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Abstract

Background: Computer-aided diagnosis on chest x-ray images using deep learning is a widely studied modality in medicine.
Many studies are based on public datasets, such as the National Institutes of Health (NIH) dataset and the Stanford CheXpert
dataset. However, these datasets are preprocessed by classical natural language processing, which may cause a certain extent of
label errors.

Objective: This study aimed to investigate the robustness of deep convolutional neural networks (CNNs) for binary classification
of posteroanterior chest x-ray through random incorrect labeling.

Methods: We trained and validated the CNN architecture with different noise levels of labels in 3 datasets, namely, Asan
Medical Center-Seoul National University Bundang Hospital (AMC-SNUBH), NIH, and CheXpert, and tested the models with
each test set. Diseases of each chest x-ray in our dataset were confirmed by a thoracic radiologist using computed tomography
(CT). Receiver operating characteristic (ROC) and area under the curve (AUC) were evaluated in each test. Randomly chosen
chest x-rays of public datasets were evaluated by 3 physicians and 1 thoracic radiologist.

Results: In comparison with the public datasets of NIH and CheXpert, where AUCs did not significantly drop to 16%, the AUC
of the AMC-SNUBH dataset significantly decreased from 2% label noise. Evaluation of the public datasets by 3 physicians and
1 thoracic radiologist showed an accuracy of 65%-80%.

Conclusions: The deep learning–based computer-aided diagnosis model is sensitive to label noise, and computer-aided diagnosis
with inaccurate labels is not credible. Furthermore, open datasets such as NIH and CheXpert need to be distilled before being
used for deep learning–based computer-aided diagnosis.

(JMIR Med Inform 2020;8(8):e18089) doi: 10.2196/18089
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Introduction

Posteroanterior chest x-ray (CXR) is one of the most widely
used methods to evaluate a subject’s chest. CXR is low cost
and easy to assess and acquire, and it provides a variety of
information. Researchers developed computer-aided diagnosis
(CAD) algorithms for CXRs because of the substantial presence
of CXRs in large hospitals and medical centers [1]. At present,
there are no widely used clinically meaningful CAD algorithms
with classical image processing algorithms. However, the
success of deep learning has led to the development of deep
learning–based CXR CAD algorithms [2]. Among the various
types of deep learning algorithms, the convolutional neural
network (CNN) is the most widely used technique for CXR
classification.

Before applying CNN to CAD development, we need to consider
the robustness of CNN for inaccurate datasets. It is believed
that CNN is robust to label noise [3]. Conversely, clean labels
and accurate datasets are considered necessary conditions for
CNN-based classification. However, the differences in
complexity between datasets from Modified National Institute
of Standards and Technology (MNIST) and CXRs were
enormous. The MNIST images had a size of 28×28 pixels,
whereas the image sizes in CXR datasets were mostly above
1024×1024 pixels. Therefore, relying on the robustness of deep
learning alone for CXR datasets would be insufficient. Some
[3] asserted that accuracy over 90% with 0% noisy labels is not
very different from an approximate accuracy of 85% with 90%
noisy labels. However, in medicine, an accurate diagnosis is
essential for appropriate treatment, and even a 1% decrease in
accuracy cannot be tolerated.

Since open CXR datasets from the National Institutes of Health
(NIH) and Stanford CheXpert are preprocessed using natural
language processing, they tend to contain [4] a certain extent
of wrong and uncertain labels [5,6]. Several groups studied the
effect of label noise in the CNN classification model. Rolnick
et al [3] claimed that CNNs are robust to massive label noise.
Beigman and Beigman [4], Guan et al [7], Lee et al [8], Choi
et al [9], and Sukhbaatar and Fergus [10] attempted to develop
models from noisy datasets directly. Others such as Brodley
and Friedl [11] identified and reduced noisy data using majority
voting before training. This research claims that they can make
a model robust for up to 30% of label noise. This type of
research is subject to the risk of classifying hard labels as noisy
labels. To overcome this problem, some researchers attempted
to combine noisy data with accurate datasets, as proposed by
Zhu [12]. When the label noise was provided, Bootkrajang and
Kabán [13] proposed a generic unbiased estimator for binary
classification. Unlike electronic health records, images can be
re-reported any time with domain experts’ efforts. There are
several studies that analyzed electronic health records using
natural language processing techniques [14,15].

