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Abstract

Background: Heart failure is a leading cause of mortality and morbidity worldwide. Acute heart failure, broadly defined as
rapid onset of new or worsening signs and symptoms of heart failure, often requires hospitalization and admission to the intensive
care unit (ICU). This acute condition is highly heterogeneous and less well-understood as compared to chronic heart failure. The
ICU, through detailed and continuously monitored patient data, provides an opportunity to retrospectively analyze decompensation
and heart failure to evaluate physiological states and patient outcomes.

Objective: The goal of this study is to examine the prevalence of cardiovascular risk factors among those admitted to ICUs and
to evaluate combinations of clinical features that are predictive of decompensation events, such as the onset of acute heart failure,
using machine learning techniques. To accomplish this objective, we leveraged tele-ICU data from over 200 hospitals across the
United States.

Methods: We evaluated the feasibility of predicting decompensation soon after ICU admission for 26,534 patients admitted
without a history of heart failure with specific heart failure risk factors (ie, coronary artery disease, hypertension, and myocardial
infarction) and 96,350 patients admitted without risk factors using remotely monitored laboratory, vital signs, and discrete
physiological measurements. Multivariate logistic regression and random forest models were applied to predict decompensation
and highlight important features from combinations of model inputs from dissimilar data.

Results: The most prevalent risk factor in our data set was hypertension, although most patients diagnosed with heart failure
were admitted to the ICU without a risk factor. The highest heart failure prediction accuracy was 0.951, and the highest area
under the receiver operating characteristic curve was 0.9503 with random forest and combined vital signs, laboratory values, and
discrete physiological measurements. Random forest feature importance also highlighted combinations of several discrete
physiological features and laboratory measures as most indicative of decompensation. Timeline analysis of aggregate vital signs
revealed a point of diminishing returns where additional vital signs data did not continue to improve results.

Conclusions: Heart failure risk factors are common in tele-ICU data, although most patients that are diagnosed with heart failure
later in an ICU stay presented without risk factors making a prediction of decompensation critical. Decompensation was predicted
with reasonable accuracy using tele-ICU data, and optimal data extraction for time series vital signs data was identified near a
200-minute window size. Overall, results suggest combinations of laboratory measurements and vital signs are viable for early
and continuous prediction of patient decompensation.
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Introduction

Background
Intensive care units (ICUs) are data-rich clinical environments
involving complex decision-making for patients who are
critically ill making them a major area of health care innovation
[1]. The ability to continuously monitor patients in the ICU
provides unique opportunities for analytics such as estimation
of physiological states and prediction of decompensation (ie,
clinical deterioration) or patient outcomes [2]. There has been
substantial progress in terms of predicting longer-term outcomes
such as mortality and readmission rates in patients with heart
failure, but there is limited work around predicting shorter-term
clinical events in the ICU, such as acute heart failure onset [3-5].
Predicting such decompensation events allows for prevention
and mitigation steps while patients are in the ICU and promotes
a proactive decision-making process for clinicians, potentially
resulting in timely interventions and improved patient outcomes.

In this work, we present the application of machine learning
techniques for predicting decompensation in critical care settings
using acute heart failure onset as the prediction outcome [6].
The objectives of this study are to examine the prevalence of
three heart failure risk factors (ie, coronary artery disease,
hypertension, or myocardial infarction); to apply and evaluate
machine learning techniques to predict heart failure onset in
patients with and without one of the three known risk factors;
and to evaluate features of interest including aggregate time
series vital signs data, laboratory values, and other physiological
inputs used in traditional clinical scoring systems.

Heart failure is a major cause of mortality and morbidity
worldwide, and a major public health concern. It is a complex
clinical syndrome where cardiac dysfunction impairs the ability
of the ventricle to fill and eject blood, leading to a wide range
of signs and symptoms and unspecific diagnosis [7-9]. Although
there have been advances in therapies, further understanding of
prognosis and management of acute heart failure is needed [10].
This is particularly true in critical care where heart failure may
be of secondary concern to clinicians relative to primary ICU
diagnosis.

