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Abstract

Background: Suicide is an important public health concern in the United States and around the world. There has been significant
work examining machine learning approaches to identify and predict intentional self-harm and suicide using existing data sets.
With recent advances in computing, deep learning applications in health care are gaining momentum.

Objective: This study aimed to leverage the information in clinical notes using deep neural networks (DNNs) to (1) improve
the identification of patients treated for intentional self-harm and (2) predict future self-harm events.

Methods: We extracted clinical text notes from electronic health records (EHRs) of 835 patients with International Classification
of Diseases (ICD) codes for intentional self-harm and 1670 matched controls who never had any intentional self-harm ICD codes.
The data were divided into training and holdout test sets. We tested a number of algorithms on clinical notes associated with the
intentional self-harm codes using the training set, including several traditional bag-of-words–based models and 2 DNN models:
a convolutional neural network (CNN) and a long short-term memory model. We also evaluated the predictive performance of
the DNNs on a subset of patients who had clinical notes 1 to 6 months before the first intentional self-harm event. Finally, we
evaluated the impact of a pretrained model using Word2vec (W2V) on performance.

Results: The area under the receiver operating characteristic curve (AUC) for the CNN on the phenotyping task, that is, the
detection of intentional self-harm in clinical notes concurrent with the events was 0.999, with an F1 score of 0.985. In the predictive
task, the CNN achieved the highest performance with an AUC of 0.882 and an F1 score of 0.769. Although pretraining with W2V
shortened the DNN training time, it did not improve performance.

Conclusions: The strong performance on the first task, namely, phenotyping based on clinical notes, suggests that such models
could be used effectively for surveillance of intentional self-harm in clinical text in an EHR. The modest performance on the
predictive task notwithstanding, the results using DNN models on clinical text alone are competitive with other reports in the
literature using risk factors from structured EHR data.

(JMIR Med Inform 2020;8(7):e17784) doi: 10.2196/17784
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Introduction

Background and Significance
Suicide ranks among the leading causes of death in the United
States. On average, over 100 individuals die of suicide each

day, resulting in combined medical and work loss costs totaling
approximately US $80 billion annually [1,2]. Numerous risk
factors for suicide have been identified and thoroughly
researched. For example, suicide is more common in males,
American Indian and Alaska Natives, and non-Hispanics and
individuals with mental illness (eg, depression, anxiety,
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substance abuse), previous trauma, communication difficulties,
decision-making impulsivity, and aggression [3,4]. Individuals
who have previously engaged in intentional self-harm behaviors
or suicide attempts are also at increased risk [5,6]. Despite
extensive research on various risk factors, prospective suicide
prediction remains difficult, as conventionally studied risk
factors predict suicide attempts only 26% of the time [5].

Currently established guidelines for suicide risk assessment
include clinical interviews and questionnaires administered by
qualified health care providers [7,8]. However, research suggests
that these approaches exhibit suboptimal performance in
predicting future intentional self-harm behavior or suicide
[9-11]. Less than a third of patients who engage in intentional
self-harm and attempt suicide disclose thoughts about doing so
[12]. As such, current methods for identification of at-risk
patients can be difficult and time-consuming. A great deal of
recent research has focused on addressing these limitations using
advanced analytical tools such as natural language processing
(NLP) and machine learning [13]. Studies using NLP approaches
have largely used electronic health record (EHR)-based [14-16]
and NLP- and linguistics-driven prediction models [12,17-19].
Studies using machine learning to predict suicidal and
intentional self-harm behaviors from EHR data for patients
admitted to hospitals or emergency departments have
demonstrated variable accuracy (eg, 65%-95%) [20-24].

Clinical text classification using a deep convolutional network
has been useful in the identification of specific phenotypes
within the EHR for patients with a given set of clinical signs
and symptoms [25,26]. There have been significant advances
in recent years in deep learning approaches, such as
convolutional neural networks (CNNs), for a variety of
applications including text processing and classification,
computer vision, and speech recognition [27]. In the area of text
processing, there has been significant research in language
models that are pretrained and then used to aid in automated
text understanding of unlabeled data [28,29]. These resulting
learned word vectors could, in turn, be used for clinical text
classification tasks [25,26,30]. Pretraining models using these
methods provide syntactic and semantic word similarities
expressed in a multidimensional vector space with the potential
for improving classifications based on neural networks and
reducing computational cost [28]. The use of advanced analytical
approaches such as deep learning can extend this work and
provide distinct advantages in predicting future intentional
self-harm, suicide attempts, and suicide.

