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Abstract

Background: Recent studies have revealed lifestyle behavioral risk factors that can be modified to reduce the risk of dementia.
As modification of lifestyle takes time, early identification of people with high dementia risk is important for timely intervention
and support. As cognitive impairment is a diagnostic criterion of dementia, cognitive assessment tools are used in primary care
to screen for clinically unevaluated cases. Among them, Mini-Mental State Examination (MMSE) is a very common instrument.
However, MMSE is a questionnaire that is administered when symptoms of memory decline have occurred. Early administration
at the asymptomatic stage and repeated measurements would lead to a practice effect that degrades the effectiveness of MMSE
when it is used at later stages.

Objective: The aim of this study was to exploit machine learning techniques to assist health care professionals in detecting
high-risk individuals by predicting the results of MMSE using elderly health data collected from community-based primary care
services.

Methods: A health data set of 2299 samples was adopted in the study. The input data were divided into two groups of different
characteristics (ie, client profile data and health assessment data). The predictive output was the result of two-class classification
of the normal and high-risk cases that were defined based on MMSE. A dual neural network (DNN) model was proposed to obtain
the latent representations of the two groups of input data separately, which were then concatenated for the two-class classification.
Mean and k-nearest neighbor were used separately to tackle missing data, whereas a cost-sensitive learning (CSL) algorithm was
proposed to deal with class imbalance. The performance of the DNN was evaluated by comparing it with that of conventional
machine learning methods.

Results: A total of 16 predictive models were built using the elderly health data set. Among them, the proposed DNN with CSL
outperformed in the detection of high-risk cases. The area under the receiver operating characteristic curve, average precision,
sensitivity, and specificity reached 0.84, 0.88, 0.73, and 0.80, respectively.

Conclusions: The proposed method has the potential to serve as a tool to screen for elderly people with cognitive impairment
and predict high-risk cases of dementia at the asymptomatic stage, providing health care professionals with early signals that can
prompt suggestions for a follow-up or a detailed diagnosis.

(JMIR Med Inform 2020;8(8):e19870) doi: 10.2196/19870
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Introduction

Background
Dementia is a collective term referring to a group of diseases
that cause a decline in cognitive function owing to brain cell
damage. The symptoms include degradation in memory,
communication, or reasoning ability, which can seriously
interfere with activities of daily living [1]. Dementia is aging
related. The incidence doubles with every increase in age of 5.9
years [2], and the number of people living with dementia
worldwide is estimated to increase almost three times from 47
million in 2015 to 135 million in 2050 [3]. Thus, dementia is
not only an overwhelming issue among elderly people and their
families, but also an unprecedented burden on the health social
care system and the society at large [4].

It has been reported that 35% of dementia cases are attributable
to modifiable risk factors, such as hypertension, obesity,
depression, and smoking [5], which concern physical, cognitive,
and social inactivity and can be countered through lifestyle
interventions [6]. As it takes time to modify lifestyle, early
detection of people with high risk of dementia is important to
enable timely diagnosis and intervention, which may halt or
delay the development of dementia [7-9]. However,
underdiagnosis of dementia at the early stage is common since
the symptoms are subtle and the progression of cognitive
impairment is insidious and cannot be easily observed by the
person, family members, or even health care professionals
[10,11].

Apart from cognitive symptoms, dementia risk is also associated
with many noncognitive conditions (eg, cardiovascular
conditions, nutrition, mobility, and depression) [12], which are
routinely and vastly obtained from primary care settings, such
as elderly community centers. While these routinely collected
data provide good potential for the risk prediction of dementia,
there is a lack of formulae in the literature to estimate the risk
of dementia by using these data.

With the advance of artificial intelligence, machine learning
offers a promising approach for the intelligent detection of
dementia risk, particularly when the causal connections with
risk factors remain unclear. A “school of methods” is to apply
machine learning techniques to the data collected from
population or community-based settings [13], such as the results
of neuropsychology tests or physical examinations, to screen
for people with high risk of dementia. While statistical analysis
methods like logistic regression and Cox proportional hazard
regression are commonly used for analyzing
community-acquired elderly health data [14-16], various
machine learning techniques have been employed. Among the
techniques, supervised machine learning methods represent a
majority [17-19], and they include naïve Bayes, decision tree
(DT), random forest (RF), artificial neural network, and support
vector machine (SVM), whereas their unsupervised counterparts
have also been exploited for dementia risk prediction [20].
Nevertheless, missing data is a common problem with data
collected from population or community-based settings. Data
may be lost owing to noncompliance with appointment
schedules, unwillingness to respond to specific questions, or

inadvertence of interviewers. Discarding records with missing
data and imputation with population means are conventionally
used methods to deal with missing data [17,20,21]. Another
issue of data analysis is class imbalance, where samples of the
target (ie, high-risk cases) and nontarget (ie, normal cases) are
disproportionate. When learning from imbalanced data,
supervised machine learning algorithms are usually
overwhelmed by majority class examples [22]. Other than
simply reducing the size of sample-abundant data sets,
oversampling methods, such as the synthetic minority
oversampling technique, can be used to balance the data sets
[23]. In addition, cost-sensitive learning (CSL) is an effective
method to handle class imbalance, which is employed in
machine learning algorithms to set the cost ratio according to
prior class distributions [22,24-27].

