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Abstract

Background: Peripheral artery disease (PAD) affects 8 to 10 million Americans, who face significantly elevated risks of both
mortality and major limb events such as amputation. Unfortunately, PAD is relatively underdiagnosed, undertreated, and
underresearched, leading to wide variations in treatment patterns and outcomes. Efforts to improve PAD care and outcomes have
been hampered by persistent difficulties identifying patients with PAD for clinical and investigatory purposes.

Objective: The aim of this study is to develop and validate a model-based algorithm to detect patients with peripheral artery
disease (PAD) using data from an electronic health record (EHR) system.

Methods: An initial query of the EHR in a large health system identified all patients with PAD-related diagnosis codes for any
encounter during the study period. Clinical adjudication of PAD diagnosis was performed by chart review on a random subgroup.
A binary logistic regression to predict PAD was built and validated using a least absolute shrinkage and selection operator
(LASSO) approach in the adjudicated patients. The algorithm was then applied to the nonsampled records to further evaluate its
performance.

Results: The initial EHR data query using 406 diagnostic codes yielded 15,406 patients. Overall, 2500 patients were randomly
selected for ground truth PAD status adjudication. In the end, 108 code flags remained after removing rarely- and never-used
codes. We entered these code flags plus administrative encounter, imaging, procedure, and specialist flags into a LASSO model.
The area under the curve for this model was 0.862.

Conclusions: The algorithm we constructed has two main advantages over other approaches to the identification of patients
with PAD. First, it was derived from a broad population of patients with many different PAD manifestations and treatment
pathways across a large health system. Second, our model does not rely on clinical notes and can be applied in situations in which
only administrative billing data (eg, large administrative data sets) are available. A combination of diagnosis codes and
administrative flags can accurately identify patients with PAD in large cohorts.

(JMIR Med Inform 2020;8(8):e18542) doi: 10.2196/18542
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Introduction

Lower extremity peripheral artery disease (PAD) is a prevalent
chronic vascular condition that is estimated to affect over 200
million patients globally [1]. Although most patients with PAD
are asymptomatic, more severe disease is associated with
negative health and quality of life effects including claudication
(leg pain caused by insufficient blood flow), ischemia (blood
flow insufficient to meet the extremity’s metabolic demands),
and tissue loss from small wounds that worsen without adequate
blood for healing. Severe ischemia with enlarging or infected
wounds can require amputation [1,2]. Given the morbidity and
mortality burden of PAD, investigation of novel therapies and
implementation efforts is an ongoing necessity.

Improvement in the quality of PAD treatment and research
requires correct and efficient identification of patients who truly
have the disease. Although prospective studies can confirm
patients’ diagnoses through multiple methods, studies that rely
on the review of electronic health records (EHRs) or billing
claims are limited to preexisting data. Computable phenotypes
based on billing codes are sufficient to identify affected patients
for many conditions, but for others, current diagnosis codes do
not adequately differentiate the condition of interest from other
related conditions [3,4]. PAD detection algorithms using
administrative code sets, such as combinations of International
Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) diagnosis codes or Current Procedural Terminology
(CPT) procedure codes, have been shown to be relatively
inaccurate compared to diagnostic “gold standards” such as the
ankle-brachial index, especially when applied beyond patients
seen in a vascular laboratory or clinic setting [5-8].

Our initial attempt to identify patients with PAD within a large
US academic health system using billing diagnosis codes had
a very low positive predictive value. In this paper, we describe
the two-staged “learning” approach that we adopted by first
determining the PAD status for a random sample of the initially
selected patients; training and validating a model using that
patient set; and then scoring the remaining patients from the
initial patient query to identify charts with a high likelihood of
PAD to review for model validation and PAD cohort inclusion.
The goal of this research was to develop and validate a
model-based algorithm to accurately detect patients with
peripheral artery disease using diagnostic billing codes and
administrative information available in the EHRs data system.

