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Abstract

Background: An adverse drug event (ADE) is commonly defined as “an injury resulting from medical intervention related to
a drug.” Providing information related to ADEs and alerting caregivers at the point of care can reduce the risk of prescription
and diagnostic errors and improve health outcomes. ADEs captured in structured data in electronic health records (EHRs) as
either coded problems or allergies are often incomplete, leading to underreporting. Therefore, it is important to develop capabilities
to process unstructured EHR data in the form of clinical notes, which contain a richer documentation of a patient’s ADE. Several
natural language processing (NLP) systems have been proposed to automatically extract information related to ADEs. However,
the results from these systems showed that significant improvement is still required for the automatic extraction of ADEs from
clinical notes.

Objective: This study aims to improve the automatic extraction of ADEs and related information such as drugs, their attributes,
and reason for administration from the clinical notes of patients.

Methods: This research was conducted using discharge summaries from the Medical Information Mart for Intensive Care III
(MIMIC-III) database obtained through the 2018 National NLP Clinical Challenges (n2c2) annotated with drugs, drug attributes
(ie, strength, form, frequency, route, dosage, duration), ADEs, reasons, and relations between drugs and other entities. We
developed a deep learning–based system for extracting these drug-centric concepts and relations simultaneously using a joint
method enhanced with contextualized embeddings, a position-attention mechanism, and knowledge representations. The joint
method generated different sentence representations for each drug, which were then used to extract related concepts and relations
simultaneously. Contextualized representations trained on the MIMIC-III database were used to capture context-sensitive meanings
of words. The position-attention mechanism amplified the benefits of the joint method by generating sentence representations
that capture long-distance relations. Knowledge representations were obtained from graph embeddings created using the US Food
and Drug Administration Adverse Event Reporting System database to improve relation extraction, especially when contextual
clues were insufficient.

Results: Our system achieved new state-of-the-art results on the n2c2 data set, with significant improvements in recognizing
crucial drug−reason (F1=0.650 versus F1=0.579) and drug−ADE (F1=0.490 versus F1=0.476) relations.

Conclusions: This study presents a system for extracting drug-centric concepts and relations that outperformed current
state-of-the-art results and shows that contextualized embeddings, position-attention mechanisms, and knowledge graph embeddings
effectively improve deep learning–based concepts and relation extraction. This study demonstrates the potential for deep
learning–based methods to help extract real-world evidence from unstructured patient data for drug safety surveillance.
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Introduction

Background
An electronic health record (EHR) is the systematized collection
of electronically stored health information of patients and the
general population in a digital format [1]. Clinical notes in EHRs
summarize interactions that occur between patients and health
care providers [2]. These notes include observations,
impressions, treatments, drug use, adverse drug events (ADEs),
and other activities arising from each interaction between the
patient and the health care system. Extracting useful information
such as ADEs from these notes and alerting caregivers at the
point of care has the potential to improve patient health
outcomes.

An ADE is commonly defined as “an injury resulting from
medical intervention related to a drug” [3]. ADEs are a major
public health concern and one of the leading causes of morbidity
and mortality [4]. Studies have shown the substantial economic
burden of these undesired effects [5,6]. Although drug safety
and efficacy are tested during premarketing randomized clinical
trials, these trials may not detect all ADEs because such studies
are often small, short, and biased by the exclusion of patients
with comorbid diseases. With the limited information available
when a drug is marketed, postmarketing surveillance has become
increasingly important. Spontaneous reporting systems, such
as the US Food and Drug Administration Adverse Event
Reporting System (FAERS) [7], are monitoring mechanisms
for postmarketing surveillance that enable both physicians and
patients to report ADEs. However, previous studies [8-10] have
exposed various inadequacies with such systems, including
underreporting, reporting biases, and incomplete information,
prompting researchers to explore additional sources to detect
ADEs from real-world data.

Several efforts have been made to extract ADEs automatically
from disparate information sources, including EHRs [11-13],
spontaneous reporting systems [14-16], social media [17-20],
search queries on the web via search engine logs [21,22], and
biology and chemistry knowledge bases [23-25]. Furthermore,
the clinical natural language processing (NLP) community has
organized several open challenges such as the 2010 Informatics
for Integrating Biology & the Bedside/Veterans Affairs NLP
Challenge [26], Text Analysis Conference 2017 Adverse Drug
Reactions Track [27], and BioCreative V Chemical Disease
Relation task [28]. Recently, 2 such challenges, Medication and
Adverse Drug Events from Electronic Health Records (MADE
1.0) [29] and the 2018 National NLP Clinical Challenges (n2c2)
Shared Task Track 2 [30], were organized to extract drugs, drug
attributes, ADEs, reasons for prescribing drugs, and their
relations from clinical notes. The results from these 2 challenges
showed that deep learning techniques outperform traditional
machine learning techniques for this task, and significant
improvement is still required for drug−{ADE, reason} relation
extraction. Specifically, the organizers of these challenges

hypothesized that models that can effectively incorporate the
larger context to capture long-distance relations or leverage
knowledge to capture implicit relations will likely improve the
performance of future systems.

Considering these conclusions, we developed a joint deep
learning–based relation extraction system that helps in extracting
long-distance relations through a position-attention mechanism
and implicit relations through external knowledge from the
FAERS. To the best of our knowledge, no previous research
has been conducted on using the position-attention mechanism
and domain-specific knowledge graph embeddings in ADE
detection.