Objectives
Deep learning approaches have been used to address topics
related to suicide using publicly available data sets. For example,
Shing et al [31] compared different machine learning methods
including support vector machines (SVM) and a CNN-based
model for the assessment of suicide risk based on web-based
postings. Although they demonstrated the utility of deep
learning, for this specific use case, the SVM model outperformed
the CNN model. Conversely, Du et al [32] demonstrated the
superiority of a deep learning model over traditional models,
including an SVM, in identifying suicide-related tweets in social
media data. Despite these examples, there have been no reports

in the literature on the utility of deep learning approaches for
the identification of suicide-related clinical records (eg, for
surveillance purposes) or for the prediction of suicidal behavior
using clinical text from an EHR. Improving the recall and
precision of phenotyping and predictive algorithms, particularly
through deep learning analytic techniques, could lead to better
follow-up and care by clinicians for patients who are at risk for
intentional self-harm, suicide attempts, suicide, or any
combination thereof. In this study, we explored a deep learning
approach for (1) the automated detection of intentional self-harm
events in clinical text concurrent with International
Classification of Diseases (ICD) codes for intentional self-harm,
that is, phenotyping and (2) the prediction of future suicide
attempts or intentional self-harm based on ICD-labeled
encounters within the EHR.

Methods

Software Used
We used R version 3.6.1 (R Foundation for Statistical
Computing) [33] for processing the data and clinical text and
constructing the machine learning pipelines and Keras and
TensorFlow v1.13 (Google’s open-source deep neural network
framework) for the deep learning models.

Patient Population
This study was approved by the institutional review board (IRB)
for human research at the Medical University of South Carolina
(MUSC) under protocol number Pro00087416. Clinical notes
were extracted from the Epic (Epic Systems Corporation) EHR
system [34] using the MUSC research data warehouse (RDW),
which serves as an EHR data repository for research projects.
Researchers may request data from the RDW with appropriate
IRB approval and data governance oversight [35]. We extracted
clinical text notes for adult patients aged 20 to 90 years with
ICD codes for suicide attempts or intentional self-harm as
defined in the National Health Statistics Report (NHSR) from
the Centers for Disease Control and Prevention (CDC) in the
United States [36]. The NHSR specifically included codes for
self-harm events that were intentional (eg, T42.4X2; poisoning
by benzodiazepines, intentional self-harm) and did not include
codes for self-harm events that were unintentional (eg, T42.4X1;
poisoning by benzodiazepines, accidental). For each patient in
the study group, we selected the first intentional self-harm
recorded in the chart during the study period (ie, 2012-2019).
We filtered the notes within a 24-hour period of the intentional
self-harm time stamp. We also extracted clinical text notes for
control cases who never had any intentional self-harm ICD
codes within our EHR spanning the years 2012 to 2019. The
controls were selected randomly from the RDW after matching
by age, gender, race, and ethnicity. During the processing of
the clinical notes, we matched the controls to the study cases
based on the proportion of note types in their records (eg,
percent of progress notes) and word length of notes. The
matching was performed using the nearest neighbor method in
the MatchIt package in R [37]. The resulting patient population
included 835 intentional self-harm cases and 1670 controls.
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Clinical Notes

Notes Concurrent With Intentional Self-Harm
In the first part of this study, we sought to automate the detection
of concurrent intentional self-harm ICD code assignment based
on clinical text. The notes included a variety of different note
types; however, the majority consisted of progress notes, plan
of care notes, emergency department (ED) provider notes,
history and physical (H&P) notes, and consult notes. A full list
of note types and their relative frequencies is provided in a table
in Multimedia Appendix 1. Individual notes longer than 800
words (less than one-third of all notes) were truncated at 800.
We chose this cutoff to include as many notes per patient as
possible. Notes belonging to the same patient were then
concatenated into a single string arranged temporally, yielding
1 record per patient. Concatenated strings longer than 8000
words (44/2505, 1.76% of patients) were truncated at 8000.
This allowed us to maintain the generated token vectors within
a reasonable range for computational performance. The patients
were divided into a training and cross-validation set (2012-2017)
with 661 intentional self-harm cases and 1502 controls and a
holdout test set (2018-2019) with 174 intentional self-harm
cases and 168 controls.

Prediction From Previous Clinical Notes
In this part of the study, we sought to predict the future
occurrence of intentional self-harm events based on previous
clinical notes within the EHR. Clinical text was collected from
a predictive window for a period between 180 days to 30 days
before the index event (ie, the first reported intentional self-harm
event on record) for each patient. Patients who did not have
clinical notes during that time window were excluded. Clinical
notes were used from the first date within that time window up
to 90 days following the first date or up to 30 days before the
intentional self-harm event (whichever is first). That is, the
largest possible predictive window included clinical notes from
a time interval of up to 90 days. The same time window was
used for the control group; however, the latest visit on record
within the study period was used as the index visit instead of
an intentional self-harm event. To reduce noise and excessive
amounts of notes in this part of the study, we limited notes to
the following note types: progress notes, ED provider notes,
H&P notes, consult notes, and discharge summaries. Individual
notes were truncated to 1500 words and concatenated texts to
10,000-word cutoffs to capture a wider set of clinical texts. For
the prediction part of the study, the patients were divided into
a training and cross-validation set (2012-2017) with 480
intentional self-harm cases and 645 controls and a holdout test
set (2018-2019) with 106 intentional self-harm cases and 106
controls.

