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Abstract

Background: Artificial intelligence (AI) provides opportunities to identify the health risks of patients and thus influence patient
safety outcomes.

Objective: The purpose of this systematic literature review was to identify and analyze quantitative studies utilizing or integrating
AI to address and report clinical-level patient safety outcomes.

Methods: We restricted our search to the PubMed, PubMed Central, and Web of Science databases to retrieve research articles
published in English between January 2009 and August 2019. We focused on quantitative studies that reported positive, negative,
or intermediate changes in patient safety outcomes using AI apps, specifically those based on machine-learning algorithms and
natural language processing. Quantitative studies reporting only AI performance but not its influence on patient safety outcomes
were excluded from further review.

Results: We identified 53 eligible studies, which were summarized concerning their patient safety subcategories, the most
frequently used AI, and reported performance metrics. Recognized safety subcategories were clinical alarms (n=9; mainly based
on decision tree models), clinical reports (n=21; based on support vector machine models), and drug safety (n=23; mainly based
on decision tree models). Analysis of these 53 studies also identified two essential findings: (1) the lack of a standardized benchmark
and (2) heterogeneity in AI reporting.

Conclusions: This systematic review indicates that AI-enabled decision support systems, when implemented correctly, can aid
in enhancing patient safety by improving error detection, patient stratification, and drug management. Future work is still needed
for robust validation of these systems in prospective and real-world clinical environments to understand how well AI can predict
safety outcomes in health care settings.

(JMIR Med Inform 2020;8(7):e18599) doi: 10.2196/18599
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Introduction

Patient safety is defined as the absence of preventable harm to
a patient and minimization of the risk of harm associated with
the health care process [1,2]. Every part of the care-giving
process involves a certain degree of inherent risk. Since
resolution WHA55.18 on “Quality of Care: Patient Safety” at
the 55th World Health Assembly was proposed in 2002, there
has been increasing attention paid to patient safety concerns

and adverse events in health care settings [3]. Despite the safety
initiatives and investments made by federal and local
governments, private agencies, and concerned institutions,
studies continue to report unfavorable patient safety outcomes
[4,5].

The integration of artificial intelligence (AI) into the health care
system is not only changing dynamics such as the role of health
care providers but is also creating new potential to improve
patient safety outcomes [6] and the quality of care [7]. The term
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AI can be broadly defined as a computer program that is capable
of making intelligent decisions [8]. The operational definition
of AI we adopt in this review is the ability of a computer or
health care device to analyze extensive health care data, reveal
hidden knowledge, identify risks, and enhance communication
[9]. In this regard, AI encompasses machine learning and natural
language processing. Machine learning enables computers to
utilize labeled (supervised learning) or unlabeled (unsupervised
learning) data to identify latent information or make predictions
about the data without explicit programming [9]. Among
different types of AI, machine learning and natural language
processing specifically have societal impacts in the health care
domain [10] and are also frequently used in the health care field
[9-12].

The third category within machine learning is known as
reinforcement learning, in which an algorithm attempts to
accomplish a task while learning from its successes and failures
[9]. Machine learning also encompasses artificial neural
networks or deep learning [13]. Natural language processing
focuses on building a computer’s ability to understand human
language and consecutively transform text to machine-readable
structured data, which can then be analyzed by machine-learning
techniques [14]. In the literature, the boundary defining natural
language processing and machine learning is not clearly defined.
However, as illustrated in Figure 1, studies in the field of health
care have been using natural language processing in conjunction
with machine-learning algorithms [15].

Figure 1. Schematic illustration of how natural language processing converts unstructured text to machine-readable structured data, which can then be
analyzed by machine-learning algorithms.

AI has potential to assist clinicians in making better diagnoses
[16-18], and has contributed to the fields of drug development
[19-21], personalized medicine, and patient care monitoring
[14,22-24]. AI has also been embedded in electronic health
record (EHR) systems to identify, assess, and mitigate threats
to patient safety [25]. However, with the deployment of AI in
health care, several risks and challenges can emerge at an
individual level (eg, awareness, education, trust), macrolevel
(eg, regulation and policies, risk of injuries due to AI errors),
and technical level (eg, usability, performance, data privacy and
security).

The measure of AI accuracy does not necessarily indicate
clinical efficiency [26]. Another common measure, the area
under the receiver operating characteristic curve (AUROC), is
also not necessarily the best metric for clinical applicability
[27]. Such AI metrics might not be easily understood by
clinicians or might not be clinically meaningful [28]. Moreover,
AI models have been evaluated using a variety of parameters
and report different measure(s) such as the F1 score, accuracy,
and false-positive rate, which are indicative of different aspects
of AI’s analytical performance. Understanding the functioning
of complex AI requires technical knowledge that is not common
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among clinicians. Moreover, clinicians do not necessarily have
the training to identify underlying glitches of the AI, such as
data bias, overfitting, or other software errors that might result
in misleading outcomes. Such flaws in AI can result in incorrect
medication dosage and poor treatment [29-33].

Furthermore, a system error in a widely used AI might lead to
mass patient injuries compared to a limited number of patient
injuries due to a provider’s error [34]. Additionally, there have
been instances where traditional analytical methods
outperformed machine-learning techniques [9]. Owing to the
wide range of effectiveness of AI, it is crucial to understand
both the promising and deterring impacts of AI on patient safety
outcomes [35].

AI in the health care system can assist at both the “clinical” and
“diagnostic” levels [36]. AI provides a powerful tool that can
be implemented within the health care domain to reveal subtle
patterns in data, and these patterns can then be interpreted by
clinicians to identify new clinical and health-related issues [9].
Recent studies and reviews have primarily focused on the
performance of AI at the diagnostic level, such as for disease
identification [37-42], and the application of AI robotics in
surgery and disease management [43-46]. Other studies have
also implemented AI technologies to assist at the clinical level,
including assessing fall risks [47] and medication errors [48,49].
However, many of these studies are centered around AI
development and performance and there is a notable lack of
studies reviewing the role and impact of AI used at the clinical
level on patient safety outcomes.

Many studies have reported high accuracy of AI in health care.
However, its actual influence (negative or positive) can only be
realized when it is integrated into clinical settings or interpreted
and used by care providers [50]. Therefore, in our view, patient
safety and AI performance might not necessarily complement
each other. AI in health care depends on data sources such as
EHR systems, sensor data, and patient-reported data. EHR
systems may contain more severe cases for specific patient
populations. Certain patient populations may have more ailments

or may be seen at multiple institutions. Certain subgroups of
patients with rare diseases may not exist in sufficient numbers
for a predictive analytic algorithm. Thus, clinical data retrieved
from EHRs might be prone to biases [9,50]. Owing to these
potential biases, AI accuracy might be misleading [51] when
trained on a small subgroup or small sample size of patients
with rare ailments.

Furthermore, patients with limited access to health care may
receive fewer diagnostic tests and medications and may have
insufficient health information in the EHR to trigger an early
intervention [52]. In addition, institutions record patient
information differently; as a result, if AI models trained at one
institution are implemented to analyze data at another institution,
this may result in errors [52]. For instance, machine-learning
algorithms developed at a university hospital to predict
patient-reported outcome measures, which tend to be
documented by patients who have high education as well as
high income, may not be applicable when implemented at a
community hospital that primarily serves underrepresented
patient groups with low income.

A review [53] conducted in 2017 reported that only about 54%
of studies that developed prediction models based on EHRs
accounted for missing data. Recent studies and reviews have
been primarily focusing on the performance and influence of
AI systems at a diagnostic level, such as for disease
identification [37-42], and the influence of AI robotics in surgery
and disease management [43-46]; however, there is a lack of
studies reviewing and reporting the impact of AI used at the
clinical level on patient safety outcomes, as well as
characteristics of the AI algorithms used. Thus, it is essential
to study how AI has been shown to influence patient safety
outcomes at the clinical level, along with reported AI
performance in the literature. In this systematic review, we
address this gap by exploring the studies that utilized AI
algorithms as defined in this review to address and report
changes in patient safety outcomes at the clinical level (Figure
2).

Figure 2. Artificial intelligence (AI) route to patient safety via “Clinical” and “Diagnostic” level interventions. DSS: decision support system.