Relevant Literature

Adverse Drug Event Detection
From the viewpoint of NLP, effective techniques for entity and
relation extraction are fundamental requirements in automatic
ADE extraction. Entity and relation extraction from text has
traditionally been treated as a pipeline of 2 separate subtasks:
named entity recognition (NER) and relation classification.
Previous studies employed traditional machine learning
techniques [31-34], such as conditional random fields (CRF)
[35] for NER and support vector machines [36] for relation
classification. Several recent approaches [37-44], developed on
MADE 1.0 [29] and 2018 n2c2 Shared Task Track 2 [30] data
sets, employed deep learning techniques, such as bidirectional,
long short-term memory–conditional random fields
(BiLSTM-CRFs) [45], for NER and convolutional neural
network (CNN) [46] for relation classification, and showed
numerous advantages resulting in better performance and less
feature engineering. However, there is an inevitable error
propagation issue with pipeline-based methods because of the
following:

1. NER relying on sequence-labeling techniques suffers from
lossy representation when there are overlapping annotations
on entities. For example, in “she was on furosemide and
became hypotensive requiring norepinephrine,” hypotensive
is an ADE with respect to furosemide but a reason with
respect to norepinephrine.

2. NER approaches usually take an input context window that
may not contain the necessary information to determine the
appropriate label (ie, ADE, reason, no label). For example,
in “Patient reports nausea. Started on ondansetron,” the
identification of nausea as a reason requires information
from both sentences.

3. Signs or symptoms are only labeled as ADE or reason if
they are related to a drug (ie, not all signs or symptoms in
the clinical note are annotated). This makes the corpus less
suitable to train an effective relation classification model
as it misses negative candidate pairs for drug−{ADE,
reason} relations.

To address the first 2 issues, we previously proposed a joint
method that outperformed the pipeline method for concept and
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relation extraction on a similar data set (MADE 1.0) [37]. In a
separate study, Li et al [47] proposed a joint method using
multitask learning [48] and made similar observations. To
address the third issue, which was introduced with the n2c2
data set, Wei et al [38] proposed a novel label-encoding scheme
to jointly extract ADE, reason, drug attributes, and their
relations.

Attention-Based Relation Extraction
The attention mechanism allows neural networks to selectively
focus on specific information [49-51]. This has proven to be
effective for NLP problems with long-distance dependencies
such as NER and relation extraction. Zhou et al [52] proposed
an attention-based BiLSTM network and demonstrated its
effectiveness in selectively focusing on words that have decisive
effects on relation classification. Next, Zhang et al [53] extended
the attention mechanism to help networks not only focus on
words based on the semantic information of the sentence but
also the global positions of entities within the sentence. Recently
Dai et al [54] introduced a position-attention mechanism for
joint extraction of entities and overlapping relations. The
position-attention mechanism builds on self-attention by
focusing on both the global dependencies of the input and tokens
of the target entities of interest for relation extraction. Recent
research [37,55] on ADE extraction showed the benefits of
self-attention mechanisms in pipeline-based methods,
specifically for relation classification. However, to the best of
our knowledge, no previous work has focused on using
self-attention or position-attention mechanisms for joint
extraction of entities and relations for ADE extraction.

Knowledge-Aware Relation Extraction
Several approaches [56-59] in the open domain have shown
that incorporating embeddings learned from knowledge bases
benefit deep learning–based relation classification. These
embeddings are typically learned using translation-based
methods such as TransE [60], TransH [61], and TransR [62];

walk-based methods such as DeepWalk [63] and node2vec [64];
or neural network–based methods such as large-scale
information network embedding (LINE) [65] and bipartite
network embedding [66].

Clinical notes are typically written for medical professionals.
Hence, a certain degree of medical knowledge is assumed by
the authors, which is not explicitly expressed in the text. This
is especially true for relations between clinical findings and
drugs, where a drug could either cause (ADE) or treat (reason)
a clinical finding. In our previous study [37], we showed that
augmenting knowledge base features such as proportional report
ratio and reporting odds ratio calculated from the FAERS into
deep learning models can benefit relation classification.
Recently, Chen et al [67] proposed a hybrid clinical NLP system
by combining a general knowledge-based system using the
Unified Medical Language System (UMLS) and BiLSTM-CRF
for concept extraction and attention-BiLSTM for relation
classification. However, to the best of our knowledge, no
previous work has focused on using knowledge graph
embeddings generated from the FAERS for joint extraction of
entities and relations for ADE extraction.

Methods

Data Set
The n2c2 data set consists of 505 deidentified clinical narratives,
of which 303 and 202 narratives were released as train and test
data sets, respectively. Each narrative was manually annotated
with drug-centric entities, including drugs, their attributes
(strength, form, frequency, route, dosage, and duration), ADEs,
reasons, and relations between drugs and other entities
(drug−{attributes, ADE, reason}). Drug−{attributes} represent
6 different types of relations: drug−{strength, form, frequency,
route, dosage, duration}. Figure 1 presents an example with
annotations. Tables 1 and 2 present the statistical overview of
the annotated entities and relations.

Figure 1. An illustration with annotations for entities and relations. ADE: adverse drug event; HTN: hypertension; QHS: every night at bedtime.
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Table 1. Entities in the data set.