Labeling the Test Set
A sample of 200 records from the test set (2018-2019) was
manually reviewed to provide gold standard labels for a
comparison with ICD code labels (based on the NHSR from
the CDC). Each record reflected clinical notes in the EHR from
concurrent visits of patients. We selected a random 100 from
the study group (with intentional self-harm ICDs) and 100
controls. The concatenated strings from concurrent notes for

this sample were imported into REDCap (Research Electronic
Data Capture) [38] and made available for review and labeling
by the reviewers on our research team, which included 3 clinical
psychologists, a psychiatry resident, a medical student, and a
pediatrician. The reviewers were instructed to label the notes
as intentional self-harm if there was a suicide attempt or
intentional self-harm noted in any of the clinical notes associated
with the concurrent visit. Suicidal ideation alone was not
considered intentional self-harm. A subsample of 100 notes was
labeled independently by 2 labelers to estimate the interrater
reliability.

Text Processing
We tested several machine learning algorithms using the training
data, including both deep learning–based classifiers using word
embeddings (WEs) and the traditional bag-of-words
(BOW)–based models. We performed the necessary
preprocessing of the text for both types. We used the quanteda
R package [39] and regular expression functions within R for
the text-processing pipeline. For the traditional BOW models,
text processing included lower casing; removal of punctuation,
stop words, and numbers; word stemming; and tokenization.
For the WE models, text processing included lower casing,
sentence segmentation, removal of punctuation, replacement of
large numbers and dates with tokens using regular expressions,
and tokenization.

Word Frequencies
Before running the machine learning algorithms, we examined
differences in word frequencies across clinical notes concurrent
with intentional self-harm events and notes preceding intentional
self-harm events by over 30 days as compared with clinical
notes from the control population. We performed a chi-square
analysis to assess keywords that are overrepresented across the
corpora of text [40].

Bag-of-Words−Based Classifiers
For the BOW models, word frequencies were used as features
and were normalized using term frequency–inverse document
frequency [41]. The traditional text classification models
included naïve Bayes [42]; decision tree classifier [43] with a
maximum depth of 20; random forest (RF) [44] with 201 trees
and the number of variables randomly sampled as candidates
at each split (mtry=150); SVM [45] type 1 with a radial basis
kernel [46]; and a simple multilayer perceptron (MLP) artificial
neural network with a 64-node input layer, a 64-node hidden
layer, and a single output node. We used the rectified linear unit
(ReLU) activation function in both the input and hidden layers
and sigmoid activation for the binary output node. The MLP

was trained using a learning rate of 1×10−4, a batch size of 32,
and a 20% validation split over 30 epochs.

Word Embeddings
We used Keras [47] and TensorFlow version 1.13 [48] for
constructing and training the deep learning models. In
preparation for WE, the text strings were converted to token
sequences. To construct the features for the deep learning
models, the sequences were prepadded with zeros to match the
length of the longest string in the training set. We used
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Word2vec (W2V) to generate a pretrained model [28]. The
W2V weights were derived by pretraining a W2V skip-gram
model on a sample of over 800,000 clinical notes from our EHR
data set using 200 dimensions per word, a skip window size of
5 words in each direction, and negative sampling of 5. To
explore and visualize the outcome of the pretrained W2V model,
we used the t-distributed stochastic neighbor embedding (t-SNE)
to map the multidimensional word vectors into a 2D space [49].
The performance of each deep learning classifier was assessed
with either randomly initialized embeddings or W2V-initialized
embeddings.

Deep Learning Models
We examined 2 different deep neural network (DNN)
architectures: a CNN architecture similar to a previously
published model [26] and a long short-term memory (LSTM)
model [50]. Both architectures were tested using either randomly
initialized WE weights in Keras or WE initialized with the
weights from the pretrained W2V.