Methods

Data Source and Study Population
The study population was selected using a query to Duke
Enterprise Data Unified Content Explorer (DEDUCE).
DEDUCE interfaces with and supports queries of the EHR data
repository for all patients seen within the Duke University
Health System (DUHS), an integrated health system that
includes 3 hospitals and a large number of outpatient clinical
offices in the Raleigh-Durham region of North Carolina. To be
eligible for inclusion in this study, patients needed to have had
at least one clinical encounter at DUHS resulting in one or more
PAD-related diagnosis codes between January 1, 2015, and

March 31, 2016. This study period was chosen in part because
it included the period during which the ICD-9-CM to
ICD-10-CM (10th Revision) transition occurred, thereby
facilitating incorporation of codes from both systems into our
algorithm. Encounter-level EHRs were obtained for all clinical
encounters during the study period, including hospital
admissions, emergency department visits, and outpatient clinic
visits. This research was approved by the Duke University
Institutional Review Board (protocol ID number Pro00075637).

Selection of Diagnosis Codes, Procedure Codes, and
Other Administrative Data Flags
Our initial list of diagnosis codes related to lower extremity
PAD (including peripheral vascular disease, atherosclerosis,
diabetes with peripheral circulatory disorders, lower extremity
ulcers, arterial thromboembolism, and gangrene) contained 31
ICD-9-CM and 375 ICD-10-CM diagnosis codes (Multimedia
Appendix 1). The ICD-9-CM codes used in this study were
drawn from cohort eligibility criteria or outcome definitions
from prior studies of PAD [9,10], as well as from clinician
review of the ICD-9-CM classification system. ICD-10-CM
codes were forward- and backward-mapped from ICD-9-CM
codes using General Equivalence Mappings (GEMs) and were
screened by the clinical team to eliminate spurious mappings
[11]. The mapped corresponding ICD-9 and ICD-10 codes were
included as separate flags. However, there were two codes
(ICD-9-CM 443.9 and ICD-10-CM I73.9 for “Peripheral
vascular disease, unspecified”) that were grouped into a single
flag because the terminology for this code did not change with
the ICD-10-CM transition. In addition, nearly half of all patients
in the study population had one or both of those codes (443.9
or I73.9) present during the study period. There were 247
PAD-related codes that were not detected for any patients, and
an additional 50 codes that were used for only 1 or 2 patients;
these codes were removed from the analysis, leaving 108
diagnosis code flags including the combined flag for 443.9/I73.9.

Additionally, 4 indicator variables were created to increase the
likelihood that a PAD-related diagnosis code indicated true
PAD, rather than an encounter devoting to “ruling out” PAD.
Two were procedure code-based: one for having any
revascularization procedure and another for having any
diagnostic imaging code associated with an encounter with a
PAD-related diagnosis code. We selected ICD-9-PCS,
ICD-10-PCS, and CPT procedure codes based on prior literature
and clinical expertise (Multimedia Appendix 2) [12,13].
Revascularization procedures included codes for atherectomy,
angioplasty, dilation, bypass, replacement, or supplementation
procedures related to the lower extremity arteries. Diagnostic
studies included noninvasive hemodynamic studies, ultrasound,
magnetic resonance imaging, computed tomography
angiography, and catheter-based angiography.

Finally, we also derived two indicator variables based on other
administrative information contained within the EHR. One was
a flag for having two or more encounters with a PAD-related
diagnosis code within the study period. The other was a flag
for encounters associated with PAD codes in which the primary
physician was listed as “Cardiology,” “Vascular Surgery,”
“Cardiovascular Medicine,” “Interventional Radiology,”
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“Podiatry,” or “Wound Care” (the most common provider types
who frequently care for patients with PAD).

Chart Abstraction Process, Model Development, and
Validation
Chart abstraction was necessary for the larger PAD outcomes
study that this project was a part of because there are potential
confounders of the associations between patient characteristics
and clinical outcomes that must be obtained through review of
clinical data. It was impractical to abstract data from and confirm
the very large number of potential patients with PAD identified
from the initial billing diagnosis codes. Instead, we took a
two-staged “learning” approach to abstraction by first reviewing
charts from a random subgroup of patients and then using this
PAD-adjudicated subgroup to model which of the diagnosis
and administrative flags were most predictive of true PAD
diagnosis. We then used the probabilities generated from this
model to decide which of the remaining patients’ records to
abstract.