DescriptionExampleNumber of annotationsEntity type

Test, n (%)Train, n (%)

Name of the drugCoumadin10,575 (32.13)16,225 (31.84)Drug

Strength of the drug5 mg4230 (12.85)6691 (13.13)Strength

Form of the drugTablet4359 (13.24)6651 (13.05)Form

Frequency of the drugDaily4012 (12.19)6281 (12.32)Frequency

Route in which the drug is administeredBy mouth3513 (10.67)5476 (10.75)Route

Dosage of the drug12681 (8.14)4221 (8.28)Dosage

Duration of the drugFor 5 days378 (1.15)592 (1.16)Duration

Adverse reaction of the drugRash625 (1.90)959 (1.88)ADEa

Indication if it is an affliction that a physician is actively treating with a drugConstipation2545 (7.73)3855 (7.57)Reason

N/AN/Ab32,918 (100.00)50,951 (100.00)Total

aADE: adverse drug event.
bNot applicable.

Table 2. Relations in the data set.

ExampleaIntersentential relationsRelationsRelation type

Test, n (%)Train, n (%)Test, n (%)Train, n (%)

Lisinopril 1×5 mg tablet orally daily for 7 days59 (1.39)80 (1.19)4244 (18.09)6702 (18.44)Drug−strength

Lisinopril 1×5 mg tablet orally daily for 7 days144 (3.29)259 (3.89)4374 (18.64)6654 (18.31)Drug−form

Lisinopril 1×5 mg tablet orally daily for 7 days238 (5.90)372 (5.90)4034 (17.19)6310 (17.36)Drug−frequen-
cy

Lisinopril 1×5 mg tablet orally daily for 7 days149 (4.20)199 (3.59)3546 (15.11)5538 (15.24)Drug−route

Lisinopril1×5 mg tablet orally daily for 7 days102 (3.78)135 (3.20)2695 (11.49)4225 (11.62)Drug−dosage

Lisinopril 1×5 mg tablet orally daily for 7 days43 (10.0)34 (5.4)426 (1.80)643 (1.80)Drug−duration

Patient is experiencing muscle pain, secondary to statin therapy for
coronary artery disease

139 (18.9)254 (22.94)733 (3.10)1107 (3.05)Drug−ADEb

Patient is experiencing muscle pain, secondary to statin therapy for
coronary artery disease

1088 (31.91)1638 (31.69)3410 (14.53)5169 (14.22)Drug−reason

N/Ac1947 (8.30)2971 (8.17)23,462
(100.00)

36,348
(100.00)

Total

aItalics indicate entities participating in the specified relation type.
bADE: adverse drug event.
cNot applicable.

Preprocessing
Sentence boundary detection (SBD) and tokenization are often
treated as solved problems in NLP and carried out using
off-the-shelf toolkits such as Apache Natural Language Toolkit
[68], Explosion AI spaCy [69] or the Stanford CoreNLP toolkit
[70]. However, these are still difficult and critical problems [71]
in the clinical domain because (1) sentence ends are frequently
indicated by layout and not by punctuation and (2) white space
is not always present to indicate token boundaries (eg, 50 mg).
To address these issues, we incorporated domain-specific rules
sensitive to low-level features such as capitalization, text-wrap
properties, indentation, and punctuation into the spaCy tokenizer

and SBD models. These custom rules are provided in
Multimedia Appendix 1.

Representation Learning

Static Word Representations
Word embedding is a text vectorization technique that
transforms words or subwords into vectors of real numbers.
Pretrained word embeddings created using Word2Vec [72],
Glove [73], and fastText [74] have been broadly used to
initialize deep learning architectures for NLP tasks and have
shown substantial improvement over random initialization.
Recent research [75] showed that NER performance is
significantly affected by the overlap between the pretrained
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word embedding vocabulary and the vocabulary of the target
NER data set. Thus, we used Word2Vec with skip-gram to
pretrain word embeddings over the Medical Information Mart
for Intensive Care III (MIMIC-III) [76] with the default
parameters provided in a study by Mikolov et al [72].

Contextualized Word Representations
A well-known limitation of word embedding methods is that
they produce a single representation of all possible meanings
of a word. To tackle these deficiencies, advanced approaches
have attempted to model the word’s context into a vector
representation. Embeddings from Language Models (ELMo)
[77] is a prominent model that generates contextualized word
representations by combining the internal states of different
layers in a neural language model. Bidirectional Enconder
Representations from Transformers (BERT) [78] furthered this
idea by training bidirectional transformers [50] using subwords.
Contextualized embeddings are particularly useful for clinical
NER as entities (eg, cold as low temperature versus infection)
have different meanings in different contexts. Recent research
[79] showed that deep learning architectures with contextualized
embeddings pretrained on a large clinical corpus achieve
state-of-the-art performance on several clinical NER data sets.
Inspired by these, we trained contextualized representations
using ELMo on MIMIC-III. Detailed explanations of ELMo
and training parameters are provided in Multimedia Appendix
2.

Knowledge Representations
To introduce medical knowledge, we built knowledge
representations on the FAERS, a database for postmarketing
drug safety monitoring. Specifically, we used 2 tables from
Adverse Event Open Learning through Universal
Standardization (AEOLUS) [14], a curated and standardized
FAERS resource, to generate 2 separate graph embeddings. As
shown in Figure 2, standard drug_outcome count contains case
frequencies for drug outcomes, including ADEs, and standard
drug indication count contains case frequencies for drug
indications (ie, reasons).