In primary care, Mini-Mental State Examination (MMSE) [28]
is a commonly used tool for screening cognitive impairment,
which is a strong diagnostic criterion of dementia. However,
MMSE is a questionnaire that is administered when symptoms
of memory decline have occurred, and early administration at
the asymptomatic stage or repeated measurements would lead
to a practice effect [29] (the questions could be remembered),
degrading the effectiveness of MMSE when used at later stages.

Objective
The aim of this study was to develop an alternative machine
learning approach based on MMSE that can be used for
screening cognitive impairment and the early detection of people
with high dementia risk at the asymptomatic stage. The data
adopted were collected through the delivery of elderly care
services in the community, which included a wide range of
health assessments. A dual neural network (DNN) model was
proposed to learn latent representations by utilizing the health
profiles of elderly clients and the results of health assessment
questionnaires as two types of input features. The predictive
output of the model was the result of two-class classification
of normal versus high-risk cases, which were defined based on
MMSE. Furthermore, the mean and k-nearest neighbor (KNN)
imputation methods were used to deal with missing data,
whereas CSL was used to deal with class imbalance. The
performance of the DNN model was evaluated experimentally
and compared with that of conventional machine learning
algorithms. It was hypothesized that with CSL, the proposed
DNN would outperform the algorithms under comparison.

The major contributions of the study are as follows: (1) the
community-based health data that were collected for 10 years
during elderly care services could provide useful information
to meet the increasing emphasis on primary care development
(the data set can be shared by request from a qualified
researcher; the request should be directed to the corresponding
author); (2) the study explored the use of the data set for
predicting the risk of dementia, which is a new approach to the
best of our knowledge; (3) as the data set has two different
characteristics, innovative use of the contemporary DNN
architecture was proposed as a new informatics method to fit
the specific application scenario; (4) KNN and CSL were
incorporated to solve the problems of missing data and class
imbalance; and (5) extensive experiments were conducted for
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comparisons with classical algorithms that are commonly used
in health care research to demonstrate outperformance and
provide evidence to support the feasibility for dementia risk
prediction.

Methods

Community Health Data
The data set used was obtained through mobile health care
services offered in collaboration with elderly care centers run
by local nongovernmental organizations. The health care
services were provided for community-dwelling elderly people
living in various districts of Hong Kong for free during the
period from 2008 to 2018. The services included a wide range
of elderly-specific health assessments, where follow-up
appointments, workshops, and programs were arranged to
promote health care and self-management. The data set included
demographic information of elderly clients (eg, gender, age,
marital status, type of residency, relationship with roommates,
and social participation), bio-measurements (eg, body
temperature, pulse rate, oxygen saturation, blood pressure, and
waist-hip ratio), and medical history (eg, records of health
problems or past diseases), as well as comprehensive
information collected using a battery of health assessment
questionnaires (ie, MMSE [28], brief pain inventory [BPI] [30],
elderly mobility scale [EMS] [31], geriatric depression scale
[GDS] [32], mini-nutrition assessment [MNA] [33], constipation
questionnaire [CQ] [34], and a questionnaire based on the
Roper-Logan-Tierney model of nursing [RLT] [35]), the records
of gross oral hygiene and visual acuity assessments, and a survey
of the favorite activities of the elderly clients. The health
assessment questionnaires will be discussed further in the next
section. The elderly health care services were provided by
registered nurses and advanced practice nurses or student nurses
under supervision, who were also responsible for recording the
data while conducting health assessments or administering the
questionnaires.

Health Assessments
The data set adopted contained the results of 10 health
assessments, which are described below.

Mini-Mental State Examination
MMSE is a quick and reliable assessment of cognitive
impairment in older adults. The use of MMSE as part of the
process for diagnosing dementia is supported by a Cochrane
review of 24,310 citations [36]. MMSE consists of six sets of
questions focusing on the cognitive aspects of mental function.
For example, elderly clients were asked to give the date of the
day, perform arithmetic operations, and perform hand drawing.
The assessment can be completed within 10 minutes. The
maximum score is 30. A score between 24 and 30 indicates
normal cognition, whereas a score below 24 suggests various
degrees of impairment, with a lower score indicating greater
impairment. In this study, two-class classification was adopted
(ie, normal [score ≥24] and high risk [score <24]).

Brief Pain Inventory
The BPI is a questionnaire used to assess the severity of pain
and its influence on elderly people [30]. The short-form BPI
was administered, and it has nine items concerning the location
and degree of pain in the last 24 hours, treatments being applied,
and their influences on functioning, such as walking ability,
mood, and sleep.