There has been interest in shifting prognostication of
decompensation events such as onset of heart failure to a remote
monitoring team (tele-ICU) [11]. Although such
telemedicine-based efforts have become increasingly common
in cardiovascular ICUs, risk of acute heart failure onset has not
been extensively investigated through a machine learning and
tele-ICU lens [12]. Additionally, there are several known risk
factors of heart failure, including hypertension, coronary artery
disease, myocardial infarction, obesity, diabetes, and other
lifestyle factors such as alcohol intake, smoking, and leisure
activity [13]. Of these, hypertension, coronary artery disease,
and myocardial infarction are identifiable key risk factors of
acute heart failure and relevant to remote ICU monitoring.

Significance
Multiple prior studies related to heart failure in different settings
(eg, inpatient vs outpatient) using dissimilar data sources (eg,
home-based monitoring data vs in-hospital clinical data) have

been conducted [14,15]. These studies used features such as
change in body weight, heart rate, and blood pressure under the
hypothesis that hemodynamic changes in patients can be
characterized in continuous physiological data collected by the
patient at home. In critical care settings, many of the variables
used by the bedside clinical team are readily available to the
remote tele-ICU team as well for deeper analytics.

Previous studies have modeled risk of hospitalization, long-term
survival rates, and mode of death prediction as a result of heart
failure [16-18]. Models used features related to clinical status,
therapy, and laboratory parameters including home-based
physiological telemonitoring [19]. Generally, these studies use
temporal data to make longer-term (ie, months to years)
predictions [20].

These and other studies illustrate potential and previous
accomplishments in heart failure prediction, but to our
knowledge, models have not been developed in the context of
critical care and the fast-paced ICU environment or used the
expansive capabilities of tele-ICU data. These previous studies
do, however, suggest that trends in patient physiology and
hemodynamics may be leveraged for early heart failure
prediction.

Our study attempts to predict onset of acute heart failure by
examining readily available physiological discrete and time
series data on a truncated scale near the time of ICU admission.
We applied data extraction methods similar to approaches used
in longer-term prediction models and comparable physiological
measurements, in addition to potentially more extensive and
reliable tele-ICU data as compared to home-based
measurements.

Methods

Data Source and Preprocessing
In this study, we used the eICU Collaborative Research Database
[21], which contains remotely monitored critical care data from
adult patients admitted to over 200 hospitals in the United States
from 2014-2015 [22]. The database includes basic patient
characteristics as well as medications, laboratory values, vital
signs, and other discrete physiological variables measured at
the bedside ICU and interfaced with the tele-ICU. We selected
both multivariate logistic regression and decision tree models
for predicting acute heart failure, given their interpretable nature.

Patient ICU stays were extracted based on primary admission
diagnosis and subsequent diagnostic codes during the same unit
stay. Inclusion criteria were such that each ICU stay must not
have a primary admission diagnosis of heart failure (ie, the
patient was admitted to the ICU for a reason other than heart
failure). Readmissions were included unless the subsequent
stays were primarily due to heart failure.

Patient stays were segregated based on three heart failure risk
factors: coronary artery disease, hypertension, and myocardial
infarction. In each risk factor group, patients were categorized
by heart failure onset after primary admission diagnosis. A
fourth group of nonrisk factor patients was extracted including
all patients admitted for reasons other than heart failure and did
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not have record of one of the three risk factors. The International
Classification of Diseases version 9 (ICD-9) codes were used

to determine heart failure and risk factors (Table 1).

Table 1. Heart failure ICD-9 codes for cohort discovery.

DescriptionICD-9a code

Heart failure

Rheumatic heart failure (congestive)398.91

Congestive heart failure, unspecified428.0

Left heart failure428.1

Systolic heart failure, unspecified428.20

Acute systolic heart failure428.21

Chronic systolic heart failure428.22

Acute on chronic systolic heart failure428.23

Diastolic heart failure, unspecified428.30

Acute diastolic heart failure428.31

Chronic diastolic heart failure428.32

Acute on chronic diastolic heart failure428.33

Combined systolic and diastolic heart failure, unspecified428.40

Acute combined systolic and diastolic heart failure428.41

Chronic combined systolic and diastolic heart failure428.42

Acute on chronic combined systolic and diastolic heart failure428.43

Heart failure, unspecified428.9

Coronary Artery Disease

Coronary atherosclerosis414.0

Hypertensionb

Essential hypertension401

Malignant hypertensive heart disease without heart failure402.00

Benign hypertensive heart disease without heart failure402.10

Unspecified hypertensive heart disease without heart failure402.90

Myocardial Infarction

Acute myocardial infarction410

Old myocardial infarction412

aICD-9: International Classification of Diseases version 9.
bICD-9 codes for hypertensive conditions with heart failure were not included because heart failure onset later in the intensive care unit stay is used as
the prediction outcome.