Let G=(D,O,E) be a weighted bipartite network, where D and
O denote the set of drug concept id and outcome concept id in

standard drug outcome count, and defines the interset

edges. Di and Oj denote the ith and jth vertex in D and O
respectively, where i={1,2, … ,|D|} and j={1,2, … ,|O|}. Each

edge carries a frequency fij provided by the drug outcome
pair count field in standard drug outcome count, indicating the
strength between the connected vertices Di and Oj; if Di and Oj

are not connected, fij is set to zero. To integrate this knowledge
into our proposed architecture, we computed token-level
embeddings by transforming G to G’ as follows:

Given a drug concept id (RxNorm) or outcome concept id
(Medical Dictionary for Regulatory Activities) from AEOLUS,
we mapped it to its concept unique identifiers (CUIs) in UMLS
[80] and obtained a set of tokens from all CUI variants. Let
d={d1, d2, …., dL} and o={o1, o2, …., oM} represent all unique

drug and outcome tokens obtained from mapping all and

. Let and represent 2 multivalued functions
that associate each element in the set of drug concept id and
outcome concept id to a set of tokens. Let G’=(d,o,e) be a

weighted bipartite graph and each edge of G’ is
associated with a nonnegative weight wlm indicating the strength
between the drug token dl and the outcome token om. We
calculated wlm as token-level co-occurrence between dl and om

normalized for the drug token dl:

In wlm, the numerator represents the sum of frequencies of all
drug concept id and outcome concept id pairs that contain drug
token dl and outcome token om and the denominator represents
the sum of frequencies of all pairs whose drug concept id
contains the drug token dl.

From the generated bipartite weighted graph G’=(d,o,e), we
used the LINE approach to generate drug-adverse knowledge
embeddings. We used LINE because (1) relations between drugs
and other concepts in the FAERS form a weighted bipartite
graph with a long-tail distribution of vertex degrees and (2) it
helps in embedding implicit connectivity relations between
vertices of the same type. Similarly, we generated drug-reason
knowledge embeddings from the standard drug indication count
table. Detailed explanations of LINE and training parameters
are provided in Multimedia Appendix 2.
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Figure 2. Excerpts from the standard drug outcome count and standard drug indication count tables from adverse event open learning through universal
standardization.

Architecture
In the following sections, we present our system, illustrated in
Figure 3, in an incremental fashion: joint method,

contextual-joint, positional-joint, and knowledge-joint. A
detailed explanation of the deep learning architecture,
BiLSTM-CRF [81], and input embeddings used in this system
is included in the Multimedia Appendix 3.

Figure 3. Canonical architecture of the proposed system. ADE: adverse drug event; BReason: beginning of reason annotation; CRF: conditional random
field; ELMo: Embeddings from Language Models; KB: knowledge base; LSTM: long short-term memory; POS: part-of-speech.

Joint Method
We developed a drug recognition model followed by 2 joint
drug-centric relation extraction models (drug−{attributes} and
drug−{ADE, reason}), as explained in the following sections.

Drug Recognition Model
We modeled drug recognition as a sequence-labeling task using
BiLSTM-CRF and a beginning, inside, and outside of a drug
mention (BIO) tagging scheme. The input layer of the
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BiLSTM-CRF takes word, character, and part-of-speech
embeddings. The word embeddings were obtained using
Word2Vec representations generated using MIMIC-III. The
character and part-of-speech embeddings were initialized
randomly. We used CNNs [46] to encode a character-level
representation for a word.

Drug-Centric Relation Extraction Models
To extract entities and relations jointly, we used the encoding
scheme proposed in [38], which takes annotated sentences and
produces drug-centric sequences for a specified target-drug.
For sentences containing multiple identified drugs, 1
drug-centric sequence was generated for each target-drug. For
example, for the sentence in Figure 4, the encoding scheme
produced 2 labeled sequences: one with lisinopril as the
target-drug and the other with mirtazapine. In each sequence,
associated entities with the target-drug were labeled using a
BIO scheme enhanced with their types. Hence, for the sequence
generated with lisinopril as the target-drug, only 30 mg and the
first QHS were labeled using B and I tags, and other entities
(eg, 15 mg, PO, and the second QHS) were labeled as O.

We trained 2 separate models with the BiLSTM-CRF to jointly
recognize (1) drug attributes and drug−{attributes} relations
and (2) ADE, reason, and their corresponding relations
(drug−{ADE, reason}). Similar to the drug recognition model,
the input layer of these models takes word, character, and
part-of-speech representations, with additional positional and
semantic-tag embeddings. We used the positional embedding
technique introduced in [82] to represent the positional distance
from target-drug to each word in the input context. We used 3
different semantic tags, target-drug, duplicate-target-drug, and
nontarget-drugs, to represent tokens of the current target-drug,
other mentions of the same target-drug, and other drugs in the
input context, respectively.

To handle intersentential relations, we provided adjacent
sentences as an input context to the sentence containing the
target-drug. We used training data to determine the optimal
input context for the 2 models empirically. For the
drug−{attributes} model, we determined the optimal context
as the current sentence with the target-drug and the sentences
preceding and following it. For the drug−{ADE, reason} model,
the optimal context was the current sentence and the 4 sentences
preceding and following it.