Methods

Protocol Registration
This systematic review is reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines [54]. We followed the PRISMA Checklist
(see Multimedia Appendix 1). Our protocol [55] was registered
with the Open Science Framework on September 15, 2019.

Information Sources
We searched for peer-reviewed publications in the PubMed,
PubMed Central, and Web of Science databases from January
2009 to August 2019 to identify articles within the scope and
eligibility criteria of this systematic literature review.

Search Strategy
We followed a systematic approach of creating all search terms
to capture all related and eligible papers in the searched
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databases. Keywords used in the search were initially determined
by a preliminary review of the literature and then modified based
on feedback from content experts as well as our institution’s
librarian.

We then refined the search strategy in collaboration with the
librarian to ensure that all clinical-level patient safety-related
papers (as shown in Figure 2) were covered in our review and
determined the Medical Subject Headings (MeSH) terms. We
grouped the query keywords, which were derived from MeSH
terms and combined through Boolean (AND/OR) operators to

identify all relevant studies that matched with our scope and
inclusion criteria.

The keywords consisted of MeSH terms such as “safety
[MeSH]” and “artificial intelligence [MeSH],” in combination
with narrower MeSH terms (subheadings/related words/phrases)
and free text for “artificial intelligence” and “safety.” We also
included broader key terms to encompass all latent risk factors
affecting patient safety. The final search keywords (Figure 3)
described below were used to explore all databases.

Figure 3. Medical Subject Heading (MeSH) terms and free text used in the systematic literature review.

MeSH terms are organized in a tree-like hierarchy, with more
specific (narrower) terms arranged beneath broader terms. By
default, PubMed includes all of the narrow items in the search
in a strategy known as “exploding” the MeSH term [56].
Moreover, the inclusion of MeSH terms optimizes the search
strategy [56]. Therefore, the final search query for PubMed was
as follows: (“patient safety” OR “safety” [MeSH] OR “drug
safety” OR “safety-based Drug withdraws” [MeSH] OR
“medication error” OR “Medication Error” [MeSH] OR
“medication reconciliation” OR “near miss” OR “inappropriate
prescribing” OR “clinical error” OR “Clinical alarms” [MeSH])
AND (“Machine learning” [MeSH] OR “Machine learning”
OR “Deep learning” [MeSH] OR “Deep learning” OR “natural
language processing” [MeSH] OR “natural language
processing”).

Inclusion and Exclusion Criteria
This study focused on peer-reviewed publications satisfying
the following two primary conditions: (1) implementation of
machine-learning or natural language processing techniques to
address patient safety concerns, and (2) discussing or reporting
the impact or changes in clinical-level patient safety outcomes.
Any papers that failed to satisfy both conditions were excluded
from this review. For instance, studies only focusing on
developing or evaluating machine-learning models that did not
report or discuss changes or impact on clinical-level patient
safety outcomes were excluded, as well as studies that used AI
beyond our scopes, such as robotics or computer vision.
Secondary research such as reviews, commentaries, and
conceptual articles was excluded from this study. The search
was restricted to papers published in English between January
2009 and August 2019.
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Study Selection and Quality Assurance
The two authors together reviewed all of the retrieved
publications for eligibility. We first screened the publications
by studying the titles and abstracts and removed duplications.
We then read the full text for the remaining papers and finalized
the selection. To minimize any selection bias, all discrepancies
were resolved by discussion requiring consensus from both
reviewers and the librarian. Before finalizing the list of papers,
we consulted our results and searched keywords with the
librarian to ensure that no relevant articles were missed.

A data abstraction form was used to record standardized
information from each paper as follows: authors, aims,
objectives of the study, methods, and findings. Using this form,
we categorized each article based on the type of AI algorithm
as well as clinical-level patient safety outcomes reported.

Results

Study Selection
Figure 4 illustrates the flowchart of the selection process of the
articles included in this systematic literature review. The initial
search using a set of queries returned 272 publications in
PubMed, 1976 publications in PubMed Central, and 248
publications in Web of Science for a total of 2496 articles. We
used EndNote X9.3.2 to manage the filtering and duplication
removal process. As a first step, we removed duplicates (n=101),
all review/opinion/perspective papers (n=120), and posters or
short abstracts (n=127). The two authors then applied a second
filtering step by reading abstracts and titles (n=2148). The
screening process followed the inclusion and exclusion criteria
explained above, resulting in 80 papers eligible for a full-text
review. The authors then removed 27 more articles based on
the full-text review. Hence, the final number of studies included
in the systematic review was 53, with consensus from both
authors.

Figure 4. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow chart illustrating the process of selecting eligible
publications for inclusion in the systematic review. WoS: Web of Science.
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Table 1 outlines all characteristics of the final selected studies
(n=53), including the objective of the study and AI methods
used, as well as classification of all articles by latent risk factors
of patient safety according to (a) Clinical Alarms/Alerts, (b)
Clinical Reports, and (c) Adverse Drug Event/Drug Safety.
Table 1 also reports the findings obtained regarding changes in
patient safety outcomes.

The studies mostly reported positive changes in patient safety
outcomes, and in most cases improved or outperformed
traditional methods. For instance, AI was successful in
minimizing false alarms in several studies and also improved
real-time safety reporting systems (Table 1). AI was also able
to extract useful information from clinical reports. For example,

AI helped in classifying patients based on their ailments and
severity, identified common incidents such as fall risks, delivery
delays, hospital information technology errors, bleeding
complications, and others that pose risks to patient safety. AI
also helped in minimizing adverse drug effects. Further, some
studies reported poor outcomes of AI, in which AI’s
classification accuracy was lower than that of clinicians or
existing standards.

Table 2 outlines the performance and accuracy measures of AI
models used by the final selected studies, demonstrating the
heterogeneity in AI performance measures adopted by different
studies.
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Table 1. Evidentiary table of 53 selected publications.

Findings (patient safety outcomes)AIa methodStudy themeObjectiveReference

Machine-learning (ML) models could distinguish clinically
relevant pulse arterial O2 saturation, blood pressure, and

KNNb, NBc,

LRd, SVMe, RFf

Clinical
alarms/alerts

To classify alerts as real or
artifacts in online noninva-
sive vital sign data streams

Chen et al [57]

respiratory rate from artifacts in an online monitoring dataset

(AUCg>0.87)and minimize alarm fa-
tigue and missed true insta-
bility

ML algorithm along with MMD was effective in suppressing
false alarms

MMDi, DTjClinical
alarms/alerts

To minimize false alarms

in the ICUh
Ansari et al [58]

SVM reduced false alarm rates. The model gave an overall
true positive rate of 95% and true negative rate of 85%

SVMClinical
alarms/alerts

To minimize the rate of
false critical arrhythmia
alarms

Zhang et al [59]

A false alarm reduction score of 65.52 was achieved;

employing an alarm-specific strategy, the model performed
at a true positive rate of 95% and true negative rate of 78%.

False alarms for extreme tachycardia were suppressed with
100% sensitivity and specificity

BCTk, SVM, RF,

RDACl

Clinical
alarms/alerts

To reduce false alarms by
using multimodal cardiac
signals recorded from a
patient monitor

Antink et al
[60]

Out of 5 false alarms, 4 were suppressed; 77.39% real-time
model accuracy

RFClinical alarms or
alerts

To classify true and false
cardiac arrhythmia alarms

Eerikäinen et al
[61]

The ML method identified the sites by risk of underreporting
and enabled real-time safety reporting. The proposed model

ML (not dis-
closed)

Clinical
alarms/alerts

Develop a predictive mod-
el that enables
Roche/Genentech Quality

Menard et al
[62]

had an AUC of 0.62, 0.79, and 0.92 for simulation scenarios
of 25%, 50%, and 75%, respectively.