Vital signs, laboratory values, and Acute Physiology and
Chronic Health Evaluation (APACHE) IVa variables were
extracted for all four patient groups (three risk factor groups
and the nonrisk factor patients). APACHE variables included
features such as age and gender, admission diagnoses, and worst
physiological values in the first 24 hours of ICU admission (eg,
white blood count, temperature, respiratory rate) [23]. In total,
35 APACHE variables were extracted for each patient stay.
Discrete APACHE variables such as admission diagnosis and
admission source that do not reflect an ordinal or hierarchical
relationship were encoded using the one-hot vector method.

Laboratory variables were selected based on those measurements
that are routinely performed under normal ICU operations. We
found overlap with our extracted lab values and those used in
previous studies to predict heart failure [24]. In total, we used
seven lab measurements: bedside glucose, potassium, sodium,
glucose, hemoglobin, creatinine, and blood urea nitrogen. All
of which were within the ten most frequently performed
laboratory measurements in our data set. To predict
decompensation as early in the ICU as possible, only the first
measurement for each of the selected lab values was retained
for model input.
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Vital signs included data collected at both regular and irregular
intervals. For example, temperature, heart rate, and respiratory
rate tend to be regularly recorded in clinical practice and
subsequently archived to the database, while cardiac output and
noninvasive blood pressure may be recorded at irregular time
intervals. When available at the bedside, vital signs data are
collected from bedside monitoring devices at a frequency of
1-minute averages and archived as 5-minute median values. A
total of 23 physiological vital signs features were extracted and
are listed in Multimedia Appendix 1.

To predict heart failure onset as early as possible, vital signs
were extracted at variable time windows based on number of
minutes from ICU admission (Figure 1). For example, a time
window of 180 minutes results in vital signs extraction from
the time of ICU admission to 180 minutes after admission. The
extraction window was varied from 15 minutes to 720 minutes
(12 hours) from the time of admission. All available vital signs
data were aggregated to mean, median, minimum, maximum,
and standard deviation for each feature. This eliminated
variations in the time series length between unit stays caused
by irregular data sampling and missing data within each series.

Figure 1. Timeline illustrating vital signs data extraction window from the time of ICU admission. ICU: intensive care unit.
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Multivariate Logistic Regression
We applied multivariate logistic regression using a binary L2
penalized minimization cost function where the target class
prediction (ŷ) is a linear combination of the input features with
a coefficient vector w = (w1, ..., wp) and intercept w0 (1), where
input vectors x = (x1, ..., xp) consist of discrete physiological
variables and aggregate vital signs measurements.

ŷ(w,x) = w0 + w1x1 + ... + wpxp(1)

Model input features minimize the cost variable (c) and
coefficients (w) in the minimization cost function (2).

Combinations of input variables were tested for each risk factor
and nonrisk factor cohort.

Random Forest
The random forest model was applied with the Gini impurity
measure for each cohort and compared to logistic regression
performance. Random forest is an ensemble method that uses
a collection of tree-structured classifiers to calculate the average
prediction over all individual decision tree classifiers. Inputs to
each tree consist of randomly split combinations of input feature

vectors xp ∈ Rn, i = 1, …, l and target labels (heart failure or

not heart failure) y ∈ Rl. The data (Q) at each node (m) was used
to calculate Gini impurity by multiplying node importance by
H(Xm) through (3), where θ = (j, tm) for each data split consisting
of a feature j and threshold tm. Node importance was denoted
as nleft or right, and the equation is recursed for each node subset
until the maximum depth is reached (ie, Nm<minsamples or Nm=1).

A minimum split requirement of two samples was used with no
maximum depth parameter, meaning all tree nodes were
expanded until leaves contained less than two samples. The
maximum number of estimators (number of trees in the forest)
was chosen empirically during testing and held constant at 150
estimators for all input combinations.

Test and Evaluation
All model input variables were standardized centering the data
around zero by subtracting the mean of each feature and dividing
by the standard deviation. Model inputs consisted of lab values,

APACHE variables, or aggregate vital signs as individual sets
of inputs or as combinations of input features (ie, labs and vitals,
labs and APACHE, vitals and APACHE, all three input data
types). Each logistic regression and random forest model was
tested with each data type and combination of inputs.