Figure 4. Label-encoding scheme used in drug-centric relation extraction models. B: beginning; I: inside; PO: orally; QHS: every night at bedtime.

Contextual-Joint Model
We obtained domain-specific contextualized representations
for input contexts by pretraining ELMo on MIMIC-III. These
contextualized representations were used to augment the
representations used in the input layers of the models in the
joint method. With the augmented input representations, we
trained (1) a drug recognition model and (2) 2 drug-centric
relation extraction models (drug−{attributes} and drug−{ADE,
reason}).

Positional-Joint Model
As the task involves extraction of drug-centric entities and
relations, we used the position-attention mechanism to extract

entities and relations jointly with respect to an entity of interest
(target-drug).

Let represent the hidden representations of an input
sequence obtained from the BiLSTM layer of the

contextual-joint model. Positional representations 
were generated as follows:
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where v, Wp, Wt, Wj are parameters to be learned, and stj is the
score obtained through additive attention. Position-attention
computes dependencies among the hidden states: (1) hp at

target-drug position p, (2) hj at jth token in the input sequence,
and (3) ht at current token t. For each token j, stj is computed
by (1) comparing hp with hj and (2) comparing ht with hj The
comparison of hp and hj helps to encode target-drug (positional)
information, whereas the comparison of ht and hj is useful for
matching sentence representations against itself (self-matching)
to collect contextual information. atj is the attention weight
produced by the normalization of stj and is used in computing
the positional representation pt of the current token t. Finally,
we concatenated this positional representation pt with its hidden
representation ht to obtain ut:

We trained the 2 drug-centric relation extraction models
(drug−{attributes} and drug−{ADE, reason}) by feeding these
concatenated representations to a CRF layer. During the test
phase, we used the drug recognition model from the
contextual-joint for predicting drugs and the trained drug-centric
relation extraction models for predicting drug−{attributes} and
drug−{ADE, reason} relations.

Knowledge-Joint Model
As introduced earlier, background knowledge and hidden
relations beyond the contextual and positional information play
a crucial role in extracting drug−{ADE, reason} relations. To
address this, we propose the knowledge-joint model by
enhancing the positional-joint model with knowledge
embeddings created using the FAERS database.

Let , denote representations of the input sequence
tokens obtained from the drug-reason and drug-adverse
knowledge embeddings, respectively. Let l and m be the
beginning and end indices of target-drug in the input sequence.
The target-drug Dr and Da, corresponding to drug-reason and
drug-adverse knowledge embeddings, were computed by
averaging the representations of target-drug tokens:

The target-drug–centric representations and were
obtained by computing similarities between input sequence
tokens and the target-drug:

where wr and wa represent the scalar weights corresponding to
drug-reason, and drug-adverse knowledge embeddings learned
during training. Finally, for a token at position t, we

concatenated its target-drug–centric similarities with
positional and hidden representations ut to produce kt:

We trained a drug-centric relation extraction model
(drug−{ADE, reason}) by feeding these concatenated
representations to a CRF layer. During the test phase, we used
the drug recognition model from the contextual-joint model for
predicting drugs and the trained drug−{ADE, reason} model
for predicting drug−ADE and drug−reason relations.

Evaluation Metrics and Significance Tests
We evaluated the proposed system using the evaluation script
released by the organizers of the n2c2 challenge to measure the
lenient precision, recall, and F1 scores, explained as follows.
For NER, a predicted entity is considered as a true-positive if
its span overlaps with a gold annotation and is the correct entity
type. For relation extraction, a predicted relation is considered
as a true-positive if both entities in the relation are true-positives
and the relation type matches the gold annotation. We also report
statistical significance on these results with 50,000 shuffles and
a significance level set to .05 by using a test script released by
the n2c2 organizers based on the approximate randomization
test [83].

In the following sections, we present the results of our system.
The experimental settings used to achieve these results are
provided in Multimedia Appendix 4.

Results

Named Entity Recognition
Table 3 presents the results for each proposed incremental
approach for NER. Compared with the joint method,
incorporating contextualized embeddings (contextual-joint
model) improved the overall microaveraged F1 score by 0.3
percentage points. The improvement was mainly observed in
recognizing drugs (0.6 points), with some improvements in
recognizing strength and reason. Compared with the
contextual-joint model, the positional-joint model improved the
overall micro-F1 score by 0.2 points, with significant
improvements observed in identifying reason (2.1 points) and
ADE (6.8 points). Compared with the positional-joint model,
the knowledge-joint model further improved the overall micro-F1

score by 0.1 points, with significant improvements observed in
accurately determining reason (1.9 points) and ADE (1.7 points).
Note that the overall improvement between the positional-joint
and knowledge-joint models is relatively small due to the biased
distribution of annotations, as ADE and reason together
constitute less than 10% of the entities.
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Significance tests showed that the improvements in micro-F1

score observed with each incremental approach are statistically
significant with P values of .001, <.001, and <.001 for the
contextual-joint, positional-joint, and knowledge-joint models,
respectively. As the contextual-joint and positional-joint models

share the same drug recognition model, we ignored drug
predictions when performing significance tests. Similarly, the
positional-joint and knowledge-joint models share the same
drug recognition model and drug−{attributes} model; therefore,
we considered only ADE and reason predictions when
performing significance tests.