Elderly Mobility Scale
The EMS is a seven-item assessment tool used to evaluate the
mobility of elderly people through functional tests (eg, transition
between sitting and lying, gait, timed walk, and functional reach)
[31]. The maximum score is 20. A score of 14 or above indicates
normal mobility and independent living; a score between 10
and 13 indicates a borderline case; and a score below 10
indicates the necessity of assistance to perform activities of
daily living.

Geriatric Depression Scale
The GDS is a measure of depression in older adults [32]. The
short-form GDS was administered in the clinic. It contains 15
yes or no questions, each carrying one point, on the feelings
about and attitudes toward various aspects of life. The maximum
score is 15. A score greater than five indicates depression.

Mini-Nutrition Assessment
The MNA is a tool used to assess the nutritional status of older
people [33]. It is administered in two steps. The short form of
MNA (MNA-SF), which has six items with a maximum score
of 14, is first used to detect signs of decline in ingestion. The
questions concern appetite loss, weight loss, and psychological
stress in the last 3 months; mobility; and BMI. A score of 11
or below indicates possible malnutrition, and follow-up with
the full MNA is required in the second step. The full MNA
consists of 12 items with a maximum score of 16, and it involves
further details such as independent living, medication, ulcers,
diet, feeding modes, and mid-arm and calf circumferences. The
maximum total score of the MNA is 30, with a score below 17
indicating malnourishment.

Constipation Questionnaire
The CQ is used to assess the severity of functional constipation
[34]. The questionnaire administered contains six items with
questions concerning frequency of evacuation, difficulty to
evacuate, incomplete evacuation, stool and abdominal
symptoms, and medication.

RLT-Based Questionnaire
Based on the RLT [35], a questionnaire with 36 items was
designed to assess the independence of older adults in 12
categories of activities of daily living, including maintaining a
safe environment, communication, breathing, eating and
drinking, elimination, washing and cleaning, controlling body
temperature, mobilization, working and playing, sleeping,
expressing sexuality, and dying. The results of the questionnaire
can be used to determine the interventions required to enable
elderly people to remain independent in activities of daily living.
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Gross Oral Hygiene Assessment
The assessment tool consists of 20 items concerning various
oral hygiene conditions of elderly clients, including teeth
cleansing, tooth decay, tooth mobility, denture use, denture care,
missing or remaining teeth, calculus, gum bleeding, and oral
candidiasis, with which the corresponding tooth locations and
symptoms are recoded.

Visual Acuity Assessment
Visual acuity of elderly clients was measured at the mobile
clinic. The data collected included the distance at which
measurement was performed, the visual aid used, and the results
of measurements using the Snellen chart and the chart of the
logarithm of the minimum angle of resolution (LogMAR chart).

Survey of Favorite Activities
The survey involves binary yes or no questions, each recording
a favorite activity of the elderly clients. The questions cover a
wide range of over 40 activities (eg, playing chess, watching
television, listening to radio, fishing, hiking, calligraphy,
dancing, and shopping).

Data Set
The data set contained the records of 2299 elderly clients, with
one record per client. Each record had a total of 567 features
that were the inputs of the models. The features originated from
demographic data, bio-measurements, and medical history, as
well as the data collected from the various health assessment
questionnaires described above, except MMSE. The scores of
MMSE were utilized to generate the output labels of the models.
If the score of an elderly client was lower than 24, the
corresponding sample was labeled as a “high-risk case;”
otherwise, the sample was labeled as a “normal case.”

As shown in Table 1, among the 567 features, complete values
were only available from 96 features for all 2299 records. In
addition, 49 features had a data missing rate of no more than
10% (ie, the values for these 49 features were missing in less
than 10% of the records). The data missing rate of 140 features
was over 60%. Besides, the data set was imbalanced, with 1872
normal cases versus 427 high-risk cases.

Table 1. Statistics of the features with missing data.

Number of featuresPercentage of missing data

960%

491%-9%

2210%-19%

620%-29%

9730%-39%

540%-49%

15250%-59%

14060%-69%

KNN Imputation
To address the missing data problem, mean and KNN
imputations were used in the study. For mean imputation, the
missing values of a client record were filled by the average
values of other records with observable feature values. For the
KNN imputation method, the missing values of each client
record were filled based on the observable values of its KNN.
The idea is to assign a higher degree of importance to neighbors
that are more similar to the target client record when filling the

missing values. With regard to Figure 1, let be the set
of features with complete values for all records, denoted as

complete features, and be the set of features with
missing values, denoted as incomplete features, where nc and
ns represent the number of complete and incomplete features,
respectively. In our data set, nc was 96 and ns was 471.
Specifically, ct represents a complete feature where all the client
records in the data set have an entry value for the feature t. In
contrast, sb indicates an incomplete feature where at least one
of the client records in the data set does not provide an entry

value for the feature b. Furthermore, sbi represents the entry
value of the feature b in client record i, where sbi is null if the

value of feature b in client record i is missing. Let D∈Rm×m be
a distance matrix that measures the distance between each pair
of client records based on all complete features, where m is the
number of client records in the data set, and Dij represents the
distance between client records i and j. In this work, we
employed Euclidean distance as the distance metric; however,
other distance metrics (eg, City Block Distance, Cosine
similarity, L1 distance, L2 distance, and Manhattan distance
[37,38]) can also be used.