This project was part of a broader effort at Roche/Genentech
Product Development Quality to apply advanced analytics

Program Leads oversight
of adverse event reporting
at the program, study, site,
and patient level. to augment and complement traditional clinical quality assur-

ance approaches

85% of the alerts were clinically valid, and 80% were con-
sidered clinically useful; 43% of the alerts caused changes

Probabilistic MLClinical alarms or
alerts

To determine the clinical
usefulness of medication
error alerts in a real-life
inpatient setting

Segal et al [63]

in subsequent medical orders. Thus, the model detected
medication errors

NN-based model could detect health deterioration such as
heart rate variability with more accuracy than one of the

NNmClinical alarms or
alerts

To detect clinical deteriora-
tion

Hu et al [64]

best-performing early warning scores (ViEWS). The positive
prediction value of NN was 77.58% and the negative predic-
tion value was 99.19%

The DEWS identified more than 50% of patients with in-
hospital cardiac arrest 14 hours before the event. It allowed

RF, LR, DEWSn,

and MEWSo

Clinical alarms or
alerts

To develop alarm systems
that predict cardiac arrest
early

Kwon et al [65]

medical staff to have enough time to intervene. The AUC

and AUPRCp of DEWS was 0.85 and 0.04, respectively, and
outperformed MEWS with AUC and AUPC of 0.60 and
0.003, respectively; RF with AUC and AUPC of 0.78 and
0.01, respectively; and LR with AUC and AUPRC of 0.61
and 0.007, respectively.

DEWS reduced the number of alarms by 82.2%, 13.5%, and
42.1% compared with the other models at the same sensitiv-
ity

The selected models performed poorly in classifying incident
categories (48.77% best, using J48), but performed compar-
atively better in classifying free text (76.49% using NB).

J48q, NB multino-
mial, and SVM

Clinical ReportTo classify clinical inci-
dents

Gupta and
Patrick [66]

Binary classifier improved identification of common incident
types: falls, medications, pressure injury, aggression, docu-

Compares binary

relevance, CCr
Clinical ReportTo identify multiple inci-

dent types from a single
report

Wang et al [67]

mentation problem, and others. Automated identification
enabled safety problems to be detected and addressed in a
more timely manner
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Findings (patient safety outcomes)AIa methodStudy themeObjectiveReference

ML algorithms identified the medication event originating
stages, event types, and causes, respectively. The models
improved the efficiency of analyzing the medication event
reports and learning from the reports in a timely manner with
(SVM) F1 of 0.792 and (RF) F1 of 0.925

SVM, NB, RF,

and MLPs
Clinical ReportTo extract information

from clinical reports
Zhou et al [49]

Pyxis Discrepancy and Pharmacy Delivery Delay were found
to be the main two factors affecting patient safety. The NLP
models significantly reduced the time required to analyze
safety reports

NLPtClinical ReportTo analyze patient safety
reports

Fong et al [68]

Care-related complaints were influenced by money and
emotion

NLPClinical ReportTo analyze patient feed-
back

El Messiry et al
[69]

Each clinical study document contained about 6.8 abbrevia-
tions. Each abbreviation can have 1.25 meanings on average.
This helped in identification of acronyms

NLPClinical ReportTo identify the meaning of
abbreviations used in clini-
cal studies

Chondrogiannis
et al [70]

Binary relevance was the best problem transformation algo-
rithm in the multilabeled classifiers. It provided suggestions
on how to implement automated classification of patient
safety reports in clinical settings

Multilabel classi-
fication methods

Clinical ReportTo extract information
from patient safety reports

Liang and Gong
[71]

SVM performed well on datasets with diverse incident types
(85.8%) and data with patient misidentification (96.4%).
About 90% of false positives were found in “near-misses”
and 70% of false negative occurred due to spelling errors

Text classifiers
based on SVM

Clinical reportTo identify risk events in
clinical incident reports

Ong et al [72]

Rule-based NLP was better than the ML approach. NLP de-
tected bleeding complications with 84.6% specificity, 62.7%
positive predictive value, and 97.1% negative predictive
value. It can thus be used for quality improvement and pre-
vention programs

NLP, SVM,

CNNu, and ETv
Clinical ReportTo identify bleeding events

using in clinical notes
Taggart et al
[73]

Electronic health platform provides an intuitive conversation-
al user interface that patients use to connect to their therapist
and self-anamnesis app. The app also allows data sharing
among treating therapists

NLPClinical ReportTo minimize any loss of
information during a doc-
tor-patient conversation

Denecke et al
[74]

The SVM classifier improved the identification of patient
safety incidents. Incident reports containing deaths were
most easily classified with an accuracy of 72.82%. The
severity classifier was not accurate to replace manual
scrutiny

J48, SVM, and
NB

Clinical ReportTo determine the incident
type and the severity of
harm outcome

Evans et al [75]

CNN achieved high F scores (>85%) across all test datasets
when identifying common incident types, including falls,
medications, pressure injury, and aggression. It improved
the process by 11.9% to 45.10% across different datasets

CNN and SVM
ensemble

Clinical ReportTo identify the type and
severity of patient safety
incident reports

Wang et al [76]

The model identified high and low scoring fall reports. Most
of the patient fall reports scores were between 0.3 and 0.4,
indicating poor quality of reports

SVM, RF, and

RNNw
Clinical ReportTo understand the root

causes of falls and increase
learning from fall reports
for better prevention of
patient falls.

Klock et al [47]

The adverse event risk score at the 0.1 level could identify
57.2% of adverse events with 26.3% accuracy from 9.2% of
the validation sample. The adverse event risk score of 0.04
could identify 85.5% of adverse events

Ensemble-MLClinical ReportTo stratify patient safety
adverse event risk and pre-
dict safety problems of in-
dividual patients

Li et al [77]

NLP identified 82% of acute renal failure cases compared
with 38% for patient safety indicators. Similar results were
obtained for venous thromboembolism (59% vs 46%),
pneumonia (64% vs 5%), sepsis (89% vs 34%), and postop-
erative myocardial infarction (91% vs 89%)

NLPClinical ReportTo identify postoperative
surgical complications
within a comprehensive
electronic medical record

Murff et al [78]
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Findings (patient safety outcomes)AIa methodStudy themeObjectiveReference

For severity level, the F score for severity assessment code
(SAC) 1 (extreme risk) was 87.3 and 64% for SAC4 (low
risk) on balanced data. With stratified data, a high recall was
achieved for SAC1 (82.8%-84%), but precision was poor
(6.8%-11.2%).

High-risk incidents (SAC2) and medium-risk incidents
(SAC3) were often misclassified.

Reports about falls, medications, pressure injury, aggression,
and blood tests were identified with high recall and precision

Text-based classi-
fier: LR, SVM

Clinical ReportTo automate the identifica-
tion of patient safety inci-
dents in hospitals

Wang et al [79]

In contrast to the univariate analysis, the best performing
multivariate delta check model (SVM) identified errors with
a high degree of accuracy (0.97)

LR, SVMClinical ReportTo detect Wrong Blood in
Tube errors and mitigate
patient harm

Rosenbaum and
Baron [80]

The semisupervised model categorized patient safety reports
into their appropriate patient safety topic and avoided over-
laps; 85% of unlabeled reports were assigned correct labels.

It helped NCPSx analysts to develop policy and mitigation
decisions

NLPClinical ReportTo improve the ability to
extract clinical information
from patient safety reports
efficiently

McKnight [81]

The NB kernel performed best, with an AUC of 0.927, accu-
racy of 0.855, and F score of 0.877.

The overall proportion of cases found relevant was compara-
ble between manually and automatically screened cases; 334
reports identified by the model as relevant were identified
as not relevant, implying a false-positive rate of 13%.