More extensive testing was performed using vital signs only as
the data extraction window was varied to determine the impact
of aggregating longer time series. Vital signs inputs were tested
from the minimum to maximum data extraction window (15-720
minutes from ICU admission).

We then used the random forest model to identify the most
important input features for predicting heart failure. The
ensemble tree structure of random forest is easily interpretable
and allows for the calculation of the relative importance of each
feature.

Model performance was evaluated across all four patient cohorts.
In addition, we combined coronary artery disease, hypertension,
and patients with myocardial infarction into a single risk factor
cohort for side-by-side comparison with the nonrisk factor
patients. Results are included for individual patient groups and
the combined risk factor patients.

Training and testing were performed with 67% train and 33%
test split allowing for a sufficient number of patients to return
statistically meaningful results and a test group which was
representative of each cohort as a whole. Model performance
was evaluated by accuracy and area under the receiver operating
characteristic curve (AUC). Precision (true positives divided
by the sum of true positives and false positives) and recall (true
positives divided by the sum of true positives and false
negatives) are also calculated along with precision-recall (P-R)
curves to describe how good the models are at predicting heart
failure correctly as opposed to correctly predicting patients with
nonheart failure. Data preprocessing and prediction modeling
was performed in Python (v.2.7.14; Python Software
Foundation) using the Pandas (v.0.23.4) [25], Seaborn (v.0.9.0)
[26], and sci-kit learn package (v.0.19) [27] libraries.

Results

Our study sample consisted of 145,913 adult ICU stays from
122,884 unique patients with a slightly higher number of male
than female patients covering a wide range of diagnoses.
Additional patient characteristics within each risk factor cohort
and nonrisk factor patients are shown in Table 2.
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Table 2. Heart failure and nonheart failure patient characteristics.

Nonrisk patientsMyocardial infarctionHypertensionCoronary artery diseaseRisk factor cohort

96,350627317,3762885Patients, n

116,639668919,4243161ICUa stays, n

20,289 (17.39)416 (6.22)2048 (10.54)276 (8.73)Readmissions, n (%)

7571 (6.49)799 (11.95)3058 (15.74)715 (22.62)Heart failure rate, n (%)

64 (24)66 (20)67 (21)71 (16)Age (years), median (IQR)

62,387 (53.49)4255 (63.61)10,304 (53.04)2154 (68.14)Gender (male), n (%)

Ethnicity, n (%)

91,176 (78.17)5366 (80.22)13,161 (67.76)2605 (82.41)Caucasian

12,461 (10.68)533 (7.97)3333 (17.16)263 (8.32)African American

3817 (3.27)196 (2.93)1549 (7.97)137 (4.33)Hispanic

1628 (1.40)91 (1.36)333 (1.71)21 (0.66)Asian

926 (0.79)21 (0.31)69 (0.36)11 (0.35)Native American

1426 (5.68)482 (7.20)979 (5.04)124 (3.93)Other/unknown

51 (32)46 (30)50 (28)54 (29)APACHEb score, median (IQR)

1.80 (2.29)1.69 (2.06)1.86 (2.51)1.99 (2.69)ICU LOSc (days), median (IQR)

7127 (6.11)432 (6.46)737 (3.79)146 (4.62)ICU mortality, n (%)

5.61 (7.06)3.86 (5.86)5.43 (6.99)6.32 (7.39)Hospital LOS (days), median (IQR)

11,255 (9.65)632 (9.45)1319 (6.79)245 (7.75)Hospital mortality, n (%)

aICU: intensive care unit.
bAPACHE: Acute Physiology and Chronic Health Evaluation.
cLOS: length of stay.

Patients with hypertension were much more prevalent than
patients with myocardial infarction or coronary artery disease,
as might be expected. Coronary artery disease, hypertension,
and myocardial infarction account for a total of 4572 (37.65%)
of 12,143 total heart failure unit stays, suggesting that most
patients present to the ICU without diagnosis of one of these
three risk factors. It is important to note, however, that we are
examining remote monitoring critical care data only. Risk factors
may be captured in hospital bedside records prior to ICU
admission. Readmissions to the ICU for illnesses other than
heart failure account for 2740 of 29,274 (9.36%) ICU stays in
the three risk factor cohorts and 20,289 of 116,639 (17.39%)
stays of nonrisk factor patients.