Chart review was performed in accordance with a written
manual to standardize abstraction. There were 6 medical
abstractors in total, and each reviewer was trained to complete
the forms completely. When discordant information,
inconclusive data, or uncertainty remained after initial review,
the file was marked and the senior author (WSJ) reviewed the
file and made a final determination. In the first stage of
abstraction, we reviewed charts to adjudicate PAD status for a
random sample of 2500 patients from the original cohort (Figure
1). PAD was confirmed using either ankle-brachial index (ABI),
history of prior revascularization, or lower extremity amputation
for an indication of symptomatic PAD. ABI 0.9 or ABI 1.4 in
either limb was diagnostic of PAD, and toe pressures were used
if lower extremity vessels were noncompressible.
Revascularization procedures performed between January 1,
2010 and the index visit date during the study period within
DUHS were considered to be prior revascularizations.

To avoid overfitting the prediction model, we used the least
absolute shrinkage and selection operator (LASSO) approach
to reduce the number of variables [14]. The starting point of the

LASSO model included the binary flags for each diagnostic
code, as well as for revascularization procedures, diagnostic
imaging, specialist provider, and having ≥2 PAD encounters.
Using the chart abstraction PAD status determination as the
“ground truth,” we fit the LASSO logistic regression model
with all adjudicated patients. The LASSO model was performed
using the SAS (SAS Institute Inc) HPGENSELECT procedure
using the Bayesian information criterion as the selection
criterion, and setting the stop criterion to “none.” The
LASSO-reduced variable list was stored for use in the next stage
of analysis.

Adjudicated patients were then randomly partitioned 2:1 into
training and validation sets. Using only the training set, we fit
a logistic regression model with the LASSO-reduced variable
list, stored the model coefficients, estimated the C statistic, and
produced a receiver operating characteristic (ROC) curve. We
then applied the stored model coefficients to score the patients
in the validation set and reestimated the C statistic. To assess
model calibration, we divided both the training and validation
sets into deciles of predicted probability and plotted the
proportion of adjudicated true PAD within each decile.

After confirming that the model was performing similarly in
both the training and validation sets, we recombined the sets
and fit a final logistic model using the LASSO-reduced variable
list and all adjudicated patients to obtain the final trained
coefficient estimates. Using the predicted probabilities from the
final trained logistic model, we evaluated potential
discrimination thresholds to classify true presence of PAD.

We then scored the remaining, unadjudicated patients from the
original data query using the final model coefficients. Patients
with a predicted probability of ≥45% of truly having PAD were
then included in the second round of chart abstraction. This
threshold was chosen to favor sensitivity and was based on
examination of both the ROC curve and the distribution of the
predicted probabilities among these patients. To further validate
the model performance, we also evaluated the concordance
between the predicted PAD probability and actual PAD presence
for each level of predicted probability.
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Figure 1. Overview of the chart abstraction and analysis process. LASSO: least absolute shrinkage and selection operator; PAD: peripheral artery
disease.

Results

Overview
In the initial data pull from the DUHS EHRs data repository,
we identified 15,406 patients who had ≥1 clinical encounter
within the health system during the period from January 1, 2015,
through March 31, 2016, that was coded with one of the 406
PAD-related ICD-9-CM and ICD-10-CM diagnosis codes. Of
the 2500 patients who were randomly selected for the first round
of chart abstraction, 2416 had a definitive “yes” or “no” decision
adjudicated. The remaining 84 patients were considered
“undetermined” due to insufficient evidence in the charts, and
were removed from the cohort.

Initial Code Inclusion and Exclusion Decisions
We began the analysis with 406 PAD-related ICD diagnosis
codes (31 ICD-9-CM, 375 ICD-10-CM). Of those 406 codes,
there were 247 codes that were not assigned during the study
period to any of the 2416 clinically adjudicated patients.
Additionally, 35 codes were assigned to only 1 patient, and 15
codes were assigned to only 2 patients during the study period.
One of the most common diagnoses was “Peripheral vascular
disease, unspecified,” which is 443.9 in ICD-9-CM and I73.9
in ICD-10-CM; 1190 (49.7%) of all patients had either one or
both of those codes present during the study period. We grouped
these two codes into a single flag because of their prevalence
and because the terminology for this code did not change with
the ICD-10-CM transition. Prior to LASSO modeling, we
removed 297 unused and very low frequency (1-2 uses)
diagnosis codes and combined the flag for 443.9/I73.9, leaving
108 diagnosis code flags to be included in the LASSO model.
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In addition, 22 patients who no longer had any of the retained
diagnosis codes were removed, leaving an analysis cohort of
2394 patients with adjudicated yes/no PAD status (Figure 1).
Among these 2394 patients, only 780 (32.6%) were adjudicated

as having confirmed PAD (Table 1; baseline characteristics by
training versus validation roles available in Multimedia
Appendix 3).