Both models had WE with 200 dimensions per word. The input
layer had a dimension size slightly exceeding the maximum
length of the input sequences of tokens, which were 8352 tokens
for the concurrent notes and 11,000 tokens for the predictive
notes. The CNN architecture consisted of an input layer; a WE
layer included with a drop rate of 0.2; a convolutional layer
with multiple filter sizes (3, 4, and 5) in parallel, with 200 nodes
in each, ReLU activation, a stride of one, and global
max-pooling; a merge tensor then a fully connected 200-node
hidden layer with ReLU activation and a drop rate of 0.2; and
an output layer with a single binary node with a sigmoid
activation function. The LSTM architecture consisted of an
input layer; a WE layer with a drop rate of 0.1; an LSTM layer
with 64 nodes; both global average pooling and global
max-pooling layers with a merge tensor of the 2; a fully
connected 100-node hidden layer with ReLU activation and a
drop rate of 0.1; and a single sigmoid binary output node.

The DNN models were trained using an adaptive moment
estimation gradient descent algorithm [51] with a diminishing

learning rate starting at 4×10−4, batch size of 32, validation split
at 15%, and early stopping based on the loss function for the
validation data with patience of 5.

Training and Evaluation

Detection of Concurrent Intentional Self-Harm
For the automated detection of concurrent intentional self-harm
ICD code assignment based on clinical text, we used the training
and cross-validation data set (with index visits from 2012-2017)
to identify the best performing models and hyperparameters.
We then used the top 2 performing models (the DNNs) for
training on the full training set and testing on the holdout test
set (with index visits from 2018 to 2019), which included the
200 manually reviewed cases. The models were trained using
intentional self-harm ICD codes as positive labels. However,

we tested the output using both intentional self-harm ICD codes
as positive labels and manually reviewed (gold standard) labels.

Prediction of Future Intentional Self-Harm Events
The 2 best performing models, namely, the DNNs, were used
to predict future intentional self-harm events based on previous
clinical notes. In the holdout test set, we used a balanced set
with an equal number of intentional self-harm cases and controls
with 106 cases in each. The DNN models were trained on notes
preceding the first intentional self-harm visits during the 2012
to 2017 time frame and then tested on notes preceding the first
intentional self-harm visits during the 2018 to 2019 time frame.
Unlike the previous task, which had near-ceiling performance
results with little variation, the performance of the DNNs on
the predictive task varied between different runs of the same
model even when using the same training and testing sets. This
is due to the random initialization of weights in TensorFlow
and random shuffling between epochs during training. To
evaluate the performance of the different DNN architectures
more precisely, we ran each model 50 times and examined the
averages of the different metrics and used the Student t test
(two-tailed) to determine statistical differences in performance.

Metrics
The performance metrics for all experiments, including area
under the receiver operating characteristic (ROC) curve (AUC),
were calculated in R using the caret [52] and pROC [53]
packages. We also calculated the accuracy, precision, recall,
and F1 score for all the models.

Results

International Classification of Diseases Code Analysis
The interrater reliability during the manual review exhibited a
Cohen kappa of 0.96. Using the labels from the manual review
as the gold standard, the accuracy of the intentional self-harm
ICD codes attributed to concurrent visits was 0.92, with a
precision of 0.84 and recall of 1.0. Thus, 16 cases out of 100
that were assigned an intentional self-harm ICD code did not
exhibit intentional self-harm as part of the presenting history,
per the manual review. However, all but 2 of the 16
false-positives by ICD had past intentional self-harm mentioned
in their clinical notes. For those 2, 1 was suspected intentional
self-harm, and the other had a previous admission for suicidal
ideation with possible intentional self-harm.

Word Frequency Results
The result from this analysis overrepresented keywords in
clinical notes concurrent with intentional self-harm events and
clinical notes before the intentional self-harm events (Table 1).
For example, the words suicide and attempt top the list in
concurrent notes; however, they do not rank in the top 10 words
in preceding notes. Instead, the words disorder and si (the
shorthand for suicidal ideation) top the list in notes preceding
intentional self-harm.
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Table 1. The top 10 words in each group were compared with controls, along with the chi-square statistic for each.

Before ISHcConcurrent with ISHa,b

Chi-square (df=1)KeywordChi-square (df=1)Keyword

1.2E+4disorder1.3E+5suicide

8.5E+3sid8.2E+4attempt

6.0E+3suicidal6.7E+4overdose

5.8E+3mood6.5E+4si

4.7E+3use5.2E+4disorder

4.6E+3alcohol5.2E+4suicidal

4.5E+3qhse4.0E+4psychiatry

4.2E+3safety3.6E+4iopf

3.9E+3interview3.5E+4interview

3.9E+3cocaine2.9E+4mood

aKeywords from clinical notes from visits concurrent with ISH events.
bISH: intentional self-harm.
cKeywords from clinical notes from visits before the first ISH events.
dsi: suicidal ideation.
eiop: Institute of Psychiatry.
fqhs: every bedtime (from Latin quaque hora somni).