The algorithm of the KNN imputation method is shown in
Figure 2. First, the distance between each pair of client records
was measured based on all 96 complete features. Thereafter,
the missing values of the incomplete features in a client record
were filled with the weighted average of the observable feature
values of the k nearest records to that client record. After
imputation, all the features were treated as “complete” and then
utilized as input features of the proposed DNN model for
dementia prediction.
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Figure 1. Organization of features into the complete feature set C (left) and the incomplete feature set S (right). The checkmark symbol indicates that
a value for a feature is present in a client record, whereas the cross symbol indicates a value is missing (empty).
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Figure 2. Algorithm of k-nearest neighbor imputation. KNN: k-nearest neighbor.

DNN Architecture
In the proposed DNN model, the input features were categorized
into two types as follows: client profile and health assessment.
The former included demographic information, medical history,
and bio-measurements of the elderly clients. The latter included
the information collected from nine health assessment
questionnaires (ie, BPI, EMS, GDS, MNA, CQ, RLT, gross
oral hygiene assessment, visual acuity assessment, and survey
of favorite activities).

Recently, DNN architecture has been proposed and utilized in
state-of-the-art feature representation learning models to learn
latent representations based on two types of input features
[39-41]. The two types of latent representations are then
integrated to learn the final representation for the classification
tasks. The approach has demonstrated promising performance
in feature representation learning and the ability to capture

different kinds of information relevant to the classification task
when the two types of input features convey different
information and have varied data distributions. Motivated by
this approach, we proposed a DNN architecture for screening
people with high dementia risk. It learned the latent
representations based on the two types of input features
concerned in this study. Figure 3 shows the main architecture
of the proposed model. With reference to a previous report [40],
we employed two neural networks, namely, neural network 1
(NN1) and neural network 2 (NN2), each with two hidden
layers, to learn the latent representations for each client from
the client profile and health assessments, respectively. The
representations were referred to as latent profile representation
and latent health assessment representation. The two latent
representations were learned with the two distinct types of
features fed as inputs to NN1 and NN2, which were then
concatenated to yield the final representation for predicting the
dementia risk.
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Figure 3. The architecture of the dual neural network. NN1: neural network 1; NN2: neural network 2.

Let pi∈R1×np be a vector representing the profile information
associated with client i, where np is the number of features in

the profile. Let qi∈R1×nq be a vector representing the health
assessment information associated with client i, where nq is the
number of features in the assessment questionnaires.
Additionally, n=np+nq is the total number of input features. In
our data set, np was 132, nq was 435, and n was 567.

In NN1, with the client profile information as the input, the
latent profile representation was learned layer by layer as
follows:

where ReLU(⋅)is the rectified linear unit activation function
characterized by ReLU(x)=max(0,x), pi is the input profile

feature associated with client i, hi
p(1)∈R1×d1 and hi

p(2)∈R1×d2

represent the latent profile representation of client i, learned by
the first and second hidden layers of NN1, respectively, and d1

and d2 are the dimensionalities of the first and second hidden

layers of NN1, respectively. Additionally, Wp(1)∈Rnp×d1 and

bp(1)∈R1×d1 are the trainable weight and bias parameters
associated with the first hidden layer of NN1. Moreover,

Wp(2)∈Rd1×d2 and bp(2)∈R1×d2 are the trainable parameters
associated with the second hidden layer of NN1.

Similarly, in NN2, with the information from the health
assessment as the input, the latent health assessment
representation was learned layer by layer as follows:

where qi is the feature of health assessment of client i and

hi
q(1)∈R1×d1 and hi

q(2)∈R1×d2 are the latent health assessment
representations of client i learned by the first and second hidden

layers of NN2. Additionally, Wq(1)∈Rnq×d1, bq(1)∈R1×d1,

Wq(2)∈Rd1×d2, and bq(2)∈R1×d2 are the trainable parameters of
NN2. In the proposed DNN model, the hidden dimensionalities
for NN1 and NN2 were set to be the same.

Thereafter, the deepest latent profile representation learned by

NN1 (ie, hi
p(2)) and the deepest latent health assessment

representation learned by NN2 (ie, hi
q(2)) were concatenated to

give the final representation as follows:

where hi∈R1×2d2 is the final representation of client i. The final
representation is then fed into the classification layer to predict
whether an elderly client is high risk or normal as follows:

where ŷi denotes the predicted probability that client i is at high

risk. Wy and by are the trainable parameters associated with the
dementia classification. Given the ground truth labels of the
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client records that are used as training samples, the supervised
classification loss L is defined as follows:

where mr is the number of training samples. The ground truth
label is yi=1 if the training sample corresponding to client record
i is a high-risk case and yi=0 if it is a normal case.