Manual screening identified 4 incorrect predictions, implying
a false-negative rate of 29%

Text mining
based on: NB,
KNN, rule induc-
tion

Clinical ReportTo analyze patient safety
reports describing health
hazards from electronic
health records

Marella et al
[82]

The modified early warning system accurately predicted the
possibility of death for the top 13.3% (34/255) of patients at
least 40.8 hours before death

RF, XGBy,
boosting SVM,

LASSOz, and
KNN

Clinical ReportTo validate a real-time
early warning system to
predict patients at high risk
of inpatient mortality dur-
ing their hospital episodes

Ye et al [83]

Unigram models performed better than Bigram and combined

models. It identified HITaa-related events trained on PSEbb

free-text descriptions from multiple states and health care
systems. The unigram LR model gave an AUC of 0.931 and
an F1 score of 0.765. LR also showed potential to maintain
a faster runtime when more reports are analyzed. The final
HIT model had less complexity and was more easily sharable

Unigram and Bi-
gram LR, SVM

Clinical ReportTo identify health informa-
tion technology-related
events from patient safety
reports

Fong et al [84]

27 out of 74 (36.5%) PANDIT advice differed from those
provided by diabetes nurses. However, only one of these
(1.4%) was considered unsafe by the panel

PANDITDrug safetyTo establish whether pa-
tients with type 2 diabetes

can safely use PANDITcc

and whether its insulin
dosing advice is clinically
safe

Simon et al [85]

The 10‐fold crossvalidation improved the identification of
drug-drug interaction with AUC>0.97, which is significantly
greater than the analogously developed ML model (0.67)

SVMDrug safetyTo predict drug-drug inter-
actions

Song et al [86]

CART exhibited high predictive accuracy of 78.94% for al-
lergic reactions, 88.69% for renal, and 90.22% for the liver.
CHAID model showed a high accuracy of 89.74% for the
central nervous system

CHAIDdd and

CARTee

Drug safetyTo identify drugs that
could be suspected of
causing adverse reactions
in the central nervous sys-
tem, liver, and kidneys

Hammann et al
[87]

The proposed model (own model) outperformed traditional
LR, SVM, DT, and predicted adverse drug reactions with
an AUC of 0.92

LR, SVM, DT,
NLP, own model

Drug safetyTo predict adverse drug
reactions

Bean et al [88]
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Findings (patient safety outcomes)AIa methodStudy themeObjectiveReference

In the non drug-drug interaction group, the AUC of RF,
MLP, CART, and C4.5 was 0.91, 0.81, 0.79, and 0.784, re-
spectively; for the drug-drug interaction group, the AUC of
RF, CART, MLP, and C4.5 was 0.89, 0.79, 0.77, and 0.77,
respectively.

DT-based approaches and MLP can determine the initial
dosage of a high-alert digoxin medication, which can increase
drug safety in clinical practice

C4.5, KNN,
CART, RF, MLP,
and LR

Drug safetyTo predict the appropriate-
ness of initial digoxin
dosage and minimize drug-
drug adverse interactions

Hu et al [89]

A total of 33 trial sets were evaluated by the algorithm and
reviewed by pharmacovigilance experts. After every 6 trial
sets, drug and adverse event dictionaries were updated, and
rules were modified to improve the system. The model
identified adverse events with 92% precision and recall

NLPDrug safetyTo identify adverse drug
effects from unstructured
hospital discharge sum-
maries

Tang et al [90]

The proposed model improved warfarin dosage when com-
pared to the baseline (mean absolute error 0.394); reduced
mean absolute error by 40.04%

KNN, SVRff,

NN-BPgg, MThh

Drug safetyTo predict the dosage of
warfarin

Hu et al [91]

Collaborative filtering identified the top 10 missing drugs
about 40% to 50% of the time and the therapeutic missing
drugs about 50% to 65% of the time

LR, KNNDrug safetyTo improve medication
reconciliation task

Hasan et al [92]

Mean (SD) cumulative adherence based on the AI platform
was 90.5% (7.5%). Plasma drug concentration levels indicat-
ed that adherence was 100% (15/15) and 50% (6/12) in the
intervention and control groups, respectively

Cell phone–based
AI platform

Drug safetyTo evaluate the use of a
mobile AI platform on
medication adherence in
stroke patients on anticoag-
ulation therapy

Labovitz et al
[93]

All patients completed the task. The software improved
reconciliation; all patients identified at least one error in their
electronic medical record medication list; 8 of 10 patients
reported that they would use the device in the future. The
entire team (clinical and patients) liked the device and pre-
ferred to use it in the future

iPad-based soft-
ware tool with an
AI algorithm

Drug safetyTo improve the reconcilia-
tion method

Long et al [94]

ABC4D was safe for use as an insulin bolus dosing system.
A trend suggesting a reduction in postprandial hypoglycemia
was observed.

The median (IQR) number of postprandial hypoglycemia
episodes within 6 h after the meal was 4.5 (2.0-8.2) in week
1 versus 2.0 (0.5-6.5) in week 6 (P=.10). No episodes of se-
vere hypoglycemia occurred during the study

ABC4DDrug safetyTo assess proof of concept,
safety, and feasibility of

ABC4Dii in a free-living
environment over 6 weeks

Reddy et al [95]

75% of the chart-reviewed alerts generated by MedAware
were valid from which medication errors were identified. Of
these valid alerts, 75.0% were clinically useful in flagging
potential medication errors.

MedAware, prob-
abilistic ML

Drug safetyTo evaluate the perfor-
mance and clinical useful-
ness of medication error
alerts generated by an
alerting system

Schiff et al [96]

The hybrid algorithm yielded precision (P) of 95.0%, recall
(R) of 91.6%, and F value of 93.3% on medication entity
identification, and P=98.7%, R=99.4%, and F=99.1% on
attribute linkage.

The combination of the hybrid system and medication
matching system gave P=92.4%, R=90.7%, and F=91.5%,
and P=71.5%, R= 65.2%, and F=68.2% on classifying the
matched and the discrepant medications, respectively

Hybrid system
consisting of ML
algorithms and
NLP

Drug safetyTo develop a computerized
algorithm for medication
discrepancy detection and
assess its performance on
real-world medication rec-
onciliation data

Li et al [97]

The NLP-assisted manual review identified an additional
728 (3.1%) patients with evidence of clinically diagnosed
problem opioid use in clinical notes.

NLPDrug safetyTo identify evidence of
problem opioid use in
electronic health records

Carrell et al
[98]

CSS detected more hospital-associated infections than man-
ual chart review (92% vs 34%); CSS missed events that were
not stored in a coded format

CSSjj (ML)Drug safetyTo evaluate the source of
information affecting dif-
ferent adverse events

Tinoco et al
[99]
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Findings (patient safety outcomes)AIa methodStudy themeObjectiveReference

The Gaussian SVM model yielded 78% prediction accuracy
for the drug dataset, including all diseases.

The ensemble of bagged tree and linear SVM models in-
volved 89% of the accuracies for psycholeptics and psycho-
analytic drugs

SVM, Boosted
and Bagged trees
(Ensemble)

Drug safetyTo classify approved drugs
from withdrawn drugs and
thus reduce adverse drug
effects

Onay et al [100]

CARD demonstrated higher accuracy in identifying known
drug interactions compared to the traditional method (20%
vs 10%);

CARD yielded a lower number of drug combinations that
are unknown to interact (50% for CARD vs 79% for associ-
ation rule mining).

Causal Associa-
tion Rule Discov-
ery (CARD)

Drug safetyTo discover drug-drug in-
teractions from the Food
and Drug Administration’s
adverse event reporting
system and thus prevent
patient harm

Cai et al [101]

Joint modeling improved the identification of adverse drug
events from 0.62 to 0.65

BilSTMkk, CRF-

NNll

Drug safetyTo extract adverse drug
events from clinical narra-
tives and automate pharma-
covigilance.

Dandala et al
[102]

Neural fingerprints from the deep learning model
(AUC=0.72) outperformed all other methods in predicting
adverse drug reactions.

The model identified important molecular substructures that
are associated with specific adverse drug reactions

Deep learningDrug safetyTo predict and prevent ad-
verse drug reactions at an
early stage to enhance drug
safety

Dey et al [103]

MADEx achieved the top-three best performances (F1 score
of 0.8233) for clinical name entity recognition, adverse drug
effect, and relations from clinical texts, which outperformed
traditional methods

MADEx, LSTM-

RNNmm, CRFnn,
SVM, RF

Drug safetyTo identify medications,
adverse drug effects, and
their relations with clinical
notes

Yang et al [104]

The micro-averaged F1 score was 80.9% for named entity
recognition, 88.1% for relation extraction, and 61.2% for the
integrated systems

NLPDrug safetyTo identify adverse drug
effect symptoms and drugs
in clinical notes

Chapman et al
[105]

Experimental results showed the usefulness of the proposed
pattern discovery method by improving the standard baseline
adverse drug reaction by 23.83%

LRMoo, BNMpp,

BCP-NNqq

Drug safetyTo detect adverse drug re-
actions

Lian et al [106]
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Findings (patient safety outcomes)AIa methodStudy themeObjectiveReference

The proposed computational framework showed that an in
silico model built on this framework can achieve satisfactory
cardiotoxicity adverse drug reaction prediction performance
(median AUC=0.771, accuracy=0.675, sensitivity=0.632,
and specificity=0.789).