Table 3. Lenient precision, recall, and F1 score of the proposed approaches for named entity recognition.

Knowledge-jointPositional-jointContextual-jointJointEntity type

F1 scoreRecallPrecisionF1 scoreRecallPrecisionF1 scoreRecallPrecisionF1 scoreRecallPrecision

0.9600.9640.9560.9600.9640.9560.9600.9640.9560.9540.9520.956Drug

0.9800.9760.9850.9800.9760.9850.9760.9710.9820.9740.9690.980Strength

0.9580.9430.9720.9580.9430.9720.9570.9390.9750.9580.9420.974Form

0.9710.9640.9790.9710.9640.9790.9690.9580.9810.9700.9580.981Frequency

0.9490.9490.9500.9490.9490.9500.9520.9430.9620.9530.9420.964Route

0.9460.9570.9360.9460.9570.9360.9390.9370.9410.9410.9380.943Dosage

0.8460.8150.8800.8460.8150.8800.8480.7910.9140.8350.7880.887Duration

0.5350.4900.5890.5180.4260.6600.4500.3460.6430.4620.3580.649ADEa

0.7270.7020.7530.7080.6720.7470.6870.6360.7470.6760.6110.757Reason

0.9350.9300.9410.9340.9260.9430.9320.9170.9470.9290.9120.948Overall (micro)

aADE: adverse drug event.

Relation Extraction
Table 4 presents the results for each proposed incremental
approach for relation extraction. Compared with the joint
method, the contextual-joint model improved the overall
micro-F1 score by 0.5 percentage points, with the majority of
improvements observed in accurately recognizing
drug−strength, drug−frequency, drug−reason, and
drug−dosage relations. Compared with the contextual-joint
model, the positional-joint model improved the F1 score by 0.4
points with significant improvements observed in determining

drug−ADE (5.6 points) and drug−reason (2.9 points) relations.
The knowledge-joint model further improved the overall F1 score
by 0.1 points, with specific improvements in drug−ADE by 3.0
points and drug−reason by 1.7 points when compared with the
positional-joint model. Similar to the NER significance results,
significance testing for relation extraction showed that the
improvements observed with each incremental approach are
statistically significant with P values of <.001, <.001, and <.001
for the contextual-joint, positional-joint, and knowledge-joint
models, respectively.

Table 4. Lenient precision, recall, and F1 score of the proposed approaches for relation extraction.

Knowledge-jointPositional-jointContextual-jointJointRelation type

F1 scoreRecallPrecisionF1 scoreRecallPrecisionF1 scoreRecallPrecisionF1 scoreRecallPrecision

0.9750.9710.9780.9750.9710.9780.9710.9640.9770.9640.9620.966Drug−strength

0.9540.9390.9690.9540.9390.9690.9530.9360.9720.9490.9360.963Drug−form

0.9620.9550.9690.9620.9550.9690.9610.9500.9720.9550.9490.961Drug−frequency

0.9370.9390.9360.9370.9390.9360.9430.9330.9540.9370.9310.943Drug−route

0.9370.9500.9250.9370.9500.9250.9320.9310.9330.9240.9280.921Drug−dosage

0.7790.7390.8230.7790.7390.8230.7940.7230.8800.7630.7180.814Drug−duration

0.4900.4460.5440.4600.3770.5900.4040.3070.5920.4170.3220.590Drug−ADEa

0.6500.6280.6730.6330.5930.6800.6040.5460.6760.5940.5260.682Drug−reason

0.8950.8840.9060.8940.8770.9120.8900.8620.9200.8850.8590.912Overall (micro)

aADE: adverse drug event.
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Discussion

Principal Findings
Contextualized representations (contextual-joint) are effective
in differentiating between words and abbreviations that could
have multiple meanings. For example, ensure and contrast can
be understood as either a drug (“Ensure: 1 can PO three times
daily” and “contrast-induced nephropathy”) or a verb, and terms
such as blood could either refer to a drug (“transfused 1 unit of
blood”), that is, substance given to a patient, a test for the drug
(“blood alcohol concentration”), or a natural occurring substance
in the body (“blood pressure”). Additionally, abbreviations such
as PE (physical examination versus pulmonary embolism) and
pcp (primary care physician versus pneumocystis pneumonia)
can have multiple expansions. In all the examples above, the
contextual-joint correctly identifies these entities.

One prevailing challenge in ADE extraction is the presence of
long-distance or intersentential relations. As shown in Table 2,
a significant portion of drug−{ADE, reason} in the data set is
intersentential (23% of drug−ADE and 31.7% of drug−reason).
These relations typically span long distances, making them more
difficult to capture. To study the effectiveness of the proposed
approaches over long-distance relations, we calculated the F1

scores on drug−{ADE, reason} with an increasing number of
tokens between entities. As shown in Figure 5, we find that the

positional-joint model performs significantly better than the
contextual-joint model with increasing distance between entities,
suggesting that the positional-joint can effectively model
long-distance relations.