Word2vec Pretraining Results
The W2V model successfully clustered words that seemed to
have similar semantic contexts. Figure 1 shows the visualization
of a sample of relevant words reduced into 2 dimensions using
the t-SNE algorithm. Table 2 shows the top 10 words

semantically similar to attempt and the top 10 words similar to
ideation along with their cosine similarities. For example, the
cosine similarity between attempt and suicide WE vectors was
0.730 and between ideation and suicidal was 0.872. The list
also shows several misspelled words in a similar dimension
space as their correctly spelled counterparts.
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Figure 1. A visualization of a sample of relevant words derived from the Word2vec model reduced into two dimensions using t-distributed stochastic
neighbor embedding. V1=variable 1; V2=variable 2.
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Table 2. Words semantically similar to the words attempt and ideation and their cosine similarity in the 200-dimension vector space as identified by
the Word2vec analysis.

Cos simaTerm

attempt

1.000attempt

0.730suicide

0.696overdose

0.679osteoarthrithis

0.643gesture

0.625sucicide

0.619benzodiaspines

0.617intentional

Cos simaideation

1.000ideation

0.872suicidal

0.837homicidal

0.736ideations

0.681intent

0.651ideaiton

0.648sib

0.619sucidial

aCos sim: cosine similarity.
bsi: suicidal ideation.

Detection of Concurrent Intentional Self-Harm

Training and Cross-Validation
Table 3 shows the results of the automated detection of
concurrent intentional self-harm ICD code assignment based
on the training and cross-validation data set with intentional
self-harm visits during the period of 2012 to 2017. The DNNs
outperformed the BOW classifiers. The CNN models had the
highest AUC and F1 score. The best performance overall was

for the CNN with W2V WE (CNNw) with an AUC of 0.988
and an F1 score of 0.928. The CNN with randomly initialized
WE (CNNr) was a close second, with significantly overlapping
95% CIs. The LSTMs with randomly initialized WE (LSTMr)
and the LSTM with W2V WE (LSTMw) AUCs were 0.982 and
0.975, respectively, with F1 scores above 0.887.

Among the BOW models, RF had the best AUC (0.961), and
MLP had the best F1 score (0.862). On the basis of these results,
we used 2 deep learning models for the rest of this study.
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Table 3. The metrics for training and cross-validation on the 2012 to 2017 data set.

F1 scoreRecallPrecisionAccuracy (95% CI)AUCa (95% CIb)Model

0.7940.8650.7340.870 (0.839-0.898)0.908 (0.882-0.934)NBc

0.7910.8850.7150.865 (0.833-0.893)0.870 (0.839-0.901)DTd

0.8280.8650.7940.896 (0.867-0.921)0.961 (0.944-0.978)RFe

0.8190.7820.8590.900 (0.872-0.924)0.947 (0.925-0.969)SVMf

0.8620.8970.8280.917 (0.890-0.939)0.957 (0.938-0.976)MLPg

0.9040.8720.9380.946 (0.924-0.964)0.984 (0.972-0.995)CNNrh

0.9280.9100.9470.959 (0.939-0.974)0.988 (0.977-0.999)CNNwi

0.8980.8780.9190.943 (0.920-0.961)0.982 (0.972-0.992)LSTMrj

0.8870.8590.9180.937 (0.913-0.956)0.975 (0.960-0.990)LSTMwk

aAUC: area under the receiver operating characteristic curve.
bCI: 95% confidence intervals for the AUC.
cNB: naïve Bayes.
dDT: decision tree.
eRF: random forest.
fSVM: support vector machine.
gMLP: multilayer perceptron.
hCNNr: convolutional neural network with randomly initialized word embeddings.
iCNNw: convolutional neural network with Word2vec word embeddings.
jLSTMr: long short-term memory with randomly initialized word embeddings.
kLSTMw: long short-term memory with Word2vec word embeddings.

Testing of Concurrent Intentional Self-Harm Labels
Training the models on the full 2012 to 2017 data set then testing
on the holdout (2018-2019) test set yielded even better
performance than in the above cross-validation for detecting
concurrent intentional self-harm ICD labels (Table 4). The best
performing model was the CNNr with an AUC of 0.999 and an
F1 score of 0.985. A plot of the training history for this task
shows that the model converges smoothly to a minimum loss
value on both training and validation (Multimedia Appendix
2). There was no advantage to adding the pretrained W2V WE,

that is, the CNNw when testing on the holdout set. The CNNs
slightly outperformed the LSTMs, but the results in all models
were close to ceiling, making it difficult to point out the
significance of these differences. As expected, as the models
were trained on ICD labels, they performed better in predicting
concurrent ICD labels than they did with predicting the gold
standard labels (Figure 2). Of note, is that the recall remained
very high when testing on the gold standard labels compared
with the ICD labels, whereas the precision suffered slightly
reflecting the precision achieved during the intentional self-harm
ICD code analysis.
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Table 4. The metrics for training on the 2012 to 2017 data set and testing on the 2018 to 2019 holdout test set using both International Classification
of Diseases labels and gold standard labels.