SVM, LRDrug safetyTo predict adverse drug
effects

Huang et al
[107]

aAI: artificial intelligence.
bKNN: K-nearest neighbor.
cNB: naive Bayes.
dLR: logistic regression.
eSVM: support vector machine.
fRF: random forest.
gAUC: area under the curve.
hICU: intensive care unit.
iMMD: multimodal section.
jDT: decision tree.
kBCT: binary classification tree.
lRDAC: regularized discriminant analysis classifier.
mNN: neural network.
nDEWS: deep learning–based early warning system.
oMEWS: modified early warning system.
pAUPRC: area under the precision-recall curve.
qJ48: decision tree algorithm.
rCC: closure classifier.
sMLP: multilayer perceptron.
tNLP: natural language processing.
uCNN: convolutional neural network.
vET: extra tree.
wRNN: recurrent neural network.
xNCPS: National Center for Patient Safety.
yXGB: extreme gradient boosting.
zLASSO: least absolute shrinkage and selection operator.
aaHIT: health information technology.
bbPSE: patient safety event.
ccPANDIT: Patient Assisting Net-Based Diabetes Insulin Titration.
ddCHAID: Chi square automatic interaction detector.
eeCART: classification and regression tree.
ffSVR: support vector regression.
ggNN-BP: neural network-back propagation.
hhMT: model tree.
iiABC4D: Advanced Bolus Calculator For Diabetes.
jjCSS: clinical support system.
kkBiLSTM: bi-long short-term memory neural network.
llCRF-NN: conditional random field neural network.
mmLSTM-RNN: long short-term memory-recurrent neural network.
nnCRF: conditional random field neural network.
ooLRM: logistic regression probability model.
ppBNM: Bayesian network model.
qqBCP-NN: Bayesian confidence propagation neural network.
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Table 2. Performance of artificial intelligence.

Performance measures of the best modelComparison/other
models

Best model rec-
ommended

Reference

otherF measurePrecisionSpecificityRecallAUROCaAccuracy

N/AN/AN/Ac0.7890.6320.7710.675Logistic regressionSVMbHuanget al [107]

Chi-
square

N/AN/AN/AN/AN/AN/ABayesian network
model; likelihood

Ensemble of
three models

Lian et al [106]

im-ratio model;

BCPNNd proved
by
28.83%

N/A0.612N/AN/AN/AN/AN/ACRF; RF model for
relation extraction

Integrated NLPe

with RFf model

Chapman et al
[105]

for relation extrac-

tion and CRFg

model

N/A0.61250.5758N/A0.6542N/AN/ARNNh; CRF; SVM;
RF

MADEx (long
short-term memo-
ry CRF+SVM)

Yang et al [104]

N/A0.400N/A0.930.500.820.9110 other chemical
fingerprints

Neural finger-
print (deep learn-
ing)

Dey et al [103]

N/A0.83 concept
extraction;

0.846
concept

N/A0.822
concept

N/AN/ABiLSTM+CRF (se-
quential); BiL-
STM+CRF (joint)

BiLSTMi+CRF
(joint and exter-
nal resources)

Dandala et al
[102]

0.87 relation
classification

extrac-
tion;
0.888 rela-

extrac-
tion;
0.855 rela-

tion classi-
fication

tion classi-
fication

Identify-
ing drug

N/AN/AN/AN/AN/AN/AAssociation rule
mining

CARDjCai et al [101]

interac-
tion
20%

N/A0.91N/A1.000.830.880.89Boosted and bagged
trees (ensemble)

LSVMkOnay et al [100]

Number
of

N/AN/AN/AN/AN/AN/AManual chart reviewComputerized
surveillance sys-
tem

Tinoco et al [99]

events
detected
92%

(HAIl),
82%

(SSIm),
91%
(LR-

TIn),
99%

(UTIo),
100%

(BSIp),
52%

(ADEq)
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Performance measures of the best modelComparison/other
models

Best model rec-
ommended

Reference

otherF measurePrecisionSpecificityRecallAUROCaAccuracy

Identi-
fied
3.1%
addition-
al pa-
tients
with
opioid
prob-
lems

N/AN/AN/AN/AN/AN/AManual chart reviewNLP-assisted
manual review

Carrel et al [98]

N/A0.9150.924N/A0.907N/AN/ARule-based method;
CRF

NLP-based hy-
brid model

Li et al [97]

75% of
the iden-
tified
alerts
were
clinical-
ly mean-
ingful

N/AN/AN/AN/AN/A0.75Traditional CDSMedAware, a
probabilistic ma-
chine-learning

CDSr system

Schiff et al [96]

ABC4D
was su-
perior to
nonadap-
tive bo-
lus cal-
culator
and also
more us-
er
friendly

N/AN/AN/AN/AN/AN/AN/AABC4Ds smart-
phone app (based

on CBRt, an AIu

technique)

Reddy et al [95]

100%
adher-
ence in
the inter-
vention
group

N/AN/AN/AN/AN/AN/AN/AAI smartphone
app

Long et al [93]

Simple
algo-
rithms
such as
popular
algo-
rithm,
co-oc-
cur-
rence,
and
KNN
per-
formed
better
than
more
com-
plex lo-
gistic re-
gression

N/AN/AN/AN/AN/AN/ALogistic regression;
KNN; random algo-
rithm; co-occur-
rence; drug populari-
ty

Co-occurrence

KNNv and popu-
lar algorithm

Hasan et al [92]
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Performance measures of the best modelComparison/other
models

Best model rec-
ommended

Reference

otherF measurePrecisionSpecificityRecallAUROCaAccuracy

Mean
absolute
error for
both
0.210

N/AN/AN/AN/AN/AN/AMLPx; model tree;
KNN

Bagged SVRw

and bagged vot-
ing

Hu et al [91]

N/AN/A0.75N/A0.59N/AN/AN/ANLPTang et al [90]

N/AN/AN/A0.8880.7820.9120.839C4.5; KNN;

CARTy; MLP; logis-
tic regression

RFHu et al [89]

N/AN/AN/AN/AN/A0.92N/ALogistic regression;
SVM; decision tree;
NLP

Own modelBean et al [88]

CHAID
outper-
formed
CART
only in
central
nervous
system
classifi-
cation

N/AN/AN/AN/AN/A0.902CART and CHAIDzCARTHamma et al [87]

N/AN/A0.680.970.24N/AN/AAnalogous machine-
learning algorithms
(not mentioned)

Similarity-based
SVM

Song et al [86]

36.5%
PAN-
DIT rec-
ommen-
dation
did not
match
with the
nurses;
1.4% of
the rec-
ommen-
dations
were un-
safe.