Many have attempted to classify CXR with deep learning
techniques. Rajpurkar et al [5] proposed a CNN-based CXR
classifier with an overall area under the curve (AUC) ranging
between 0.8 and 0.93. Yao et al [16] used a similar method to

classify multiclass CXR. Pesce et al [17] used over 430,000
CXRs and proposed an architecture with attention structure
based on the evidence that deep learning is robust to label noise
[3].

The questions raised were “Are noisy and wrong-labeled
datasets credible?” and “Can we believe a CAD model that used
these open datasets during training?” In this study, we
contemplate the credibility of these datasets and the effect of
label noise during training. The aim of this study is threefold:
(1) to train computed tomography (CT)-confirmed CXR datasets
from Asan Medical Center (AMC) and Seoul National
University Bundang Hospital (SNUBH), which can be
considered clean with an intentionally given label noise of 0%,
1%, 2%, 4%, 8%, 16%, and 32%; (2) to train NIH and CheXpert
datasets, which are considered noisy with an intentionally given
label noise of 0%, 1%, 2%, 4%, 8%, 16%, and 32%; and (3) to
have the NIH and CheXpert datasets re-evaluated by 3
physicians and one radiologist.

Methods

Image Dataset
Our CXRs were collected from 2 hospitals, AMC and SNUBH
in South Korea. Data from 2011 to 2016 were collected. Every
CXR was confirmed with its nearest corresponding CT scan
and was reevaluated by a chest radiologist with more than 20
years of experience. CXRs contained 5 clinically relevant
disease categories, namely, nodule (ND), consolidation (CS),
interstitial opacity (IO), pleural effusion (PLE), and
pneumothorax (PT). These categories were classified into 2
classes, normal and abnormal. A detailed description of our
dataset is provided in Multimedia Appendix 1.

Descriptions of the NIH and the CheXpert datasets can be found
in Multimedia Appendices 2 and 3 [6,18]. To validate the NIH
and CheXpert datasets, we randomly sampled the same number
of normal and abnormal images from the NIH and CheXpert
datasets as that from our dataset, that is, all 3 datasets were
sampled to have 7103 no finding images and 8680 abnormal
images. In the NIH dataset, images were classified into 15
categories including a “no finding” category. For the NIH
dataset, we did not distinguish each disease category, but unified
all the disease categories into 1 class, “abnormal”. In the
CheXpert dataset, images were classified into 14 categories
including “no finding.” In each image class, every image was
subclassified as positive/uncertain/negative. We did not use
positive/uncertain/negative because the uncertain class can be
confusing and negative images were not clinically important.
Instead, 14 positive-labeled disease categories were classified
as “abnormal,” and the “no finding” category was classified as
“normal” in the CheXpert dataset. Because there were disease
categories present in the CheXpert dataset, which were not in
our dataset or the NIH dataset, we unified every disease class
as “abnormal” and considered “no finding” as “normal.”
Furthermore, the “abnormal” class was randomly sampled to
be the same number as our “abnormal” dataset without
considering the number of each disease class. These “no finding”
and “abnormal” dataset descriptions are presented in Table 1.
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Table 1. Brief description of the datasets of Asan Medical Center and Seoul National University Bundang Hospital, National Institutes of Health, and
CheXpert.

CheXpert datasetNIHc datasetAMCa and SNUBHb datasetDistribution of images

22,41960,3617103Number of no-finding or normal
images

201,89751,7598680Number of abnormal images

224,316112,12015,783Number of total images

aAMC: Asan Medical Center.
bSNUBH: Seoul National University Bundang Hospital.
cNIH: National Institutes of Health.

After random shuffling, we analyzed the distribution of 3
randomly shuffled datasets. The distributions of these randomly
shuffled datasets are shown in Multimedia Appendix 4.

The label quality of public data from open datasets was
evaluated by 3 licensed nonradiologist physicians and 1
board-certified radiologist. For the 3 nonradiologists, in each
of the CheXpert and the NIH dataset, we randomly sampled
100 images. In the NIH dataset, 25 images were “abnormal”
and 75 images were “no finding.” In CheXpert, 85 images were
“abnormal” and 15 images were “normal.” For the radiologist,
we randomly selected 200 images from each public dataset. The
board-certified radiologist evaluated each given dataset twice,
and we recorded the concordance rate for the 2 evaluations. For
each open dataset, these images were passed to 3 physicians
and 1 radiologist, who reported whether each image belonged
to the “no finding” or “abnormal” category.