F1 scoreRecallPrecisionAccuracy (95% CI)AUCa (95% CIb)Model

ICDclabels

0.9850.9900.9800.985 (0.957-0.997)0.999 (0.998-1.000)CNNrd

0.9700.9600.9800.970 (0.936-0.989)0.998 (0.996-1.000)CNNwe

0.9800.9700.990d0.980 (0.950-0.995)0.997 (0.991-1.000)LSTMrf

0.9590.9300.9890.960 (0.923-0.983)0.997 (0.994-1.000)LSTMwg

Gold standard labels

0.9081.0000.8320.915 (0.867-0.950)0.981 (0.966-0.997)CNNrc

0.9120.9880.8470.920 (0.873-0.954)0.981 (0.965-0.997)CNNwe

0.9010.9760.8370.910 (0.861-0.946)0.968 (0.946-0.989)LSTMrf

0.9100.9640.8620.920 (0.873-0.954)0.967 (0.945-0.989)LSTMwg

aAUC: area under the receiver operating characteristic curve.
bCI: 95% confidence intervals for the AUC.
cICD: International Classification of Diseases.
dCNNr: convolutional neural network with randomly initialized word embeddings.
eCNNw: convolutional neural network with Word2vec word embeddings.
fLSTMr: long short-term memory with randomly initialized word embeddings.
gLSTMw: long short-term memory with Word2vec word embeddings.

Figure 2. The area under the receiver operating characteristic curve for training on the 2012 to 2017 data set and testing on the holdout test set
(2018-2019) using (1) International Classification of Diseases labels and (2) gold standard labels. AUC: area under the receiver operating characteristic
curve; ICD: International Classification of Diseases; CNNr: convolutional neural network with randomly initialized word embeddings; CNNw:
convolutional neural network with Word2vec word embeddings; LSTMr: long short-term memory with randomly initialized word embedding; LSTMw:
long short-term memory with Word2vec word embedding.

Prediction of Future Intentional Self-Harm Events
The results for the prediction of future intentional self-harm
events based on previous clinical notes are shown in Table 5.
These values are the means of the different metrics after 50

training and testing cycles for each model. Figure 3 shows the
differences in performance between the different models. The
CNNr model had the best performance, with a mean AUC of
0.882 and a standard deviation of 0.006 (P<.001) compared
with CNNw, which in turn outperformed the LSTM models
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(P<.001). There was no significant difference between LSTMr
and LSTMw. The variance in performance was notably wider
in the LSTM models than in the CNN models. Multimedia
Appendix 3 shows the ROC curves for each of the models

highlighting the mean AUC. Although pretraining with W2V
did not add value in terms of performance, it did reduce the
number of epochs needed during training by an average of 32%
for the CNN and 12% for the LSTM.

Table 5. The metrics for models trained on notes preceding the first intentional self-harm visits in patients presenting during the 2012 to 2017 time
frame and tested on notes preceding the first intentional self-harm visits in patients presenting during the 2018 to 2019 time frame.

F1 scoreRecallPrecisionAccuracy (95% CI)AUCa (95% CIb)Model

0.7690.6940.8630.792 (0.774-0.807)0.882 (0.871-0.891)CNNrc

0.7550.6730.8600.782 (0.766-0.792)0.869 (0.858-0.879)CNNwd

0.7290.6560.8300.758 (0.729-0.788)0.850 (0.827-0.877)LSTMre

0.7200.6440.8220.750 (0.717-0.778)0.846 (0.819-0.871)LSTMwf

aAUC: area under the receiver operating characteristic curve.
bCI: 95% confidence intervals for the AUC.
bCNNr: convolutional neural network with randomly initialized word embeddings.
dCNNw: convolutional neural network with Word2vec word embeddings.
eLSTMr: long short-term memory with randomly initialized word embeddings.
fLSTMw: long short-term memory with Word2vec word embeddings.

Figure 3. The mean area under the receiver operating characteristic curve and 95% CI for models trained on notes preceding the first intentional
self-harm visits in patients presenting during the 2012 to 2017 time frame and tested on notes preceding the first intentional self-harm visits in patients
presenting during the 2018 to 2019 time frame. The differences in performance were all significant (P<.001) except for the difference between the
LSTMr and LSTMw. AUC: area under the receiver operating characteristic curve; CNNr: convolutional neural network with randomly initialized word
embeddings; CNNw: convolutional neural network with Word2vec word embeddings; LSTMr: long short-term memory with randomly initialized word
embedding; LSTMw: long short-term memory with Word2vec word embedding.
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Discussion

Semantic Differences
The word frequency analyses identified keywords that were
overrepresented in clinical notes associated with intentional
self-harm visits. As noted in Table 1, words such as attempt
and overdose were highly overrepresented in clinical notes
concurrent with intentional self-harm events compared with
controls. Conversely, suicidal ideation (as represented by the
shorthand word si) was frequently present in preintentional
self-harm notes. This is consistent with the literature on ideation,
which is a prominent risk factor for suicide attempts and
completions [54].