Table 1. Baseline characteristics of initially-adjudicated patients by confirmed peripheral artery disease status.

P valuePatients with confirmed peripheral artery disease
(n=780)

Patients without confirmed peripheral artery disease
(n=1614)

Demographics

.00169.8 (10.9)66.9 (15.0)Age (years), mean (SD)

<.001464 (59.5)824 (51.1)Gender (male), n (%)

<.001Race, n (%)

N/Aa464 (59.5)1161 (71.9)White

N/A252 (32.3)380 (23.5)Black/African Ameri-
can

N/A64 (8.2)73 (4.5)Other

aN/A: not applicable.

Model Construction and Evaluation
We first assessed multicollinearity by fitting a linear regression
model and evaluating the variance inflation factor for each of
the 108 retained diagnosis flags and the 4 other indicator
variables. Most of the variance inflation factor values were
below 1.5, and the maximum VIF was 2.85, indicating that the
variables in the model were sufficiently noncollinear to proceed,
using a rule of thumb of <3.

We then entered the 108 diagnosis code flags and the 4
administrative flags for revascularization, diagnostic testing,
specialist service, and ≥2 PAD-related encounters into the
LASSO logistic regression prediction model. This yielded 15
flags for inclusion, including all 4 administrative flags and 11
diagnosis code flags.

Using the 15 LASSO-selected variables, we fit another logistic
regression model to the adjudicated training set (2/3 partition,
n=1604). Odds ratios and 95% confidence intervals from this
training model are presented in Table 2.

In the training set, the C statistic was 0.8618 (95% CI
0.8427-0.8810). We then applied the model coefficients derived
from the training set to score the observations in the adjudicated
validation set (1/3 partition, n=790). In the validation set, the
C statistic was 0.8618 (95% CI 0.8352-0.8884). Figure 2

displays the ROC curves for both the training and validation
sets. Additionally, we ranked both the training and validation
sets into deciles of predicted probability and plotted the
relationship between the mean predicted probability in each
decile to the observed prevalence of confirmed PAD in that
decile (Figure 2). Overall, it appeared that the model derived
from the training set fit the validation data equally well.

Finally, we refit the model using all 2394 PAD-adjudicated
patients to obtain the final odds ratios, which are displayed in
Table 2. The C statistic for the area under the ROC curve for
this final model was 0.8618 (95% CI 0.8463-0.8774). We then
generated a classification table to assess the impact of potential
thresholds of predicted probability on the discrimination
measures. At a threshold of predicted probability ≥0.45, the
estimated sensitivity was 75.3% and the estimated specificity
was 81.7%, with an estimated positive predictive value of 66.5%
and negative predictive value of 87.2%.

We then applied the final model coefficients to score the
remaining 12,801 patients from the original data pull. Of these
patients, 4753 (37.1%) had a predicted PAD probability of ≥0.45
(Figure 3). PAD status was definitively adjudicated in 4493
patients and 260 patients were assigned an “Undetermined”
status. Of the 4493 patients, 2981 (66.3%) were confirmed to
have PAD. Figure 4 illustrates the proportion of patients who
had confirmed PAD at each level of predicted probability.
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Table 2. Odds ratio estimates and 95% confidence intervals from the training set and the final model using the variables selected in the least absolute
shrinkage and selection operator (LASSO) model.

Final model (n=2394),
odds ratio (95% CI)

Training set (n=1604),
odds ratio (95% CI)

ICD code description or study definitionICDa

version

Diagnosis code or
flag type

1.62 (0.78-3.39)1.81 (0.78-4.24)Diabetes with peripheral circulatory disorders, type II or
unspecified type, not stated as uncontrolled

9250.70

3.62 (1.60-8.19)2.04 (0.79-5.29)Atherosclerosis of native arteries of the extremities, unspec-
ified

9440.20

5.81 (3.07-10.97)6.28 (2.84-13.92)Atherosclerosis of native arteries of the extremities with in-
termittent claudication

9440.21

13.73 (3.22-58.64)24.18 (4.48-130.45)Atherosclerosis of native arteries of the extremities with ul-
ceration