Image Preprocessing
Every CXR image from the NIH and CheXpert datasets was
stored in an 8-bit PNG format. To feed the images in the training
model, we changed 3- or 4-channel PNG images to grayscale.
The 12-bit DICOM (Digital Imaging and Communications in
Medicine) files in our dataset were converted into 8-bit gray
PNG format, for which we attempted to set a consistent training
condition. In open datasets, sizes of images differed from image
to image. To solve this problem, we unified the image size to
be 1024×1024 pixels. Similarly, our DICOM images were
resized from approximately 2000×2000 pixels to 1024×1024
pixels. Bilinear interpolation was used to resize images, and
min-max scaling was applied to each image so that every pixel
had a value in the range of 0-1. All the processing was
performed using the opencv-python package by Olli-Pekka
Heinisuo.

Training Details
Each dataset was classified into 3 groups: training, validation,
and test sets. The detailed composition of our dataset including
the training, validation, and test sets is presented in Multimedia
Appendix 5. Among the various CNN models, CheXNet by
Rajpurkar et al [5] was selected as the baseline model. CheXNet
is a 121-layered Densenet [19] with 14 disease categories. We
changed the last fully connected layer to 1 node to simplify the
classification into normal and abnormal. We trained CheXNet
from scratch without using the pretrained model. Labels of each
training dataset were intentionally misrepresented with rates of

0%, 1%, 2%, 4%, 8%, 16%, and 32%. To generate a training
set to have every label noise, we first randomly shuffled all the
datasets and changed the label of images in the shuffled list in
order from the front. The order was shuffled again to distribute
the misrepresented label data evenly in the entire training set.
We used Keras python package and Adam optimizer [20] with
a learning rate of 0.0001. The loss was set to be binary
cross-entropy, and we measured the accuracy with a threshold
of 0.5. We trained 20 epochs for each label noise level and each
dataset. The training was conducted with a NVIDIA GeForce
RTX 2070 for approximately 3 days for each dataset. Moreover,
we did not apply label noises for the validation and test sets.

Evaluation Metric and Statistics
For inference, we selected the model with the smallest validation
loss in each dataset. In each test set of datasets, we evaluated
receiver operating characteristics (ROC) and AUC. The
inference results were compared using a semi-log plot.
Subsequently, AUC of 0% was compared with each noise level,
using standard error defined by Hanley and McNeil [21]. The
SE is defined as follows:

where auc is AUC, na is the number of abnormal images, and

nn is the number of normal images, and 

Results

Accuracies of Each Label Noise
After training 3 datasets with the CNN architecture, ROC curves
were drawn as depicted in Figure 1.

Figure 2 illustrates a semilog plot of AUCs of ROC curves from
our dataset, the NIH dataset, and the CheXpert dataset for every
noise level. Each vertical line means standard error for given
AUC.

In the NIH and the CheXpert datasets AUC was poorer than
that in our dataset at 0% label noise. The AUC of our dataset
was more sensitive to label noise than that of the NIH and the
CheXpert datasets. F1 scores are plotted in Figure 3.
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Figure 1. Receiver operating characteristic (ROC) curves for datasets of Asan Medical Center and Seoul National University Bundang Hospital,
National Institutes of Health, and CheXpert (from left to right) with each label noise rate (0%, 1%, 2%, 4%, 8%, 16%, and 32%).

Figure 2. Semilog plot of area under the curves (AUC) of receiver operating characteristic (ROC) curves in the datasets of Asan Medical Center and
Seoul National University Bundang Hospital, National Institutes of Health, and CheXpert (from left to right) with each label noise rate (0%, 1%, 2%,
4%, 8%, 16%, and 32%).

Figure 3. F1 scores of the datasets of Asan Medical Center and Seoul National University Bundang Hospital, National Institutes of Health, and CheXpert
(from left to right).