The W2V pretraining on our full data set of clinical notes
successfully clustered relevant words together. It also
demonstrated word similarity for some of the significant words
identified above. For example, the words attempt, suicide, and
overdose were closely linked with high cosine similarity. This
model was also useful in clustering misspelled words with their
correctly spelled counterparts, which may help reduce noise
due to misspelling in the clinical notes.

Detection of Intentional Self-Harm Events
The deep learning models outperformed BOW models in
identifying intentional self-harm in training and testing using
the 2012 to 2017 data set. Given this outcome, we trained the
deep learning models on the full 2012 to 2017 data set and then
used the 2018 to 2019 data set as a holdout test set. This
temporal division of the data is intended to replicate a real-world
scenario where models could be trained on historical data to
identify intentional self-harm in new records. The results show
that we can accurately detect intentional self-harm events in
concurrent clinical notes with intentional self-harm ICD codes.
More specifically, we showed that a model trained on aggregated
clinical text associated with a given intentional self-harm visit
may be used to identify concurrent intentional self-harm events
even if ICD codes were not yet provided or assigned. In other
words, clinical text alone is useful in accurately identifying the
intentional self-harm phenotype.

Although there is limited literature on the performance of NLP
and machine learning approaches for the phenotyping of
intentional self-harm, our DNN classifiers with precisions up
to 99% for concurrent notes with intentional self-harm ICD
codes and up to 86% for gold standard intentional self-harm
events compare favorably with previous reports, especially when
considering that the models were trained on ICD codes as labels.
Using a hybrid machine learning and rule-based NLP approach,
Fernandes et al [19] achieved a precision of 82.8% for
identifying suicide attempts. Another study comparing the
accuracy of ICD codes and NLP-extracted concepts for
suicidality achieved a precision of 60% using NLP alone and
97% using both ICD-9 codes and NLP; however, this study did
not differentiate between suicidal ideation and intentional
self-harm [16].

Although the CNN-based models seemed to slightly outperform
the LSTM-based models on the phenotyping task, it is difficult
to show a significant advantage to using either model or the

advantage of pretraining with W2V due to the near-ceiling
performance of all the DNNs on this task and the relatively
small data set.

Nonetheless, a DNN model trained using this method may be
useful for surveillance purposes and could well supplement
surveillance using ICD codes. Training such a model using
intentional self-harm ICD codes as positive labels is dependent
on reliable assignment of ICD codes. Fortunately, ICD codes
for intentional self-harm at our institution were accurate, as
shown by the manual review of charts, notwithstanding the
limitation of a relatively high false-positive rate. Finally,
accurate phenotyping of the intentional self-harm events paves
the way for future directions in identifying other phenotypes,
for example, those with suicidal ideation alone versus intentional
self-harm or not intentional self-harm, which may or may not
have accurate ICD codes. Such precise or deep phenotyping is
an important step toward predicting the risk of mortality, given
the availability of mortality data.

Prediction of Future Intentional Self-Harm Based on
Clinical Text
The results also show that aggregated clinical notes from visits
between 1 and 6 months before the index visit predicted future
intentional self-harm events with an AUC of 0.882 for the best
performing CNN model. These results compare favorably with
the literature on predictive models for suicide attempts. Using
a complex combination of structured EHR data (including
demographics, diagnostic codes, and census-based
socioeconomic status) and medication data extracted via NLP,
Walsh et al [20] achieved a maximum AUC of 0.84. Moreover,
this AUC was based only on 7-day-old data. The AUC dropped
gradually to 0.81 as the predictive window widened to 6 months
before the index visit.

When comparing the performance between the 2 DNN
architectures, we noted a consistent and statistically significant
performance advantage of the 2 CNN models over the
LSTM-based ones (Figure 3). Moreover, the LSTM had a
relatively high variance and inconsistent performance over the
50 training runs, as can be noted from the CIs. We also noted
a higher computational cost for the LSTM over the CNN (almost
twice the time needed for training per epoch). In addition to the
higher computational cost, recurrent neural networks show a
minor advantage in generic text classification tasks [55,56]. At
least with a small data set like ours, the CNNs were found to
converge more smoothly and provide better performance.