As the data set adopted in the study was imbalanced, with 1872
normal cases and only 427 high-risk cases, the classifiers in
supervised machine learning could be biased toward the majority
class samples (ie, normal cases). As a screening tool that is used
to identify possible cases of high dementia risk, it is important
to accurately detect the minority class (high-risk cases). To
make the proposed DNN model focus more on high-risk cases,
a CSL method was employed by introducing the cost ratio w
into the classification loss in equation 7 as follows:

where wi=mr
n⁄mr

d if yi=1 (ie, high-risk case) and wi=1 if yi=0

(ie, normal case). Additionally, mr
n and mr

d are the numbers of
normal cases and high-risk cases in the training samples,
respectively.

The proposed DNN model was trained following the algorithm
shown in Figure 4. First, the missing values in the data set were
filled by imputation. For KNN imputation, algorithm 1 was
used. Thereafter, NN1 and NN2 were used to learn the latent
profile representation and latent health assessment
representation, respectively, which were concatenated to yield
the final representation for classification. The trainable
parameters of NN1 and NN2 that minimize the cost-sensitive
classification loss in equation 8 were identified using the
stochastic gradient descent (SGD) algorithm [42]. After the
model converged, the optimized parameters were employed to
generate the final representations and predict the probabilities
of high-risk cases for the testing samples.

Figure 4. Algorithm of the dual neural network. NN1: neural network 1; NN2: neural network 2; SGD: stochastic gradient descent.

Experiments and Settings
The performance of the proposed DNN model was evaluated
by making comparisons with five kinds of conventional
algorithms (ie, logistic regression [LR], DT, RF, SVM, and
single neural network [SNN]). For SVM, three kernel functions
were used (ie, linear, polynomial, and radial basis functions,
denoted as SVM (linear), SVM (poly), and SVM (RBF),
respectively. The SNN, employing all features in one shot as

the input, was used to evaluate the effect of introducing an
additional neural network in the proposed DNN on classification
performance. Moreover, the effect of using CSL to tackle class
imbalance was studied by applying it to the algorithms. The
corresponding algorithms were denoted as LR+CSL, DT+CSL,
RF+CSL, SVM (linear)+CSL, SVM (poly)+CSL, SVM
(RBF)+CSL, SNN+CSL, and DNN+CSL. In summary, there
were 16 algorithms overall under testing.
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In the experiments, mean and KNN imputations were utilized
to fill the missing data before model learning. The number of
neighbors was set as k=5 for the KNN imputation. The LR, DT,
RF, and SVM algorithms were implemented using the
Scikit-Learn toolkit [43], where default settings were adopted
for LR, DT, and the three versions of SVM models with different
kernel functions. In RF, the number of trees was set as 100 and
the maximum depth of the trees was set as 3. For the DNN, the
hidden dimensionalities for both NN1 and NN2 were set with
the typical values of d1=128 and d2=32. Note that in the DNN,
we concatenated the latent representations of NN1 and NN2 as
the final representations. To make the SNN and DNN have the
same final dimensionality, we set the hidden dimensionalities
of SNN as twice of NN1 and NN2 (ie, d1=256 and d2=64). All
the neural network models were trained by the SGD with a
momentum rate of 0.9 following common practice [40]. While
normalization to the range of 0 to 1 was initially applied to
preprocess the input features, it turned out that the performance
degraded instead. Hence, preprocessing methods were not
applied in the experiments.

The algorithms under comparison were evaluated with 10-fold
cross-validation. The client records were randomly split into
10 folds of equal size. For each of the 10 runs, nine folds of
records were employed as training samples and the remaining
one fold of records was utilized as testing samples to evaluate
prediction performance.

Four performance metrics were adopted, including area under
the receiver operating characteristic curve (AUC) [44], average
precision (AP) [45], sensitivity, and specificity. For imbalanced
data sets, using classification accuracy as an evaluation metric
would produce misleading results [46]. Here, AUC was used
instead as it is insensitive to class imbalance. The metric AP
summarized the precision-recall curve by weighting the
precision achieved at each threshold with the increase in recall
at the previous threshold. Sensitivity is the recall of high-risk
cases (ie, the proportion of “high-risk” testing samples
accurately identified). Specificity is the recall of normal cases
(ie, the proportion of “normal” testing samples accurately
identified).

It was hypothesized that the performance of DNN+CSL would
be better than that of the algorithms under comparison, which
was tested by running pairwise one-sided t tests between
DNN+CSL and each algorithm separately in terms of the four

metrics. Furthermore, experiments were conducted to investigate
variation in the performance of the DNN in terms of AUC and
AP with the number of neighbors when KNN imputation was
used and with the dimensionalities d1 and d2 of the hidden layers
in NN1 and NN2.

In addition, the effect of adding fully connected layers (FCLs)
between the concatenated representation and the final prediction
results was investigated. The experiment was conducted by
adding one and two FCLs separately to the proposed DNN+CSL
approach and evaluating the performance in terms of the four
metrics.

Results

Classification Performance
The results of the experiments conducted to evaluate the
performance of the algorithms under comparison are shown in
Tables 2 and 3, where the mean and SD of the four metrics over
10 runs are provided. In addition, the performance of the
proposed DNN+CSL model was compared with that of the other
algorithms using a pair-wise t test, and the corresponding P
values are shown in the tables.