N/AN/AN/AN/AN/A0.635NursesPANDITaaSimon et al [85]

Uni-
gram
SVM
and lo-
gistic re-
gression
were
compa-
rable

0.7650.838N/A0.8300.914N/AUnigram, bigram,
and combined logis-
tic regression and
SVM

Unigram logistic
regression

Fong et al [84]

C-statis-
tic of
0.884

N/AN/AN/AN/AN/AN/ALinear and nonlinear
machine-learning al-
gorithms

RFYe et al [83]

N/A0.877N/AN/AN/A0.9270.855Naïve Bayes; KNN
and rule induction

Naïve Bayes ker-
nel

Marella et al [82]

N/AN/AN/AN/AN/AN/ALabeled
0.52; unla-
beled
0.80

N/ANLP; SELFbbMcKnight [81]
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Performance measures of the best modelComparison/other
models

Best model rec-
ommended

Reference

otherF measurePrecisionSpecificityRecallAUROCaAccuracy

Positive
predic-
tive val-
ue 0.52

N/AN/A0.960.800.97N/ALogistic regressionSVMRosenbaum and
Baron [80]

N/A0.7830.783N/A0.783N/AN/ARegularized logistic
regression; linear
SVM

Binary SVM with
radial basis func-
tion kernel

Wang et al [79]

Kappa
0.76;
mean
absolute
error
0.03

0.780.790.980.780.96N/AJ48; naïve Bayes;
SVM

Naïve Bayes
multinomial

Gupta and
Patrick [66]

Ham-
ming
loss
0.80

0.7360.689N/A0.791N/A0.654Binary relevance of
SVM, classifier
chain of SVM

Ensemble classifi-
er chain of SVM
with radial basis
function kernel

Wang et al [67]

N/A0.758 SVM
for event type;
0.925 RF for
event cause

0.788
SVM for
event
type;
0.927 RF
for event
cause

N/A0.769SVM
for event
type;
0.927 RF
for even
cause

N/AN/ANaïve Bayes and
MLP

SVM and RFZhou et al [49]

N/A0.9601.0001.000.9200.9600.990NLP with decision
tree

NLP with SVMFong et al [68]

N/AN/AN/A0.6960.770N/A0.730Scaled linear discrim-
inant analysis; SVM;

LASSOcc and elas-
tic-net regularized
generalized linear
models; max en-
tropy; RF; neural
network

NLPEl Messiry et al
[69]

Model
devel-
oped in
this
study
identi-
fied that
each
clinical
report
contains
about
6.8 ab-
brevia-
tions

N/AN/AN/AN/AN/AN/AN/ANLPChondrogiannis
et al [70]

Micro F
measure
0.212

N/AN/AN/AN/AN/AN/ASVM; decision rule;
decision tree; KNN

Naïve Bayes with
binary relevance

Liang and Gong
[71]
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Performance measures of the best modelComparison/other
models

Best model rec-
ommended

Reference

otherF measurePrecisionSpecificityRecallAUROCaAccuracy

N/A0.860 multi-
type dataset;
0.960 patient
misidentifica-
tion dataset

0.880
multitype
dataset;
0.990 pa-
tient
misidenti-
fication
dataset

N/A0.830
multitype
dataset;
0.940 pa-
tient
misidenti-
fication
dataset

0.920
multitype
dataset;
0.980 pa-
tient
misidenti-
fication
dataset

N/AText classifier with
naïve Bayes

Text classifier
with SVM

Ong et al [72]

Positive
predic-
tive val-
ue
0.627;
negative
predic-
tive val-
ue
0.971

N/AN/A0.846N/AN/AN/ASVM; extra trees;
convolutional neural
network

Rule-based NLPTaggart et al [73]

Mini-
mize in-
forma-
tion loss
during
clinical
visits

N/AN/AN/AN/AN/AN/AN/AAIMLddDenecke et al
[74]

N/AN/AN/AN/AN/A0.891 inci-
dent type;
0.708
severity
of harm

0.728J48; naïve BayesSVMEvans et al [75]

N/A0.850N/AN/AN/AN/AN/ASVMConvolutional
neural network

Wang et al [76]

N/A0.648899
SVM; 0.889
RNN

N/AN/AN/AN/A0.899
SVM;
0.900
RNN

RFSVM and RNNeeKlock et al [47]

C-statis-
tic
0.880

N/AN/AN/A0.572
from 0.10
risk
score;
0.855
from 0.04
risk score

N/AN/AN/AEnsemble ma-
chine learning
(bagging, boost-
ing, and random
feature method)

Li et al [77]

N/AN/AN/A0.9380.770N/AN/APatient safety indica-
tors

NLPMuff et al [78]

AUPRCff1.000N/A0.7650.7570.850N/AModified early
warning system; RF;
logistic regression

Deep learning-
based early warn-
ing system

Kwon et al [65]

Positive
predic-
tive val-
ue
0.726

0.81N/AN/AN/A0.880N/AViEWSggNeural network
model

Hu et al [64]
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Performance measures of the best modelComparison/other
models

Best model rec-
ommended

Reference

otherF measurePrecisionSpecificityRecallAUROCaAccuracy

Clinical-
ly rele-
vant
85%,
alert
burden
0.04%

N/AN/AN/AN/AN/AN/ALegacy CDSMedAware (a

CDSShh) + EHRii
Segal et al [63]

N/AN/AN/AN/AN/A0.970N/AN/AMachine learning
(name not dis-
closed)

Menard et al [62]

N/A0.782N/A0.7800.950N/AN/ABinary classification
tree; regularized dis-
criminant analysis
classifier; SVM; RF

RFEerikainen et al
[61]

N/A0.782N/A0.7800.950N/AN/ABinary classification
tree; regularized dis-
criminant analysis
classifier; SVM; RF

Combined (select-
ing the best ma-
chine- learning
algorithm for
each alarm type)

Antink et al [60]

N/A0.809N/A0.8500.950N/AN/AN/ACost-sensitive
SVM

Zhang et al [59]

N/A0.762N/A0.8500.890N/AN/AN/AMultimodal ma-
chine learning us-
ing decision tree

Ansari et al [58]
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Performance measures of the best modelComparison/other
models

Best model rec-
ommended

Reference

otherF measurePrecisionSpecificityRecallAUROCaAccuracy

N/AN/AN/AN/AN/A0.870N/AN/ARFChen et al [57]

aAUROC: area under the receiver operating characteristic curve.
bSVM: support vector machine.
cN/A: not applicable (Not reported).
dBCPNN: Bayesian confidence propagation neural network.
eNLP: natural language processing.
fRF: random forest.
gCRF: conditional random field.
hRNN: recurrent neural network.
iBiLSTM: Bi-long short-term memory neural network.
jCARD: casual association rule discovery.
kLSVM: linear support vector machine.
lHAI: hospital-associated infection.
mSSI: surgical site infection.
nLRTI: lower respiratory tract infection.
oUTI: urinary tract infection.
pBSI: bloodstream infection.
qADE: adverse drug event.
rCDS: clinical decision support.
sABC4D: Advanced Bolus Calculator For Diabetes.
tCBR: case-based reasoning.
uAI: artificial intelligence.
vKNN: K-nearest neighbor.
wSVR: support vector regression.
xMLP: multilayer perceptron.
yCART: classification and regression tree.
zCHAID: Chi square automatic interaction detector.
aaPANDIT: Patient Assisting Net-Based Diabetes Insulin Titration.
bbSELF: semisupervised local Fisher discriminant analysis.
ccLASSO: least absolute shrinkage and selection operator.
ddAIML: artificial intelligence markup language.
eeRNN: recurrent neural network.
ffAUPRC: area under the precision-recall curve.
ggVieWS: VitalPac Early Warning Score.
hhCDSS: clinical decision support system.
iiEHR: electronic health record.

Study Themes and Findings

Clinical Alarms and Alerts
Nine publications addressed clinical alarms/alerts using AI
techniques. The most widely used method was random forest
(n=5) followed by support vector machine (n=3) and neural
network/deep learning (n=3).

Studies under this category used electrocardiogram data from
the PhysioNet Challenge public database and PhysioNet MIMIC
II database. Five studies focused on reducing false alarm rates
arising due to cardiac ailments such as arrhythmia and cardiac
arrest in an intensive care unit setting [58-61,65]. The remaining
four studies focused on improving the performance of clinical
alarms in classifying clinical deterioration such as fluctuation

in vital signs [57], predicting adverse events [62], identifying
adverse medication events [63], and deterioration of patient
health with hematologic malignancies [64].

Clinical Reports
We identified 21studies concerning clinical reports. Studies in
this group primarily focused on extracting information from
clinical reports such as safety reports (internal to the hospital),
patient feedback, EHR notes, and others typically derived from
incident monitoring systems and patient safety organizations.
The most widely used method was support vector machine
(n=11), followed by natural language processing (n=7) and
naïve Bayes (n=5). We also identified decision trees (n=4), deep
learning models (n=3), J48 (n=2), and other (n=9) algorithms.
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The majority of articles focused on automating the process of
patient safety classifications. These studies used machine
learning and natural language processing techniques to classify
clinical incidents [66] from the Incident Information
Management System and to identify risky incidents
[71,79,81,108] in patient safety reports retrieved from different
sources, including the university database and the Veterans
Affairs National Center for Patient Safety database. Some
studies also analyzed medication reports [49] from structured
and unstructured data obtained from the patient safety
organization, and evaluated patient feedback [69] retrieved from
the Patient Advocacy Reporting System developed at Vanderbilt
and associated institutions.