Incorporating knowledge embeddings learned on the FAERS
improved drug−{ADE, reason} relation extraction, especially
in the case of long-distance relations or when contextual clues
are insufficient. As shown in Figure 5, the knowledge-joint
model further improved on the positional-joint model at all
distances. The knowledge-joint model was also useful in cases
of insufficient or ambiguous context in extracting the correct
relation. For example, in the phrase “Wellbutrin - nausea and
vomiting,” the relation is indicated only by an uninformative
hyphen, with no contextual clues to indicate the type of relation.
Similarly, in “Patient had history of depression and was on
elavil previously,” it is unclear whether the history of depression
was previously treated by drug−reason or caused by drug−ADE
of the drug elavil. Furthermore, the knowledge-joint also helped
to extract correct relations when multiple drugs and candidate
ADEs and reasons are discussed in a given context. For example,
in “Upon arrival, she was hypertensive and had a fever. She
was given Tylenol,” based on sentence construction, 2 candidate
reasons (hypertensive and fever) may be associated with the
drugTylenol. Knowledge is required to infer that of the two,
only fever is related to Tylenol.

Figure 5. F1 scores of approaches with increasing distance between entities for relation extraction. ADE: adverse drug event.

Error Analysis
We investigated the most common error categories by entity
and relation type and present these in Table 5. Most of the errors
in recognizing drugs were due to abbreviations, misspellings,
generic terms, or linguistic shorthand. For strength and dosage,
these entities were often mislabeled as each other—both are
often numeric quantities and used in similar contexts. For

duration and frequency, most of the errors resulted from these
entities being expressed in colloquial language.

Intersentential relations remain a major category of
false-negative errors for all relations despite improvements from
the position-attention mechanism. For drug−{attributes}, these
errors were likely due to an insufficient number of such
examples in the training data (approximately 4%). In addition
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to errors from intersentential relations, other important
categories for false-negative drug−{ADE, reason} include (1)
ADE or reasons expressed in generic terms, (2) reasons such
as procedures and activities (eg, angioplasty/stenting) that occur
infrequently in the training set, and (3) ADE or reasons
expressed as abbreviations that are nonstandard or ambiguous.

False-positive errors in drug−{ADE, reason} mainly fall into
2 categories. In the first, one of the entities participating in the
relation is negated, hypothetical, or conditional, such as when

a drug is withheld to avoid an anticipated ADE (eg,
contraindications). In the second, the same concept (drug, ADE,
or reason) is mentioned multiple times in the same context, and
the system associated the relation to one mention whereas the
ground truth to the other. To add further complexity, these
mentions may be synonyms, for example, “the pain medications
(morphine, vicodin, codeine) worsened your mental status and
made you delirious.” With multiple possible drug−ADE
relations, some combinations were not captured in the ground
truth, resulting in false-positives that may not be true errors.

Table 5. Error analysis on our best-performing model (knowledge-joint).

ExplanationTextaEntity/relation, Error category

Drug

HCTZ—abbreviated drugHyponatremia due to HCTZbAbbreviation

Humalog is incorrectly written as
humalong

30 units of Lantus in addition to humalongMisspelled words

Vancomycin is expressed in short-
hand

She was given vancoShort forms

Antihypertensives are expressed
through generic terms

He was advised to not take any of his blood pressure medicationsGeneric phrase

Strength

Strength (1 unit) wrongly predicted
as dosage; usually, the unit token is
associated with dosage

Patient received 1 unit of bloodContextual ambiguity

Duration

Duration is expressed colloquiallyOnly take Hydroxyzine as long as your rash is itchingColloquial language

Drug − strength

Intersentential relation between
carvedilol and 4 mg

Continued Carvedilol. INRc initially slightly supratherapeutic,
but then his home regimen of 4mg alternating with 2mg daily
was started

Intersentential

Drug − ADEd ; Drug − reason

Intersentential relation between neo
and coronary artery bypass graft

He underwent coronary artery bypass x5, please see operative

report for further details. He was transferred to the CSRUe on

Neo with IABPf

Intersentential

Reason is expressed in generic termsStart a baby aspirin every day to protect the heartGeneric terms

AMS has multiple possible expan-
sions

Detrol was discontinued on suspicion that it might contribute to
AMS

Abbreviation

Procedure angioplasty is annotated
as reason

Angioplasty of the left tibial artery; had been on Plavix prior to

NSTEMIg
Procedure

Drug was not given to this patientAvoiding NSAIDsh to prevent gastrointestinal bleedContraindication

ADE thrombocytopenia is negatedHeparin-induced thrombocytopenia negativeNegated

aItalics indicate text that contributes to the specified error category.
bHCTZ: hydrochlorothiazide.
cINR: international normalized ratio.
dADE: adverse drug event.
eCSRU: cardiac surgery recovery unit.
fIABP: intra-aortic balloon pump.
gNSTEMI: non–ST-elevation myocardial infarction.
hNSAIDs: nonsteroidal anti-inflammatory drugs.
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Document-Level Analysis
From an end user perspective, the core information needed for
patient care purposes is a patient-level summary of these
relations, which is a unique set of extracted relations after

normalization. To evaluate our system for this purpose, we
measured drug−ADE and drug−reason F1 scores by considering
unique pairs of relation mentions at the document level,
presented in Table 6. We observed scores at the document level
to be 1 to 2 percentage points higher than the instance level.

Table 6. Document-level analysis for drug−reason and drug−adverse drug event relations.