9440.23

0.71 (0.39-1.30)0.73 (0.36-1.49)Generalized and unspecified atherosclerosis9440.9

4.37 (1.67-11.48)2.14 (0.67-6.78)Arterial embolism and thrombosis of lower extremity9444.22

0.41 (0.21-0.80)0.29 (0.12-0.70)Ulcer of lower limb, unspecified9707.10

2.71 (1.11-6.59)2.59 (0.89-7.48)Gangrene9785.4

20.55 (5.97-70.80)103.23 (11.78-904.75)Atherosclerosis of native arteries of extremities with inter-
mittent claudication, bilateral legs

10I702.13

2.15 (0.84-5.51)2.61 (0.87-7.86)Gangrene, not elsewhere classified10I96

14.22 (10.77-18.77)13.28 (9.53-18.50)Peripheral vascular disease, unspecified9 and
10

443.9 or I739

1.66 (1.31-2.10)1.64 (1.22-2.19)Any PAD-related specialist during study periodN/AbSpecialist

2.37 (1.32-4.26)3.38 (1.60-7.14)Any revascularization procedure during study periodN/ARevascularization

0.99 (0.70-1.40)1.08 (0.71-1.65)Any PAD-related diagnostic imaging test during study periodN/ADiagnostic imag-
ing

1.86 (1.46-2.36)1.70 ( 1.26-2.28)2 PAD-related encounters during study periodN/A≥2 encounters

aICD: International Classificiation of Diseases.
bN/A: not applicable.

Figure 2. Comparison of results from training and validation sets. Left panel: receiver operating characteristic curves for training and validation sets.
Right panel: Comparison of deciles of predicted probabilities in training set versus validation set. PAD: peripheral artery disease.
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Figure 3. Histogram of predicted PAD probabilities in the remaining unadjudicated patients using the final model coefficients. The distribution of
predicted PAD probabilities contributed to a chosen probability threshold of 0.45 for second round chart adjudication. PAD: peripheral artery disease.

Figure 4. Model performance. Proportion of patients who were selected for the second round of abstraction who were confirmed to have PAD via
abstraction, by bands of the predicted probabilities obtained with the trained logistic model. PAD: peripheral artery disease.
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Discussion

Principal Results
We created a model-based algorithm for detecting PAD because
diagnosis codes were an unacceptably low-yield way to find
patients with PAD in our health system’s EHRs. Out of 2394
randomly selected patients from our initial query of 15,406
patients with PAD codes, only 780 actually had PAD, a positive
predictive value of 32.6%. Faced with the prohibitively
labor-intensive process of chart extraction and adjudication for
thousands of patients in our initial EHR-identified cohort with
low probabilities for true PAD (despite the presence of PAD
codes), we attempted to improve our yield using the LASSO
approach for selecting administrative codes and flags most
predictive of PAD. Our final model included 10 individual
ICD-9/10 CM codes, one combined ICD-9+10 CM code, and
flags for visits with PAD-related specialists, prior
revascularizations, PAD-related diagnostic imaging, and ≥2
PAD-related encounters during the study period. This model
had a C statistic of 0.8618. When we applied the full model to
the remaining 12,801 patients and abstracted PAD status from
those predicted to have a 45% or greater chance of PAD, we
found that our yield of true PAD diagnoses tracked with the
underlying predicted probability of PAD, as seen in Figure 4.
That is, roughly 45% of the patients predicted to have a 45%
probability of PAD actually had PAD and approximately 95%
of the patients predicted to have a 95% probability of PAD
actually had PAD.

We are currently using the cohort derived from our code- and
administrative data–based model to analyze patient, provider,
and health system factors associated with PAD care and
outcomes in our health system. We set a 45% threshold for
manual chart abstraction both because of the underlying
characteristics of the model and because we wanted to derive
a cohort that broadly reflected all patients with PAD in our
health system. Depending on a researcher’s goals, the threshold
for inclusion or chart abstraction can be adjusted accordingly
to favor sensitivity (using lower probability threshold) or
specificity (using higher probability threshold) as needed,
allowing for more efficient cohort construction. For instance,
if the model were applied to a larger population with the intent
to find patients for a PAD-related interventional study, a
researcher might choose to increase the threshold probability
to obtain a more specific though less broadly representative
cohort with less manual effort.