As shown in Table 2, when mean imputation was applied, for
the metrics AUC and AP, RF+CSL, RF, DNN, and DNN+CSL
were the top performing algorithms. For sensitivity, DNN+CSL
was among the top three algorithms, with SVM (poly)+CSL
and SVM (RBF)+CSL being the first and second algorithms,
respectively, and RF exhibited the worst sensitivity (0.01). For
specificity, RF, SVM (RBF), and DNN were the top three
algorithms. The specificity of DNN+CSL reached 0.80.

Similar results were obtained for KNN imputation. As shown
in Table 3, DNN+CSL, DNN, and RF were the top performing
algorithms in terms of AUC and AP. DNN+CSL ranked third
in sensitivity after SVM (RBF)+CSL and SVM (poly)+CSL.
The sensitivity of RF was the worst (0.03). The specificities of
RF, SVM (RBF), and DNN were the best and that of DNN+CSL
was 0.79.

The results also indicated that the performance of the algorithms
evaluated by using mean imputation to tackle missing data was
similar to that using KNN imputation. It can also be seen that
when CSL was applied to tackle class imbalance, the sensitivity
of the algorithms increased and specificity decreased.
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Table 2. Performance of algorithms with missing data handled by mean imputation.

Mean imputationAlgorithm

P valueSpecificity, mean
(SD)

P valueSensitivity, mean
(SD)

P valueAPb, mean
(SD)

P valueAUCa, mean
(SD)

>.990.91 (0.03)<.0010.50 (0.10).0470.87 (0.03).020.82 (0.04)LRc

.980.82 (0.02).0020.67 (0.07).030.87 (0.03).020.82 (0.04)LR+CSLd

>.990.87 (0.03)<.0010.43 (0.09)<.0010.76 (0.03)<.0010.65 (0.05)DTe

>.990.87 (0.02)<.0010.41 (0.05)<.0010.75 (0.03)<.0010.64 (0.02)DT+CSL

>.991.00 (0.00)<.0010.01 (0.01).900.89 (0.03).520.84 (0.05)RFf

>.990.84 (0.03).0010.64 (0.09).930.89 (0.03).670.84 (0.05)RF+CSL

>.990.99 (0.01)<.0010.12 (0.04)<.0010.85 (0.03)<.0010.78 (0.06)SVMg (RBFh)

<.0010.73 (0.03).980.76 (0.08)<.0010.86 (0.03)<.0010.81 (0.05)SVM (RBF)+CSL

>.990.84 (0.03)<.0010.50 (0.07)<.0010.83 (0.03)<.0010.74 (0.06)SVM (polyi)

<.0010.73 (0.03).990.77 (0.08)<.0010.87 (0.03)<.0010.81 (0.05)SVM (poly)+CSL

>.990.89 (0.02)<.0010.48 (0.07)<.0010.85 (0.03)<.0010.79 (0.04)SVM (linear)

.940.81 (0.02)<.0010.65 (0.07).0050.86 (0.03).0040.80 (0.04)SVM (linear)+CSL

>.990.95 (0.01)<.0010.32 (0.09).0030.87 (0.03)<.0010.81 (0.05)SNNj

>.990.83 (0.02).0020.65 (0.11)<.0010.87 (0.03)<.0010.81 (0.05)SNN+CSL

>.990.96 (0.02)<.0010.33 (0.09).130.88 (0.03).0450.83 (0.05)DNNk

N/A0.80 (0.03)N/A0.73 (0.09)N/A0.88 (0.03)N/Al0.84 (0.04)DNN+CSL

aAUC: area under the receiver operating characteristic curve.
bAP: average precision.
cLR: logistic regression.
dCSL: cost-sensitive learning.
eDT: decision tree.
fRF: random forest.
gSVM: support vector machine.
hRBF: radial basis function kernel.
ipoly: polynomial kernel.
jSNN: single neural network.
kDNN: dual neural network.
lN/A: not applicable.
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Table 3. Performance of algorithms with missing data handled by k-nearest neighbor imputation.

KNNa imputationAlgorithm

P valueSpecificity, mean
(SD)

P valueSensitivity, mean
(SD)

P valueAPc, mean
(SD)

P valueAUCb, mean
(SD)

>.990.91 (0.02)<.0010.46 (0.10).100.87 (0.03).020.81 (0.04)LRd

.900.81 (0.03).0010.65 (0.09).030.87 (0.02).0050.81 (0.04)LR+CSLe

>.990.86 (0.03)<.0010.48 (0.09)<.0010.77 (0.04)<.0010.67 (0.05)DTf

>.990.86 (0.02)<.0010.45 (0.13)<.0010.76 (0.05)<.0010.66 (0.07)DT+CSL

>.991.00 (0.00)<.0010.03 (0.04).130.87 (0.03).0040.81 (0.04)RFg

.100.78 (0.02).040.68 (0.08).020.87 (0.03).0040.81 (0.04)RF+CSL

>.990.99 (0.01)<.0010.08 (0.04)<.0010.84 (0.03)<.0010.77 (0.06)SVMh (RBFi)

