

9.745291.16008.0687Least absolute shrinkage and selection operator

aItalics represent the best values.

Experimental results showed that both linear and nonlinear
features contribute to the severity assessment of PD patients.
Among regression algorithms, the SVR algorithm achieved the
best performance on each indicator, and the prediction results
of LASSO and linear regressions were not much different; the
reason for this is that LASSO regression is actually a variant of
linear regression. Hence, the system finally adopted SVR as the
severity evaluation method.

In particular, we selected the best results from each algorithm
and observed the degree of fit. Figures 3-5 show the fitting

results of the aforementioned three methods. In each figure, the
upper graph is the degree of fitting of the training set and the
lower graph is the degree of fitting of the test set; the red line
is the predicted value and the blue line is the true value. It can
be seen from these three figures that SVR fits the best.

As we know, LASSO can perform feature selection [26] by
setting the feature weights to zero. The five characteristics most
relevant to the value are shown in Table 8.
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Figure 3. Linear regression fitting. The red line is the predicted value and the blue line is the true value. UPDRS: Unified Parkinson's Disease Rating
Scale.

Figure 4. Support vector regression (SVR) fitting. The red line is the predicted value and the blue line is the true value. UPDRS: Unified Parkinson's
Disease Rating Scale.
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Figure 5. Least absolute shrinkage and selection operator (LASSO) fitting. The red line is the predicted value and the blue line is the true value. UPDRS:
Unified Parkinson's Disease Rating Scale.

Table 8. Top five principal characteristics.

Corresponding weighted valueFeature

2.84Age

–2.66Harmonics-to-noise ratio mean

–2.18Absolute jitter

2.14Detrended fluctuation analysis

1.51Pitch period entropy

It can be considered that these five characteristics are highly
correlated with the UPDRS score. Age itself is highly related
to PD, and the rest of the characteristics have three nonlinear
features—HNR mean is also a nonlinear feature—indicating
the importance of nonlinear features. Gender also explains why
the regression result of the second set of data was relatively
poor.

From Multimedia Appendix 2, we see that these features all
have small P values—the features of the Jitter series may be a
bit higher than others—which proves that we need these features
for our system.

In summary, the PD speech detection system uses SVM and
SVR for PD speech diagnosis and severity assessment,
respectively.

System

System Overview
Figure 6 shows the architecture of our app system—called the
No Pa app—including voice signal collection, data
preprocessing, data storage and access, and signal modeling.
At its core, the PD diagnosis model is SVM trained by the first
set of data and the PD severity assessment model is SVR trained
by the third set of data. Meanwhile, Figure 6 displays the four
key functions and the operating environment in the application
layer.
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Figure 6. Architecture overview of the No Pa app system.

The Main Function
Android and iOS versions of the No Pa mobile app are currently
available online. The app includes four functions—state test,
daily training, related information, and personal center—which
are shown as follows (see Figure 7 for a few screen captures):

1. State test: the subject pronounces five long vowels
according to the voice guidance, and each long vowel sound
lasts for 5 seconds. Then, our system will calculate the
current speech impairment severity status.

2. Daily training: the daily training function aims to improve
subjects’ speech impairment status by encouraging them
to speak. It includes monophonic training, reading training,

and singing training. Monophonic training includes the
user's pronunciation training according to some specific
single syllables; during reading training, the user reads
ancient poetry; and singing training improves the user's
daily training interest via singing songs. Note that each
training function will give a corresponding feedback score
according to our speech signals model. However, since the
calculation is not based on the five long vowels, the scores
may not be accurate, but it is acceptable since our aim is to
attract subjects’ attention to daily training in speaking.

3. Related information: this function provides users with some
advice about PD and physical health.

4. Personal center: this function helps the user view their
testing history and some personal information.
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Figure 7. Screen captures from the No Pa app showing four functional modules.