The ROC comparisons for the 3 datasets are presented in Table
2. It became statistically significant when noise level became
2% in our dataset. However, in the NIH and CheXpert datasets,

there was no statistical significance until 16% of noise was
observable in the training set.
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Table 2. Receiver operating characteristic (ROC) comparison for the datasets of Asan Medical Center and Seoul National University Bundang Hospital,
National Institutes of Health, and CheXpert.

P valueDifference of AUCa with respect to
0%

Dataset and label noise level (%)

AMCb and SNUBHc

.080.081

.040.0972

.020.1074

.0070.1188

<.0010.19716

<.0010.17632

NIHd

.74–0.0121

.58–0.0202

.24–0.0414

.370.0318

.680.01416

<.0010.11132

CheXpert

.91–0.0051

.990.0032

.900.0054

.860.0488

.940.02216

<.0010.02832

aAUC: area under the curve.
bAMC: Asan Medical Center.
cSNUBH: Seoul National University Bundang Hospital.
dNIH: National Institutes of Health.

For our dataset, we analyzed subgroups of abnormal cases. It
is shown in Figure 4.

There were 1413 normal CXRs, 449 ND CXRs, 322 CS CXRs,
261 IO CXRs, 548 PLE CXRs, 298 PT CXRs in our test set.
We joined 1413 normal data with each disease subclass and

performed ROC curve analysis. For overall subgroups including
ND, CS, IO, PLE, PT, there was no distinguishing subgroup,
which was much more sensitive to label noise. However, among
these classes, IO was most robust to label noise, showing low
decline of AUCs.
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Figure 4. Subgroup analysis of abnormal cases in the dataset of Asan Medical Center and Seoul National University Bundang Hospital.

Visual Scoring of Open Dataset
The NIH and the CheXpert datasets were reevaluated by 3
nonradiologist licensed physicians and 1 radiologist. The
physicians evaluated CXRs once for each doctor, and the
radiologist evaluated CXRs twice. The 3 physicians rated the
accuracy of the NIH dataset as 75% (75/100), 65% (65/100),
and, 84% (84/100), and that of the CheXpert dataset as 65%
(65/100), 77% (77/100) and 61% (61/100), respectively. The
radiologist who evaluated CXRs twice rated the accuracy of
NIH dataset as 67.5% (135/200) and 65 % (130/200) for each
evaluation and rated the accuracy of CheXpert dataset as 81%
(162/200) and 77% (154/200) for each evaluation. The

concordance rates of 2 evaluations for 2 datasets were 92%
(184/200) and 56% (112/200) for the NIH and CheXpert
datasets, respectively. Figure 5 depicts the sensitivity and
specificity of the report of the 3 physicians. First row is the
result of visual scoring by 3 physicians for the NIH dataset, and
the second row is the result of visual scoring by 3 physicians
for the CheXpert (Stanford) dataset.

Figure 6 shows the accuracy, sensitivity, specificity of 2
evaluations of 1 radiologist with the concordance rate of 2
evaluations. One radiologist had visually scored 2 public datasets
twice. First and second columns from the left show the result
of visual scoring for the public datasets. The third column is
about concordance rate for the 2 visual scorings for each dataset.
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Figure 5. Visual scoring by 3 licensed physicians. Pred: predicted; Abnl: abnormal; NL: normal; NIH: National Institutes of Health; Acc: accuracy.
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Figure 6. Visual scoring of thoracic radiologist over a 20-year experience. Pred: predicted; Abnl: abnormal; NL: normal; NIH: National Institutes of
Health; Acc: accuracy.

Discussion

The results of our dataset reveal that the CNN architecture is
extremely sensitive to label noise. However, the results of the
NIH and CheXpert datasets demonstrate that open datasets are
robust to label noise, suggesting that the NIH and CheXpert
datasets essentially contain label noises. These datasets do not
significantly change the label noise levels and yield robustness
despite the label noise. Therefore, training open datasets with
CNN architectures has several drawbacks. First, CheXNet
cannot be trained in the NIH dataset, because of extensive noise
level of NIH dataset. Since open datasets were processed with
classical natural language processing, abnormal CXRs were

reported to have “no interval change” can be categorized as “no
findings.” This can amplify label noise of open datasets.