The AUC and P-R curves for the risk factor and nonrisk factor
patients for both logistic regression and random forest are shown
in Figures 2 and 3. Additional AUC and P-R curves for each
risk factor group individually are included in Multimedia
Appendix 2. For all AUC and P-R curves, the vital signs data
extraction window was held constant at 360 minutes from ICU
admission. Clearly, discrete APACHE variables outperform lab
values and vital signs individually; however, combining inputs
with APACHE variables improves results. Additionally, it
appears lab values had a greater impact on performance than
vital signs alone as seen by the “APACHE + labs” curves
relative to other combinations of input variables.
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Figure 2. Nonrisk factor patients (patients presenting to the intensive care unit without risk factor of heart failure) area under receiver operating
characteristic curve and precision-recall curve for both multivariate logistic regression and random forest models. Each curve represents a different
model input combination. Vital signs data extraction window was held constant at 360 minutes for all inputs. APACHE: Acute Physiology and Chronic
Health Evaluation.
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Figure 3. Risk factor patients (patients presenting to the intensive care unit with coronary artery disease, hypertension, or myocardial infarction) area
under receiver operating characteristic curve and precision-recall curve for both multivariate logistic regression and random forest models. Each curve
represents a different model input combination. The vital signs data extraction window was held constant at 360 minutes for all inputs. APACHE: Acute
Physiology and Chronic Health Evaluation.
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Table 3. Logistic regression and random forest F1 scores across model input combinations. Vital signs data extraction window held constant at 360
minutes for all trials.

Random ForestLogistic RegressionPatients

Risk factor patients

0.850.82APACHEa

0.820.76Labs

0.830.76Vitals

0.900.81APACHE + labs

0.900.81APACHE +vitalsb

0.880.75Labs + vitals

0.930.81APACHE + labs + vitals

Nonrisk factor patients

0.940.94APACHE

0.900.90Labs

0.900.90Vitals

0.940.94APACHE + labs

0.940.94APACHE +vitals

0.900.90Labs + vitals

0.940.94APACHE + labs + vitals

aAPACHE: Acute Physiology and Chronic Health Evaluation.
bVital signs extraction window of 360 minutes from intensive care unit admission.

Both models were compared across input combinations for risk
factor and nonrisk factor patients using the F1 score (Table 3).
Interestingly, logistic regression with APACHE and labs inputs
had the highest F1 score, while, in general, random forest has
higher AUC, accuracy, and weighted average precision and
recall (Tables 4 and 5). In this application, precision shows what
proportion of heart failure identifications were actually heart
failure, and recall is the proportion of heart failure stays that

were correctly identified [28]. Random forest with APACHE,
laboratory measurements, and vital signs combined model inputs
had the highest performance metrics at an AUC of 0.9503,
accuracy of 93.15%, and micro- and macroweighted average
precision and recall of 0.93 and 0.93, respectively. It is important
to note that, although the weighted average precision and recall
are fairly high, the P-R curves exhibit a steep drop in precision
as recall increases.
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Table 4. Heart failure prediction accuracy and AUC.

Nonrisk factor patientsRisk factor patientsModels

AccuracyAUCAccuracyAUCa

Logistic regression

0.95010.83960.84170.7790APACHEb + labs

0.95120.83740.84560.7775APACHE + vitalsc

0.93330.69470.81250.6859Labs + vitalsc

0.95020.84580.83570.8005APACHE + labs + vitalsc

Random forest

0.94990.82850.91120.9081APACHE + labs

0.94880.79670.90800.8956APACHE +vitalsc

0.93430.73180.89650.8794Labs + vitalsc

0.94710.79990.93150.9503APACHE + labs + vitalsc

aAUC: area under the receiver operating characteristic curve.
bAPACHE: Acute Physiology and Chronic Health Evaluation.
cVital signs extraction window of 360 minutes from intensive care unit admission.

Table 5. Logistic regression and random forest precision and recall.

Nonrisk factor patientsRisk factor patientsModels

RecallbPrecisionaRecallbPrecisiona

Logistic regression

0.950.940.840.82APACHEc + labs

0.950.950.850.83APACHE +vitalsd

0.930.890.810.74Labs + vitalsd

0.950.950.840.82APACHE + labs + vitalsd

Random forest

0.950.950.910.92APACHE + labs

0.950.940.910.91APACHE +vitalsd

0.930.920.900.91Labs + vitalsd

0.950.940.930.93APACHE + labs + vitalsd

aWeighted average microprecision and macroprecision.
bWeighted average microrecall and macrorecall.
cAPACHE: Acute Physiology and Chronic Health Evaluation.
dVital signs model inputs at 360 minutes from intensive care unit admission.