Several studies focused on classifying the type and severity of
patient safety incident reports using data collected by different
sources such as universities [75], and incident reporting systems
such as Advanced Incident Management Systems (across
Australia) and Riskman [67,75,76]. Others analyzed hospital
clinical notes internally (manually annotated by clinicians and
a quality committee) and data retrieved from patient safety
organizations to identify adverse incidents such as delayed
medication [68], fall risks [47,67], near misses, patient
misidentification, spelling errors, and ambiguity in clinical notes
[109]. One study analyzed clinical study descriptions from
clinicaltrials.gov and implemented an AI system to detect all
abbreviations and identify their meaning to minimize incorrect
interpretations [70]. Another study used inpatient laboratory
test reports from Sunquest Laboratory Information System and
identified wrong blood in tube errors [80].

Studies used clinical reports from various sources, including
patient safety organizations, EHR data from Veterans Health
Administration and Berkshire Health Systems, and deidentified
notes from the Medical Information Mart for Intensive Care.
These studies focused on extracting relevant information
[74,77,82,84] to predict bleeding risks among critically ill
patients [73], postoperative surgical complications [78],
mortality risk [83], and other factors such as lab test results and
vital signs [77] influencing patient safety outcomes.

Adverse Drug Events or Drug Safety
Twenty-three publications were classified under drug safety.
These studies primarily addressed adverse effects related to
drug reactions. The most widely used method was random forest
(n=8), followed by natural language processing (n=7) and
logistic regression (n=6). Algorithms including natural language
processing (n=5), logistic regression (n=4), mobile or web apps
(n=3), AI devices (n=2), and others (n=5) were also used.

Studies in this category retrieved data from different repositories
such as DrugBank, Side Effect Resource, the Food and Drug
Administration (FDA)’s adverse event reporting system,
University of Massachusetts Medical School, Observational
Medical Outcomes Partnership database, and Human
Protein-Protein Interaction database to identify adverse drug
interactions and reactions that can potentially negatively
influence patient health [86-88,101,102,105-107,110]. Some
studies also used AI to predict drug interactions by analyzing
EHR data [88], unstructured discharge notes [90], and clinical
charts [99,104]. One study also used AI to identify drugs that
were withdrawn from the commercial markets by the FDA
[100].

Some studies used AI to predict the dosage of medicines such
as insulin, digoxin, and warfarin [85,89,91,95]. AI in drug safety
was also used to scan through the hospital’s EHR data and
identify medication errors (ie, wrong medication prescriptions)
[96]. One study used AI to monitor stroke patients and track
their medication (anticoagulation) intake [93]. Several studies
used AI to predict a medication that a patient could be
consuming but was missing from their medication list or health
records [92,94,97]. Another study used AI to review clinical
notes and identify evidence of opioid abuse [98].

Visual Representations of Safety and Chronology of the
Studies
Figure 5 illustrates the details of patient safety issues/outcomes
studied and reported under each classified theme using AI
algorithms at the clinical level.

Figure 5. Identified factors influencing patient safety outcomes. EHR: electronic health record.
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Figure 6 further shows how the application of AI in studies
reporting patient safety outcomes in our review evolved over

time between January 2009 and August 2019.

Figure 6. Timeline of artificial intelligence application to address factors influencing patient safety (clinical reports, drug safety, and clinical alarms)
between 2009 and August 2019. ABC4D: Advanced Bolus Calculator For Diabetes; AI: artificial intelligence; BCP-NN: Bayesian confidence propagation
neural network; BCT: binary classification tree; BiLSTM: bi-long short-term memory neural network; BNM: Bayesian network model; CART:
classification and regression tree; CHAID: Chi-square automatic interaction detector; CRF-NN: conditional random field neural network; DEWS: deep
learning-based early warning system; DT: decision tree; KNN, K-nearest neighbor; LASSO: least absolute shrinkage and selection operator; LR: logistic
regression; LSTM-RNN: long short-term memory-recurrent neural network; MEWS: modified early warning system; ML: machine learning; MLP:
multilayer perception; MMD; multimodal detection; MT: model tree; NB: naive Bayes; NLP: natural language processing; NN: neural network; NN-BP:
neural network back propagation; PANDIT: Patient Assisting Net-Based Diabetes Insulin Titration; RF: random forest; RNN: recurrent neural network;
SVM: support vector machine; SVR, support vector regression; XGB; extreme gradient boosting.

Discussion

Principal Findings
Many studies have been conducted to exhibit the analytical
performance of AI in health care, particularly as a diagnostic
and prognostic tool. To our knowledge, this is the first
systematic review exploring and portraying studies that show
the influence of AI (machine-learning and natural language
processing techniques) on clinical-level patient safety outcomes.

We identified 53 studies within the scope of the review. These
53 studies used 38 different types of AI systems/models to
address patient safety outcomes, among which support vector
machine (n=17) and natural language processing (n=12) were
the most frequently used. Most of the reviewed studies reported
positive changes in patient safety outcomes.

Analysis of all studies showed that there is a lack of a
standardized benchmark among reported AI models. Despite
varying AI performance, most studies have reported a positive
impact on safety outcomes (Table 2), thus indicating that safety
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outcomes do not necessarily correlate to AI performance
measures [26]. For example, one identified study with an
accuracy of 0.63 that implemented Patient Assisting Net-Based
Diabetes Insulin Titration (PANDIT) reported a negative impact
of AI on safety outcomes. The PANDIT-generated
recommendations that did not match with the recommendations
of nurses (1.4% of the recommendations) were identified as
unsafe [85]. In contrast, the study implementing natural language
processing to extract clinical information from patient safety
reports showed a positive impact on patient safety outcomes
with accuracy of 0.53 [81]. Similarly, the FDA-approved
computer-aided diagnosis of the 1990s, which significantly
increased the recall rate of diagnosis, did not improve safety or
patient outcomes [111]. According to our review, AI algorithms
are rarely scrutinized against a standard of care (clinicians or
clinical gold standard). Relying on AI outcomes that have not
been evaluated against a standard benchmark that meets clinical
requirements can be misleading. A study conducted in 2008
[112] developed and validated an advanced version of the
QRISK cardiovascular disease risk algorithm (QRISK2). The
study reported improved performance of QRISK2 when
compared to its earlier version. However, QRISK2 was not
compared against any clinical gold standard. Eight years later,
in 2016, The Medicines & Healthcare Products Regulatory
Agency identified an error in the QRISK 2 calculator [113];
QRISK2 underestimated or overestimated the potential risk of
cardiovascular disease. The regulatory agency reported that a
third of general practitioner surgeries in England might have
been affected [113] due to the error in QRISK2. Globally, there
are several Standards Development Organizations developing
information technology and AI standards to address varying
standardization needs in the domain of cloud computing,
cybersecurity, and the internet of things [114]. However, there
has been minimal effort to standardize AI in the field of health
care. Health care comprises multiple departments, each having
unique or different requirements (clinical standards). Thus,
health care requires so-called “vertical standards,” which are
standards developed for specific application areas such as drug
safety (pharmaceuticals), specific surgeries, outpatients and
inpatients with specific health concerns, and emergency
departments [114]. In contrast, standards that are not correctly
tailored for a specific purpose may hamper patient safety.

Without a standardized benchmark, it becomes challenging to
evaluate whether a particular AI system meets clinical
requirements (gold standard) or performs significantly better
(improves patient safety) or worse (harms patient) than other
similar systems in a given health care context. To generate the
best possible (highest) performance outcome, AI algorithms
may include unreliable confounders into the computing process.
For instance, in one study, an algorithm was more likely to
classify a skin lesion as malignant if an image (input data) had
a ruler in it because the presence of a ruler correlated with an
increased likelihood of a cancerous lesion [115]. The presence
of surgical skin markings has also been shown to falsely increase
a deep-learning model’s melanoma probability scores and hence
the false-positive rate [116]. Moreover, there has been great
emphasis focused on the importance to standardization of AI
by developed countries such as the European Union, United
States, China, and Japan. For instance, on February 11, 2019,

the President of the United States issued an Executive Order
(EO 13859) [117] directing federal agencies to actively
participate in AI standards development. According to the Center
for Data Innovation and The National Institute of Standards and
Technology, a standardized AI benchmark can serve as a
mechanism to evaluate and compare AI systems [114]. FDA
Commissioner Scott Gottlieb acknowledged the importance of
AI standardization that can assure that ongoing algorithm
changes follow prespecified performance objectives and use a
validation process that ensures safety [118].