<.0010.73 (0.02).900.75 (0.09)<.0010.86 (0.03)<.0010.80 (0.05)SVM (RBF)+CSL

>.990.86 (0.02)<.0010.50 (0.10)<.0010.83 (0.03)<.0010.75 (0.04)SVM (polyj)

<.0010.73 (0.02).830.74 (0.09)<.0010.86 (0.03)<.0010.81 (0.05)SVM (poly)+CSL

>.990.89 (0.02)<.0010.48 (0.11).0050.86 (0.03).0010.80 (0.04)SVM (linear)

.750.80 (0.02)<.0010.58 (0.11)<.0010.85 (0.02)<.0010.77 (0.04)SVM (linear)+CSL

>.990.95 (0.01)<.0010.33 (0.10).0060.87 (0.04)<.0010.81 (0.06)SNNk

.900.81 (0.03).010.65 (0.11)<.0010.86 (0.03)<.0010.80 (0.06)SNN+CSL

>.990.96 (0.01)<.0010.35 (0.09).080.88 (0.03).040.83 (0.05)DNNl

N/A0.79 (0.04)N/A0.72 (0.10)N/A0.88 (0.03)N/Am0.84 (0.04)DNN+CSL

aKNN: k-nearest neighbor.
bAUC: area under the receiver operating characteristic curve.
cAP: average precision.
dLR: logistic regression.
eCSL: cost-sensitive learning.
fDT: decision tree.
gRF: random forest.
hSVM: support vector machine.
iRBF: radial basis function kernel.
jpoly: polynomial kernel.
kSNN: single neural network.
lDNN: dual neural network.
mN/A: not applicable.

Optimal Parameter Setting for the DNN
The effects of the parameters k, d1, and d2 on the performance
of the proposed DNN in terms of AUC and AP are shown in
Figure 5, Figure 6, and Figure 7 respectively. It can be seen
from Figure 5 that when KNN imputation was used, both AUC
and AP increased with k for k<5. When k was further increased,
AUC exhibited a decreasing trend, whereas AP remained at
about the same level. This suggests that it is appropriate to set

the number of neighbors as k=5 for KNN imputation. For the
number of dimensions d1 of the first hidden layer of NN1 and
NN2, as shown in Figure 6, a relatively large value (ie, 128 or
256) would yield a higher AUC and AP. In contrast, Figure 7
shows that setting the number of dimensions d2 of the second
hidden layer of NN1 and NN2 to a relatively small value (ie,
64 or 32) would achieve a higher AUC, while AP was
insensitive to d2.
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Figure 5. Variation in the area under the receiver operating characteristic curve (AUC) and average precision (AP) with the number of neighbors k in
k-nearest neighbor.

Figure 6. Variation in the area under the receiver operating characteristic curve (AUC) and average precision (AP) with the dimensionality d1 of the
first hidden layer in neural network 1 and neural network 2.

Figure 7. Variation in the area under the receiver operating characteristic curve (AUC) and average precision (AP) with the dimensionality d2 of the
second hidden layer in neural network 1 and neural network 2.

Effect of FCLs
The effect of adding FCLs to the proposed DNN+CSL model
is shown in Table 4. For both mean and KNN imputations, it

was found that adding one FCL lowered the AUC and specificity
as compared with the finding without an FCL, whereas adding
two FCLs lowered the AUC and specificity while increasing
sensitivity.
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Table 4. Effect of fully connected layers on the proposed dual neural network plus cost-sensitive learning model.

Specificity, mean (SD)Sensitivity, mean (SD)APb, mean (SD)AUCa, mean (SD)Imputation and algorithm

Mean

0.80 (0.03)0.73 (0.09)0.88 (0.03)0.84 (0.04)DNNc+CSLd

0.79 (0.07)0.73 (0.09)0.88 (0.03)0.83 (0.04)DNN+CSL with one FCLe

0.75 (0.04)0.77 (0.11)0.88 (0.03)0.83 (0.05)DNN+CSL with two FCLs

KNNf

0.79 (0.04)0.72 (0.10)0.88 (0.03)0.84 (0.04)DNN+CSL

0.77 (0.09)0.71 (0.10)0.88 (0.03)0.83 (0.04)DNN+CSL with one FCL

0.74 (0.03)0.77 (0.12)0.87 (0.03)0.82 (0.05)DNN+CSL with two FCLs

aAUC: area under the receiver operating characteristic curve.
bAP: average precision.
cDNN: dual neural network.
dCSL: cost-sensitive learning.
eFCL: fully connected layer.
fKNN: k-nearest neighbor.

Discussion

Principal Findings
Among the 16 algorithms under testing, DNN+CSL
outperformed and consistently ranked among the top three
algorithms in terms of AUC, AP, and sensitivity for both mean
and KNN imputations. In the case of KNN imputation,
DNN+CSL indeed showed the best AUC (mean 0.84, SD 0.04)
and AP (mean 0.88, SD 0.03), and ranked third in sensitivity
(mean 0.72, SD 0.10). The mean specificity of DNN+CSL
reached 0.79 (SD 0.10). Although RF was competitive and
ranked among the top three algorithms in terms of AUC, AP,
and specificity, the sensitivity was almost zero.