Drug−ADEaDrug−reasonModel

Document levelInstance levelDocument levelInstance level

F1 scoreRecallPrecisionF1 scoreRecallPrecisionF1 scoreRecallPrecisionF1 scoreRecallPrecision

0.4260.3220.6310.4170.3220.5900.6070.5420.6910.5940.5260.682Joint

0.4140.3080.6300.4040.3070.5920.6160.5600.6850.6040.5460.675Contextual-
joint

0.4820.3840.6470.4600.3760.5900.6490.6110.6920.6330.5930.680Position-
joint

0.5030.4440.5790.4900.4460.5440.6660.6470.6870.6500.6280.673Knowledge-
joint

aADE: adverse drug event.

Comparison With Previous Work
For NER, the state-of-the-art system [38] used an ensemble
(committee) of 3 different methods: CRF, BiLSTM-CRF, and
joint approach. They showed that the BiLSTM-CRF is the best
among the single models. Thus, we compare our best model
(knowledge-joint) with their best-performing single model and
committee approach, as shown in Table 7. Overall, the
knowledge-joint model outperformed the single model by 0.2
percentage points and achieved similar micro-F1 to the
committee approach. Notably, the knowledge-joint model
significantly outperformed the committee approach in
recognizing the crucial ADE (0.5 points) and reason (5.2 points)
entities.

For relation extraction, the state-of-the-art system used the
committee approach for NER, convolutional neural network –
recurrent neural network (CNN-RNN) for relation classification,
and postprocessing rules. Although postprocessing rules are
commonly used in competitions, they often do not generalize
across data sets and therefore are of limited interest in this
research. As shown in Table 7, the knowledge-joint model
outperformed the state-of-the-art approach, both with (0.4
points) and without rules (1.6 points). Notably, the
knowledge-joint model achieved the best results and
outperformed the state-of-the-art in recognizing the most crucial
and difficult to extract relations: drug−reason (7.1 points) and
drug−ADE (1.4 points).
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Table 7. The lenient F1 scores for named entity recognition of single and state-of-the-art ensemble models compared with our best model. The lenient
F1 scores for relation extraction of state-of-the-art ensemble models with and without rules, compared with our best model.

Relation extractionNERa

Knowledge-
joint

Committee +
CNN-RNN +
Rules [38]

Committee +

CNN-RNNc

[38]

Relation typeKnowledge-jointCommittee [38]BiLSTM-CRFb

[38]

Entity type

N/AN/AN/AN/Ad0.9600.9560.955Drug

0.9750.9720.964Drug−strength0.9800.9830.982Strength

0.9540.9520.940Drug−form0.9580.9580.958Form

0.9620.9580.941Drug−frequency0.9710.9750.974Frequency

0.9370.9420.930Drug−route0.9490.9560.956Route

0.9370.9350.923Drug−dosage0.9460.9480.943Dosage

0.7790.7860.740Drug−duration0.8460.8620.856Duration

0.4900.4760.475Drug−ADE0.5350.5300.422ADEe

0.6500.5790.572Drug−reason0.7270.6750.680Reason

0.8950.8910.879Overall (micro)0.9350.9350.933Overall (mi-
cro)

aNER: named entity recognition.
bBiLSTM-CRF: bidirectional long short-term memory–conditional random field.
cCNN-RNN: convolutional neural network–recurrent neural network.
dNot applicable.
eADE: adverse drug event.

Limitations and Future Work
We acknowledge several limitations of this study. First, these
results are specific to the n2c2 data set, which contains only
intensive care unit (ICU) discharge summaries from a single
health care organization. Ground truth generation and evaluation
on a more diverse data set is needed to better understand the
effectiveness of these proposed approaches. Second, we
observed some annotation errors in the ground truth, likely due
to the complex nature of the task. Further investigation is needed
to quantify the prevalence of such errors and their impact on
the results.

Despite achieving state-of-the-art results, the proposed system
still has room for improvement, specifically in recognizing
intersentential drug−{ADE, reason} relations. To further
improve ADE extraction, we plan to explore the following
research areas:

1. Although we incorporated knowledge graph embeddings,
other advanced methods that use higher-order proximity
and role-preserving network embedding techniques have
shown promising results in the general domain. We plan
to explore methods such as Edge Label Aware Network
Embedding [84] rather than training separate graph
embeddings for drug−{ADE, reason} relations.

2. The field of contextual embeddings has evolved quickly
along with the release of newer language representation

models trained on clinical text. We plan to explore BERT
[78,85], which utilizes a transformer network to pretrain a
language model for extracting better contextual word
embeddings.

3. To address some of the findings from the error analysis,
we plan to leverage our clinical abbreviation expansion
components [86] to help resolve ambiguous mentions and
also incorporate assertion recognition [26] to capture the
belief state of the physician on a concept (negated,
hypothetical, conditional).

4. As mentioned earlier, the proposed models performed
poorly on intersentential relation extraction. To address
this, we plan to explore N-ary relation extraction for
cross-sentence relation extraction using graph long
short-term memory networks [87].

Conclusions
We presented a system for extracting drug-centric concepts and
relations that outperformed current state-of-the-art results.
Experimental results showed that contextualized embeddings,
position-attention mechanisms, and knowledge embeddings
effectively improve deep learning-based concepts and relation
extraction. Specifically, we showed the effectiveness of a
position-attention mechanism in extracting long-distance
relations and knowledge embeddings from the FAERS in
recognizing relations where contextual clues are insufficient.
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