Another major finding of this review is high heterogeneity in
AI reporting. AI systems have been developed to help clinicians
in estimating risks and making informed decisions. However,
the evidence indicates that the quality of reporting of AI model
studies is heterogeneous (not standard). Table 2 demonstrates
how different studies that implemented the same AI used
different evaluation metrics to measure its performance.
Heterogeneity in AI reporting also makes the comparison of
algorithms across studies challenging and might cause
difficulties in obtaining consensus while attempting to select
the best AI for a given situation. Algorithms not only need to
be subjected to comparison on the same data that are
representative of the target population but also the same
evaluation metrics; thus, standardized reporting of AI studies
would be beneficial. The current Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) consists of 22-item checklists that aim to
improve the reporting of studies developing or validating a
prediction model [119,120]. Studies in our review did not use
TRIPOD to report findings. The possible reason behind this can
be the design of TRIPOD, which focuses on a regression-based
prediction model.

However, the explanation and elaboration document provides
examples of good reporting methods, which are focused on
models developed using regression. Therefore, a new version
of the TRIPOD statement that is specific to AI/machine-learning
systems (TRIPOD-ML) is in development. It will focus on the
introduction of machine-learning prediction algorithms to
establish methodological and reporting standards for
machine-learning studies in health care [121].

Our findings also identified the need to determine the importance
of an AI evaluation metric. In particular, it is important to
determine which evaluation metric(s) should be measured in a
given health care context. AUROC is considered to be a superior
metric for classification accuracy, particularly when unbalanced
datasets are used [122,123] because it is unaffected by
unbalanced data, which is typical in health care. However, 36
studies in our review did not report AUROC. Evaluation
measures such as precision-recall can also reflect model
performance accurately [123]; however, only 11 studies in our
review evaluated AI based on precision-recall. Using
inappropriate measures to evaluate AI performance might
impose a threat to patient safety. However, no threat to patient
safety due to the use of inappropriate AI evaluation metric was
identified in our review. Future studies should report the
importance of evaluation metrics and determine which measure
(single or multiple measures) is more important and a better
representation of patient safety outcomes. More studies are
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needed to explore the evaluation metric(s) that should be
considered before recommending an AI model.

The findings of our review demonstrate that drug safety,
followed by the analysis of clinical reports, has been the most
common area of interest for the use of AI to address
clinical-level patient safety concerns. The wrong medication or
improper dosage can result in fatal patient health outcomes and
medical malpractice [91]. Of all drug safety concerns, issues
related to inappropriate doses of high-alert medications are of
great interest to the Joint Commission on Accreditation of
Healthcare Organizations [91,124]. Medical errors are reported
as the third leading cause of death in the United States. The
majority of the papers in our review implemented AI to address
drug safety (n=23) concerns, which is one of the most significant
contributors to overall medical errors. These publications
improved patient safety by identifying adverse drug reactions
and preventing incorrect medications or overdoses. Future
studies should further explore how to use AI systems on a larger
scale to diminish medication errors at hospitals and clinics to
save more lives.

Finally, the studies reviewed in this paper have addressed safety
issues as identified by the Health Insurance Portability and
Accountability Act (HIPAA) and the US Department of Health
& Human Services (HHS). The HIPAA regulations identify
risk analysis as part of the administrative safeguard requirement
to improve patient safety. The HHS advocates analysis of
clinical notes to track, detect, and evaluate potential risks to
patients. Many studies (n=21) in our review used AI to identify
patient risk from clinical notes. These studies used AI and
clinical reports to extract safety-related information such as fall
risks, pyxis discrepancies, patient misidentification, patient
severity, and postoperative surgical complications. Our findings
exhibit how, with the help of AI techniques such as natural
language processing, clinical notes and reports have been used
as a data source to extract patient data regarding a broad range
of safety issues, including clinical notes, discharge notes, and
other issues [69,70,73,84]. Our review also indicates that AI
has the potential to provide valuable insights to treat patients
correctly by identifying future health or safety risks [125], to
improve health care quality, and reduce clinical errors [126].
Despite being recognized as one of the major factors responsible
for fatigue, burnout in clinicians, and patient harm [61,127-129],
only 9 studies in our review used AI to improve clinical alarms.
Although studies addressing clinical alarms reported positive
outcomes by minimizing false alarms and identifying patient
health deterioration, the limited number of studies (n= 9)
addressing these issues shows that the field is still in a nascent
period of investigation. Thus, more research is needed to confirm
the impact of AI on patient safety outcomes.

Recommendations for Future Research
Future studies should work toward establishing a gold standard
(for various health care contexts/ disease types/problem types)
against which AI performance can be measured. Future research,
as suggested by Kelly and others in 2019 [119], should also
develop a common independent test (preferably for different
problem types, drug safety/clinical alarms/clinical reports) using

unenriched representative sample data that are not available to
train algorithms.

Our review acknowledges that no single measure captures all
of the desirable properties of a model, and multiple measures
are typically required to summarize model performance.
However, different measures are indicative of different types
of analytical performance. Future studies should develop a
standard framework that can guide clinicians in interpreting the
clinical meaning of AI’s evaluation metrics before integrating
it into the clinical workflow. Future studies should also report
a quantifiable measure of AI demonstrating not only its
analytical performance but also its impact on patient safety
(long and short term), reliability, domain-specific risks, and
uncertainty. Additionally, studies should also ensure data
standardization.

Health databases or storage systems are often not compatible
(integratable) across different hospitals, care providers, or
different departments in the same hospital. Data in health care
are largely unorganized and unstructured [9,50]. Since the
performance of AI heavily depends on data, regulatory bodies
should invest in data infrastructure such as standardization of
EHRs and integration of different health databases. AI trained
on unstructured or biased data might generate misleading results
[51]. According to the National Institute of Standards and
Technology (NIST), standardized data can make the training
data (machine learning input) more visible and usable to
authorized users. It can also ensure data quality and improve
AI performance.

Most of the safety initiatives implemented in health care over
the last decade have been focused on analyzing historical events
to learn and evolve [130,131]. The same was also observed in
our review. AI models were trained on past data. However, in
health care, outcomes are satisfactory because providers make
sensible and just-in-time adjustments according to the demands
of the situation. Future work should train AI on the critical
adjustments made by clinicians, so that AI can adapt to different
conditions in the same manner as clinicians.

The integration of AI systems into the health system will alter
the role of providers. Ideally, AI systems are expected to assist
providers in making faster and more accurate decisions and to
deliver personalized patient care. However, lack of appropriate
knowledge of using complex AI systems and interpreting their
outcome might impose a high cognitive workload on providers.
Thus, the medical education system should incorporate
necessary AI training for providers so that they can better
understand the basic functioning of AI systems and extract
clinically meaningful insight from the outcomes of AI.

Limitation of this Review
This study encompasses publications that matched our inclusion
criteria and operational definition of AI and patient safety. In
addition, we limited the scope of AI to only machine learning
and natural language processing at a clinical level. This review
also only included studies published in English in the last 10
years.
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Conclusion
This systematic review identified critical research gaps that
need attention from the scientific community. The majority of
the studies in the review have not highlighted significant aspects
of AI, such as (a) heterogeneity in AI reporting, (b) lack of a
standardized benchmark, and (c) need to determine the
importance of AI evaluation metric. The identified flaws of AI

systems indicate that further research is needed, as well as the
involvement of the FDA and NIST to develop a framework
standardizing AI evaluation measures and set a benchmark to
ensure patient safety. Thus, our review encourages the health
care domain and AI developers to adopt an interdisciplinary
and systems approach to study the overall impact of AI on
patient safety outcomes and other contexts in health care.
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