The results suggest that the proposed approach of deep learning
with DNNs is promising for screening cognitive impairment in
elderly people and thus high-risk cases of dementia. This is
attributed to the ability of the DNN to learn hierarchical latent
representations from two types of data with different
characteristics. The DNN approach is able to capture complex
nonlinear relationships between input features and the output.

For both mean and KNN imputations, the performance of using
two neural networks in the proposed DNN was much better
than that using a SNN in terms of AUC, AP, and sensitivity.
While the same features were adopted in both the DNN and
SNN, the main difference was that for the DNN, the features
were divided into two groups and fed into the two separate
neural networks NN1 and NN2. The inputs for NN1 were
features concerning the client profile, whereas the inputs for
NN2 were features pertaining to the health assessment
questionnaires. In the data set adopted, the client profile features
were more complete than the health assessment features, that
is, more than 72% of the client profile features were complete,
while all the features from the health assessment questionnaires
contained missing values, with the missing rate ranging from
4.9% to as much as 69.6%. This shows that the elderly clients
in general had high acceptance toward the collection of

demographic data, information about their medical history, and
bio-measurement data, thereby resulting in a low data missing
rate for client profile features. On the other hand, the high data
missing rate for health assessment features is consistent with
the general situation in primary care. According to the frontline
health care staff of the clinic, data were missed because clients
were absent from scheduled appointments, unable to recall
specific events that happened in the past, or declined to respond
to questions that they felt uncomfortable to answer or considered
sensitive. Given the different characteristics of the two kinds
of features, it was beneficial to employ two separate neural
networks with different trainable weights to learn the
corresponding latent representations.

Furthermore, since all the features were used indiscriminately
in the SNN as the input, the characteristics of the two types of
features could be interfered or diffused. More importantly, it
was likely that the health assessment features, whose quality
was affected by missing data, could contaminate the client
profile features that were more complete and of better quality.
This could be a reason for the suboptimal performance of the
SNN as compared with the proposed DNN.

In the data set adopted, the ratio of high-risk cases to normal
cases was 1 to 4.4. If the issue of class imbalance was ignored,
the classification result would have been biased toward the
majority class (ie, normal cases in this study). As a screening
tool, high sensitivity is desirable as it is important to identify
possible true positives (high-risk cases) and generate early
signals, suggesting the potential need for a follow-up. CSL was
thus proposed to remedy class imbalance. The effectiveness
was evident from the result that the sensitivity of most
algorithms improved. For example, when mean imputation was
applied, sensitivity increased by 118% for the DNN, 537% for
SVM (RBF), and over 70 times for RF, whose sensitivity was
almost zero (from 0.01 to 0.64). For missing data imputed using
KNN, sensitivity increased by 109% for the DNN, 818% for
SVM (RBF), and over 18 times for RF (from 0.03 to 0.68). The
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increase in sensitivity was achieved at the expense of specificity,
with a moderate decrease of less than 26% for data imputed
with both imputation methods. Nevertheless, the specificities
of the algorithms were still above 0.73 when CSL was applied.

Limitations
The study presents a machine learning method to screen for
elderly people with cognitive impairment and identify high-risk
cases of dementia simply by two-class classification. The
method can be extended to four-class classification, that is,
normal, mild, moderate, and severe, according to MMSE score
ranges of 24-30, 19-23, 10-18, and 0-9, respectively. However,
the problem of class imbalance would become more relevant.
A balanced number of samples for the four classes would be
required to construct a fair classification model to avoid
predilection for the majority class.

In the proposed DNN architecture, KNN-based imputation was
incorporated to tackle missing data, where the nearest neighbors
were simply calculated by treating all features with the same
weight. Future work will be conducted to design a scheme to
assign different weights to different features during KNN
imputation.

The elderly health data used in the study were collected from a
specific setting of primary care services. Some of the data may

not be available from elderly care centers in general, which
precludes the use of the proposed DNN-based screening tool.
Nevertheless, the client profile data involved and the health
assessments adopted were indeed relatively conventional and
could be readily integrated into existing health care services in
order to make use of the proposed screening tool. On the other
hand, future work will be conducted to evaluate and rank the
importance of input features, so that less critical features can
be dropped to reduce the variety of health data required while
still maintaining classification performance.

Conclusions
This study proposed a DNN approach to screen for elderly
people with high risk of dementia using data collected from
health care services provided in primary care. Imputation
techniques were used to deal with missing data, whereas CSL
was adopted to tackle class imbalance. The proposed approach
overall outperformed conventional machine learning techniques.
It has the potential to serve as an assistive tool for health care
professionals to identify people with high risk of dementia at
the asymptomatic stage, thereby generating early signals to
prompt suggestions for follow-up or the need for a detailed
diagnosis of dementia.
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