Back-End Configuration
The back-end server of the No Pa app is the Alibaba Cloud
Server. Its configuration is as follows: 4-core central processing
unit (CPU), 8 GB RAM, 64-bit Ubuntu system, and 200 GB
disk space.

Algorithm Acceleration
The original system’s computational cost can range from 20 to
30 seconds without any acceleration techniques. Experimental
results showed that autocorrelation calculation is the most
time-consuming unit, so the C++ programming language was
used to accelerate the autocorrelation calculation. To speed up
the system, we adopted MEX (MATLAB executable)
technology [27] as the acceleration scheme. In the end, the
computational cost for predicting UPDRS scores was
compressed from 20 seconds to only about 1 second. This
response time is acceptable for an app.

Guide and Interaction
For better a user experience, we provided voice-guided
navigation that can offer step-by-step instructions. Meanwhile,
considering that PD patients may suffer from hand tremors, we
designed big buttons in this app. Moreover, if they do not click
the recording function button or the system fails to record an
effective sound, the system will give them a reminder.

Discussion

Principal Findings
Traditionally, PD patients need to be diagnosed by physical
examination. We can now use a mobile app to help conduct
straightforward and rapid detection. For PD patients or healthy
people, instant detection and consistent monitoring of disease
conditions are extremely important. For doctors, the app can be
used as a decision-support tool to provide assistance in treatment
and diagnosis.
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We have built this mobile app by embedding a voice-oriented
system. At the core of the system are machine learning
algorithms. Experimental results showed that SVM and SVR
achieved the best performance for the diagnosis (ie,
classification task) and severity evaluation (ie, regression task)
of PD, respectively. The recall rate of the classification task can
reach 97.03% (ie, the patient's recognition ability), and the
absolute average error of the regression task can reach 3.7699,
which is acceptable since the value of UPDRS scores range
from 0 to 199.

Finally, we will summarize the contributions of our work. We
have built a voice-oriented system that can remotely and
conveniently diagnose PD. The system first collects a user’s
five long vowels and then efficiently extracts dysphonia features,
such that machine learning algorithms can be applied to the
classification or regression of PD-related tasks. First, the system
has been integrated into an app for public use. Second, our
experiments have validated the effectiveness of voice
signal–related features proposed by mainstream studies. Third,
our system incorporates voice signal collection, feature
extraction, and an algorithm interface, which can be regarded
as a standard open-source platform for new algorithm
development in voice signal–oriented disease identification
tasks.

Comparison With Prior Work
There have been various studies utilizing vocal features for PD
diagnosis or severity evaluation. More specifically, Lahmiri et
al [7] proposed a study about diagnosing PD based on dysphonia

measures. They chose the same dataset as our first dataset and
their results are similar to ours. However, our method achieved
a higher recall value on this dataset. Wroge et al [8] also focused
on PD diagnosis by speech signal analysis. After some speech
signal processing, they extracted two groups of
features—Audio-Visual Emotion recognition Challenge (AVEC)
[12] and Geneva Minimalistic Acoustic Parameter Set
(GeMAPS) features [13]—which were then fed into some
machine learning models. However, their feature extraction
process relied on some existing tools, which are not easily
integrated into an app. In particular, their work needs to extract
1262 features while our work only extracts 24 features.
Moreover, the accuracy of their results based on SVM and ANN
were both lower than ours. Similar work that is based on the
above features can be found in Tracy et al [28]. Deep learning
methods have also been leveraged to learn patterns from vocal
feature sets [29]. However, their model lacks explanations due
to the inherent nature of deep learning models and achieves an
inferior performance compared with our model. Moreover,
besides PD diagnosis, our system realizes PD severity
evaluation, which may be more helpful for patients and doctors.

Limitations
Our data were collected from healthy people and patients with
PD from Dalian, China; the quantity of data is still not big
enough. In the future, we plan to collect more disease-related
data from different regions worldwide to improve the
generalization of the model. At the same time, we will use deep
learning methods to study the speech signals of patients with
PD to avoid cumbersome manual extraction of speech signals.
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