Using only aggregate vital signs as data inputs we evaluated
model performance across variable vitals data extraction
windows. Figure 4 illustrates AUC values (y-axis) of each model
at different extraction window sizes (x-axis). In both models,

there appears a point of diminishing returns around 200 minutes
where additional vital signs data do not continue to improve
results. This behavior is seen in both prediction models across
all patient cohorts.
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Figure 4. Predication AUC for risk factor and nonrisk factor patients with variable vital signs extraction time windows from 15 minutes to 720 minutes
using only vital signs as model inputs. The x-axis represents the total number of minutes from ICU admission that vital signs were extracted from the
database, meaning at higher time values more data was extracted. AUC: area under receiver operating characteristic curve; ICU: intensive care unit.

We then used the random forest model to identify which discrete
features were most influential in predicting heart failure by
plotting the relative feature importance. We applied the same
number of estimators (n_estimators=150) and calculated feature
importance for all lab values and APACHE variables (Figure

5). The selected top features were similar between risk factor
and nonrisk factor patients. In addition, many of the top 10
features are laboratory values, even though, when used as
individual inputs, APACHE variables outperformed laboratory
measurements.

Figure 5. Random forest feature importance with 150 estimators for nonrisk factor and risk factor patients. BUN: blood urea nitrogen.
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Discussion

Performance and Clinical Relevance
In this study, we evaluated two interpretable prediction models
for decompensation in critical care using heart failure onset as
a target outcome. Both logistic regression and random forest
were evaluated as close to the time of ICU admission as possible
using multiple types of input features.

We found that results across all four cohorts showed reasonable
prediction accuracy. Generally, random forest outperformed
multivariate logistic regression. On an individual basis,
APACHE variables predicted heart failure onset better than
laboratory measurements or vital signs; however, the best
performance was achieved when model inputs were combined.
Trials consisting of APACHE and laboratory measurements or
all three data inputs (APACHE, labs, and vitals) had the highest
performance metrics compared to any individual trial. This was
corroborated by random forest feature selection highlighting
several laboratory measurements as important to heart failure
prediction relative to other input features.

Although vital signs near the time of ICU admission improve
heart failure predictions when combined with other inputs,
overall, vital signs results individually were not strong.
Methodologically, vital signs and laboratory measurements,
however, are promising for future prediction models. Traditional
severity scoring models, such as APACHE, use data from only
the first 24 hours of an ICU stay. Laboratory measurements and
vital signs, however, are typically monitored on a continuous
or semicontinuous basis throughout the length of an ICU stay.
This would allow for future iterations of our prediction models
to make predictions closer to the time of heart failure rather
than being limited to ICU admission time. The continuous
monitoring of vital signs and temporal value of laboratory
measurements could also allow predictions to be made
prospectively on a semicontinuous basis (eg, prediction output
every 3 hours).

In addition, vital signs AUC values in Figure 4 suggest that
there is an optimal threshold in the size of data extraction
window for both predictive performance and computational
load, and could inform future prediction models. If not enough
data are extracted, results are diminished. Similarly, a data
extraction time window too large increases computational load
and does not necessarily improve performance.

Prediction window variation has been applied over longer time
periods and multiple hospital visits for heart failure detection.
We applied a similar methodology over a much shorter time
frame more appropriate for ICU visits. Earlier predictions allow
clinicians to determine patient prognosis and begin appropriate
intervention. Clinicians may also revisit disease state predictions
throughout a patient stay based on treatments or emergence of
comorbidities.

Higher frequency continuous vital signs data in conjunction
with laboratory measurements are a feasible option for
predicting heart failure or other patient decompensation events
in critical care through tele-ICU data early in an ICU stay. Vital
signs tend to be available upon admission and continue through

the majority of a patient ICU stay allowing for semicontinuous
predictions. Real-time predictions throughout a patient stay are
particularly useful for illnesses such as heart failure where poor
outcomes can range from chronic to acute onset. In addition,
heart failure mode of death assessments illustrate high variability
as well and require predictions that facilitate timely interventions
specific to the associated risks [17].