While the W2V pretraining clustered similar words, initializing
the WE layer with W2V weights did not add any value to either
of the predictive models. Although CNNr (AUC=0.882)
performed only slightly better than CNNw (AUC=0.869), the
difference was statistically significant. However, there was no
difference between the LSTMr and LSTMw. These results were
unexpected given the advantages of pretrained WE in picking
up misspellings and word similarities and highlight the need to
examine newer, more complex language models such as
Google’s (Alphabet Inc) Bidirectional Encoder Representations
from Transformers [29].

JMIR Med Inform 2020 | vol. 8 | iss. 7 | e17784 | p. 11https://medinform.jmir.org/2020/7/e17784
(page number not for citation purposes)

Obeid et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Regardless of the model architecture, these results are promising.
Such predictive models may be useful in stratifying hospitalized
patients into risk categories, which may aid in discharge
planning. Using technology (telephone, emails, or text messages)
for follow-up in the postdischarge period has been shown to
reduce risk of future suicide attempts [57]. Furthermore, patients
could be prophylactically assigned a social worker; be directed
to collaborative primary care clinics with access to mental health
services; or receive mental health referrals, telehealth
appointments, or home health visits [58]. Adequate refinement
of a predictive model may even allow for stratification of
patients to a level of care necessary post discharge, beyond
simple binary risk categorization.

Limitations
To identify patients with intentional self-harm during a given
visit, we trained the models on ICD codes. Therefore, they can
only perform as well as the ICD code designation. As mentioned
earlier, during the manual labeling process, several patients had
a past medical history of intentional self-harm rather than suicide
attempt or self-harm as part of the presenting chief complaint
or diagnosis. A possible solution would be to train models to
introduce multiple labels that include current and past intentional
self-harm through manual review. However, this would require
a manual review of several hundreds of charts, which was
beyond the scope of this initial pilot work.

Moreover, although we can clearly identify intentional
self-harm, this still does not specify intent to die. This highlights
the need for data on fatalities due to suicide. There are multiple
forms of self-injury (eg, firearms, sharp objects, jumping from
a high place) with ICD codes that are not accompanied by the
classification of intent to harm oneself. Therefore, in these
instances of unknown intent, self-injury may reflect a multitude
of motives: communicating distress, suicidal gestures with low
lethality, nonsuicidal self-injury (NSSI), or fatality [59]. Existing
literature predicting NSSI behaviors yields 3 notable risk factor
categories: history of NSSI, cluster B personality, and
hopelessness [60]. Identifying NSSI can be of a significant
prognostic value and has not been distinguished from intent to
die in this study.

Another limitation of this study is that our model currently only
addresses features within clinical texts. Other clinical
information could be added to the model, such as associated
demographics, comorbidities, and risk factors (eg, codes for
depression or substance use). Moreover, with respect to suicide
prediction, EHR data alone may not provide a full picture.
Ideally, our data should be linked with the statewide cause of
death data, which should yield an improved predictive power.

Although deep learning models are more powerful, they are less
interpretable than some of the BOW models. For example, when
using an RF model, the results of a variable importance analysis
may yield insight into significant words. In fact, it may be
beneficial to use both types of predictive models in mental health
applications. This would leverage the power of deep learning
models as well as the advantages of interpretable models. Future
work should also include the exploration of attention-based
deep learning models with some insight into explainability [61],
which may address the utility of these models in real-world
clinical decision support and adoption by clinicians.

Finally, the results presented here are based on data from a
single EHR system at 1 academic medical center, making it
difficult to draw generalizations about the high level of
performance of our models in other environments. Future work
should include collaboration with other institutions to ascertain
the performance of these models in other environments.

Conclusions
Most of the models showed relatively good performance when
detecting intentional self-harm events in concurrent clinical
notes, that is, the phenotyping task. This is likely due to a strong
signal within concurrent notes and is associated with a high
fidelity of ICD code attribution for intentional self-harm, at
least at our institution. When applied to the prediction of a future
occurrence of intentional self-harm code assignment in a patient
chart based on previous clinical notes, the AUC dropped to
0.882 with a modest recall and precision. Nevertheless, our
results are competitive with the results from other models
reported in the literature. Improving the precision of these
algorithms could lead to better follow-up and preventative care
by mental health professionals for patients who are at risk for
future suicide attempts.
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Multimedia Appendix 2
A plot of the convolutional neural network model’s training history for the phenotyping task. The learning curve shows that the
model converges smoothly to a minimum loss value on both training and validation sets using an Adam optimizer.
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Multimedia Appendix 3
Plots of the receiver operating characteristic curves for the 50 training and testing runs for all the models highlighting the mean
area under the receiver operating characteristic curve for each model.
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