Furthermore, the “no finding” category does not imply normal.
There were 15 classes in NIH classified as “no finding,” and
14 classes in CheXpert classified as “no finding,” suggesting
that other lesions may be categorized as “no finding.” For
example, cavity due to tuberculosis, reticular pattern due to
diffuse interstitial lung diseases, hyperinflation due to chronic
obstructive lung diseases could be classified as “no finding.”
Rajpurkar et al [5] reported the CheXNet performance to be
similar to that of a radiologist in categorizing pneumonia, rather
than a “no finding” category, possibly caused by label noises
and/or due to the insufficient performance of CheXNet for
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differentiating “no finding” and “abnormal.” Therefore, labeling
with natural language processing is not suitable for CXR CAD
model development. Rating accuracies of our 3 physicians on
“no finding” and “abnormal” was approximately 60%-80%,
and the accuracy of confirmation by 1 radiologist for the NIH
and CheXpert dataset was around 60% and 80%, respectively,
which implies that these open datasets have a high occurrence
of mislabeled data. The concordance rate of 1 radiologist was
92% (184/200) for NIH and 56% (112/200) for CheXpert. This
low concordance rate for CheXpert may have originated from
blurry texture of CheXpert images.

To analyze their performance, we experimented the ability of
corrected test set of open datasets. First, after the radiologist’s
2-time confirmation, we tested corrected labels using weights
of model that were trained with each label noise. The result is
shown in Multimedia Appendix 6. Due to the massive label
noise of NIH dataset, CheXNet does not work properly for each
model of label noise. In CheXpert settings, situation is little bit
better yet performance was poor as expected.

There could be an array of additional issues that affect the
quality of the open datasets. The CheXpert and NIH datasets
are 8-bit PNG image files. Therefore, information loss is
unavoidable during conversion from 12-bit DICOM files to the
PNG image format.

Robustness of the CheXNet model trained by the NIH and
CheXpert datasets does not translate to the robustness of the
CNN architecture. The results of our dataset show that CNN is
not robust to the noise level. Rather, robustness of the models
trained by open datasets can be considered a result of their
original impurity. The open datasets are not well-preprocessed,
leading them to contain label errors to a certain extent. A low
level of label noise does not visibly affect the impurity, and
accuracy seems to endure up to 16%.

Regardless of these drawbacks, CNN is considered the best tool
for CAD development. Our study urges CAD developers to
maximize their effort in accumulating extremely high-quality
datasets.

Our study has several limitations. First, we considered only 1
network, CheXNet. Other networks such as ChoiceNet can be
robust to label noise [9]. Second, a well-performing model that
is robust to label noise is not indicative of its tolerability towards
label noise in open datasets. Using open datasets commercially
or for research must be seriously considered. Unlike MNIST,
they have considerable impacts on the diagnosis of each patient.

Furthermore, it is interesting to speculate active learning with
predicted images, which have low confidence levels. That is,
predicted labels that have low confidence rate after final
activation function, such as 0.4 to 0.6. We might consider them
as mislabeled images. Therefore, using high-confidence images
and their labels, we can re-label low confidence images assisted
by radiologist if needed and train CNN again. This can be used
as strategy for training the noisy dataset accurately. However,
this strategy is beyond the scope of this study. In our future
work, this kind of strategy will be used to train noisy dataset
accurately.

As mentioned earlier, even a 1% decrease in accuracy can have
an enormous effect on a large patient group. Additionally,
categorizing data into “no finding” and “abnormal” may not be
ideal as this could be a direct consequence of mislabels on “no
finding.” There may be other disease patterns that were not
labeled, resulting in an unfair comparison of the 3 datasets with
the same criteria. Furthermore, there is a statistical limitation
for this study. To compare CNN models exactly, we trained
models with only 20 epochs for each label noise level. For some
training steps, 20 epochs did not seem sufficient for accuracy
saturation. However, we used the same network with the same
hyperparameters for these comparisons. For further study,
multiple and repetitive training needs to be performed.

In conclusion, the robustness of CAD to label noise with open
datasets seems to be a result of their impurity caused by natural
language processing. CNN is not robust to label noise in
large-sized and complicated images. Therefore, it needs to be
emphasized that clean labels and accurate datasets are a
necessary condition for developing clinically relevant CAD in
medicine.
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