Results were similar between risk factor and nonrisk factor
patients meaning accurate heart failure prediction will likely
be made for patients not presenting with an indication of
apparent risk of heart failure. This is supported by the similar
AUC, precision, recall, and F1 scores across both models for
nonrisk factor patients and could be used to inform ICU
clinicians of impending failure for patients not initially deemed
at risk.

Challenges and Limitations
The prediction models in this study demonstrate the viability
of machine learning applications leveraging remote monitoring
data to further alleviate the challenges imposed by complex and
data-intensive critical care environments, and contribute to the
prognostication of cardiovascular diseases in the ICU. Our
prediction models, however, may be partially influenced by and
do not compensate for potential bias due to ICD-9 coding
practices. Heart failure is not an explicitly defined event but
rather a patient state in which the heart is struggling to function
properly and as such is difficult to diagnose.

Moreover, vital signs data were collected using bedside
monitoring systems as 1-minute averages and archived into the
database as 5-minute median values. This decreased granularity
over varying time windows of vital signs data extraction. Data
may miss critical, subclinical cardiovascular events. Additional
information loss occurs by reducing vital signs from time series
data to discrete aggregate values. Data collection frequencies,
however, are generally dependent upon what measurements are
being taken from each patient at the bedside and at what times
during their ICU stay. This can also cause high variability in
time intervals between data points for each patient unit stay and
total length of each time series.

Lastly, our approach does not account for the temporal
relationship between vital signs data extraction or laboratory
measurements and the prediction event. In an attempt to predict
patient decompensation soon after ICU admission our variable
data window begins at time of admission regardless of when
heart failure onset may have occurred. Similarly, laboratory
measurements are taken throughout a patient ICU stay, yet we
retained only the first measurement in the interest of early
decompensation prediction. An alternative approach to data
aggregation is time series analysis of continuous, more granular,
and physiologic data. This is corroborated by a recent study that
showed the importance of temporal relations in recurrent neural
network model inputs and is a possible future avenue for this
work [29].

Future Work
Logistic regression and random forest methods were selected
based on interpretability and previous critical care applications
using similar data inputs [30]. Model inputs, however, were
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limited to discrete variables. Alternatively, handling vital signs
data as time series model inputs without overaggregating may
yield improved results. A sliding window approach with real
time series data and more powerful machine learning methods
would allow for subsequent predictions to be made well after
admission and throughout a patient stay [31]. This alternative
approach would address the temporal relationship between the
decompensation event (heat failure onset) and the input data
used to make the prediction.

Ongoing and future studies also include analysis and machine
learning application to specific events, which contribute to risk
of heart failure onset (eg, myocardial infarction and pulmonary
embolism). The ability to predict and potentially prevent these
distinct events may subsequently avoid patient decompensation
rather than predicting heart failure itself. In conjunction with
feature selection, events or physiologic features most relevant
to heart failure onset in critical care could be refined, thus,
improving results. Model inputs could also be altered such that
the heart failure risk factors are used as additional inputs rather
than using risk factors for cohort segregation.

There are many different ICU types including cardiac ICUs.
Heart failure may be managed differently in different critical
care settings. Further research in this area could give insight to
heart failure management variation. Our modeling approach
may alleviate variations across ICUs by acting as a support

system for clinicians focused on diagnoses other than heart
failure.

Conclusions
Remotely monitored critical care data offers opportunity for
machine learning applications and deeper analysis than what
may be possible at the bedside. Handling of disparate clinical
data sources, data cleaning, preprocessing, and leveraging
machine learning techniques may take place remotely so as to
not disrupt existing ICU workflow and to provide complex
clinical decision support. Risk factors for patient
decompensation, or clinical deterioration, are prevalent in
tele-ICU data as are clinical features sufficient for clinically
relevant patient decompensation predictions with interpretable
machine learning methods. Both logistic regression and random
forest models were able to identify appropriate input features
and narrowed data extraction time windows and thresholds for
computational limitations at roughly 200 minutes after ICU
admission. Our approach validates the feasibility of identifying
decompensation events and patient risk factors, and making
predictions using dissimilar data from variable timelines. More
powerful machine learning approaches beyond regression and
ensemble methods with alteration of our data extraction time
window approach to avoid data aggregation could yield
improved results in predicting heart failure onset or other patient
decompensation events in critical care, albeit at the expense of
interpretability.
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