Comparison With Prior Work
The use of diagnostic codes in administrative data sets is an
appealing method of identifying patients with PAD, but it can
be challenging. Although the use of PAD-associated procedure
codes generally is sensitive and specific for the subgroup of
patients with PAD undergoing a given procedure, diagnosis
codes alone have poor predictive value [6,15]. We believe our
model combining administrative data with diagnosis codes
offers two main advantages.

First, the training population we used to build the model is
representative of all patients with PAD at our institution,
regardless of what location they received care in, what care they

received, and who provided the care. This has not been true of
prior similar efforts, which have used preexisting groups of
patients with known PAD status from which to construct their
models. For instance, Fan et al [7] designed and tested an
administrative code–based algorithm in a population of 22,723
Mayo Clinic patients with PAD codes who underwent ABI
testing. Their model, which included diagnosis codes, imaging
procedures, and toe amputation, yielded an area under the curve
of 0.912 in a test subset of the initial vascular lab population.
However, when tested in a community sample, the sensitivity
dropped from 85.5% to 68%. Hong et al [8] pooled patients
from two prior prospective trials that had collected ABIs to
create a cohort of patients with known PAD status from whom
to construct various models combining diagnosis and procedure
codes. They tested their models’ abilities to find the patients
already known to have PAD within administrative data sets,
reaching a maximum sensitivity of 34.7%. Bekwelem et al [16]
used a similar approach to discriminate between patients with
and without critical limb ischemia (a more specific and severe
kind of PAD) in a preadjudicated database and reported a
maximum sensitivity of 92% by using either diagnosis or
procedure codes. They then applied their model to unadjudicated
health system data, but never confirmed their findings. We
believe that training our model in a cohort containing diverse
representations of PAD is a significant benefit for its
applicability in multiple circumstances.

Second, we believe that another strength of the algorithm is its
use of structured data. Though there have been some reports of
natural language processing for PAD cohort identification
[16,17], free text is not always available, either in adequate
amounts to train an algorithm or at all for a given study
population of interest. Examples of free text–limited
circumstances include feasibility analyses for future studies,
the construction of cohorts for further investigation, and research
carried out entirely in an administrative context. Natural
language processing approaches also require more time,
expertise, and computing resources.

Limitations
Our approach does have some limitations. To maximize
sensitivity, our initial DEDUCE query included a large number
of PAD diagnosis codes, some of which were not used for any
patient in the DEDUCE cohort or were used for only 1 or 2
patients. This may have driven down our initial positive PAD
yield rate. Furthermore, we chose to treat each ICD-CM code
as an individual flag because the mapping between ICD-9 and
ICD-10 was not entirely concordant except in the instance of
443.9 and I73.9 (unspecified peripheral vascular disease).
ICD-10 codes for PAD often specify the disease state followed
by a specific affected anatomic location. Rather than treat these
codes independently, we could have combined all of the ICD-10
codes with similar disease processes across multiple anatomic
locations. This may have increased the likelihood for some ICD
codes on the margin to make it into the model. In addition, we
did not have access to revascularization procedures prior to
2010, which may have minimally decreased the ability of our
model to find patients with PAD. The final and most significant
limitation of our approach is that, thus far, we have validated
it only internally, and are therefore unsure of how it will perform
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in different EHRs and health systems. As we look toward
deploying this model as part of collaborative research with other
institutions, we will need to remain vigilant for signs of model
performance degradation. Furthermore, deployment in other
health systems will require some level of chart adjudication for
validation, the necessary amount of which will be determined
on the basis of the threshold chosen, intended cohort use, and
initial performance in the new health system.

Conclusions
We selected all patients from an entire health system with
PAD-related diagnosis codes between January 1, 2015, and

March 31, 2016. Using a random subset of patients, we
constructed a code- and administrative data–based model
including 10 individual ICD-9/10 CM flags, one combined
ICD-9+10 CM flag, and flags for visits with PAD-related
specialists, prior revascularizations, PAD-related diagnostic
imaging, and ≥2 PAD-related encounters during the study
period. This model had a C statistic of 0.8618. Use of only
nonselective PAD diagnosis codes to identify patients for
research purposes is unacceptably nonspecific for many studies
and should not be done without supplementary methods of
cohort confirmation.
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