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Abstract

Background: Predictions of cardiovascular disease risks based on health records have long attracted broad research interests.
Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data
insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches,
and how these issues can be alleviated.

Objective: Based on a large population of patients with hypertension in Shenzhen, China, we aimed to establish a high-precision
coronary heart disease (CHD) prediction model through big data and machine-learning

Methods: Data from a large cohort of 42,676 patients with hypertension, including 20,156 patients with CHD onset, were
investigated from electronic health records (EHRs) 1-3 years prior to CHD onset (for CHD-positive cases) or during a disease-free
follow-up period of more than 3 years (for CHD-negative cases). The population was divided evenly into independent training
and test datasets. Various machine-learning methods were adopted on the training set to achieve high-accuracy prediction models
and the results were compared with traditional statistical methods and well-known risk scales. Comparison analyses were performed
to investigate the effects of training sample size, factor sets, and modeling approaches on the prediction performance.

Results: An ensemble method, XGBoost, achieved high accuracy in predicting 3-year CHD onset for the independent test
dataset with an area under the receiver operating characteristic curve (AUC) value of 0.943. Comparison analysis showed that
nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC
0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg,
Framingham cardiovascular disease risk models). Further analyses revealed that using time-dependent features obtained from
multiple records, including both statistical variables and changing-trend variables, helped to improve the performance compared
to using only static features. Subpopulation analysis showed that the impact of feature design had a more significant effect on
model accuracy than the population size. Marginal effect analysis showed that both traditional and EHR factors exhibited highly
nonlinear characteristics with respect to the risk scores.
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Conclusions: We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population
of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear
nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were
valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease
predictions.

(JMIR Med Inform 2020;8(7):e17257) doi: 10.2196/17257

KEYWORDS

coronary heart disease; machine learning; electronic health records; predictive algorithms; hypertension

Introduction

Cardiovascular diseases (CVDs) are currently the primary cause
of global deaths according to a survey from the World Health
Organization [1]. In 2016, 17.9 million people were estimated
to have died of CVDs, representing 31% of all global deaths.
Among these deaths, 85% are due to heart attack and stroke [2].
Modeling and prediction of CVD risk have long attracted the
interest of many researchers. Several well-known risk scales
such as the Framingham scales [3-5], American College of
Cardiology/American Heart Association scales [6], QRISK [7],
QRISK2 [8], and SCORE [9] have been established following
years of population cohort studies, which provide an effective
reference for clinicians to carry out disease prevention and
treatment work [10].

Nevertheless, due to the complex and heterogeneous nature of
CVD pathology, the prediction power of these risk scales has
proven to be rather limited [11,12]. In recent years, researchers
have been discovering or proposing new risk factors of CVDs
according to lifestyle [13-15]; biochemical testing [16-18];
electrocardiograms [19-22]; medical imaging [23-28]; genetic,
genomic, and proteomic biomarkers [29,30]; along with microbe
and gene-environment interactions [31]. The steady growth of
new emerging risk biomarkers surges demands for developing
more precise disease prediction models. However, the traditional
paradigm used for building risk models from a population-based
study imposes a severe challenge to the development of accurate
risk models, which usually requires a fixed set of observation
variables at the beginning of the study and a lengthy follow-up
period to collect all outcomes. Moreover, recent studies have
identified that CVD risk factors vary according to social
environments as well as ethnic and geographic differences
[32,33]. This implies that an adaptive approach should be
adopted for constructing more accurate CVD risk models that
can be tuned to a specific population with higher efficiency.

Recently, the boosting of national or region-wide electronic
health record (EHR) management systems has enabled the
sharing and fusion of EHR data from many institutes [34],
providing a faster approach for collecting large-scale population
data to carry out retrospective cohort studies for more efficient
assessments of CVD risk factors. A large-scale follow-up study
using the EHR data of 1.25 million people identified the
heterogeneous associations of blood pressure across different
CVDs and age groups [35], which could not be discovered in
previous population studies. Several efforts have also been made
to create new disease risk prediction models based on EHR data
using machine-learning models such as logistic regression,

support vector machine (SVM), or K-nearest neighbor (KNN)
approaches [36-39], but most of the results demonstrated very
limited advantages compared with traditional risk scales.
Compared with traditional cohort studies, EHR data are easier
to acquire but the data quality is significantly inferior. Hence,
one question that arises is whether EHR data are intrinsically
unreliable and therefore unsuitable for achieving high-accuracy
predictions. Moreover, studies on machine-learning approaches
in EHR-based risk modeling are rather limited in the sense that
almost all of the methods reported to date involve converting
the EHR data into a single matrix, resulting in a lack of dynamic
information. Therefore, establishment of a better modeling
technique, more advanced machine-learning methods, and more
data resources are expected to provide positive contribution to
the power of existing prediction models.

Toward this end, the aim of the present study was to address
these issues based on a case study using a large population of
registered patients with hypertension in Shenzhen, China.
Specifically, we evaluated the possibility of establishing a
high-precision coronary heart disease (CHD) prediction model
through big data and machine-learning methods. With a large
population of 20,156 patients with CHD onset and more than
100 original features gathered from EHRs accumulated over 8
years, we were able to obtain more insight into risk factors than
possible with traditional cohort studies, demonstrating that
accurate prediction of CHD risks could be possible with the aid
of large datasets, sophisticated machine-learning methods, and
dynamic trends of patient information extracted from multiple
time-point EHR records. These findings highlight the importance
of accumulating EHR big data for accurate disease risk
modeling, and provide a useful approach for the early screening
and prevention of CVDs.

Methods

Overview of Sample and Data Processing
We investigated the stocked EHRs of registered patients with
hypertension from the Shenzhen Health Information platform,
which gathered the clinical records of 83 local public hospitals
and over 600 community health service centers from 2010 to
2018. Each patient visiting the associated hospitals was assigned
a unique identifier so that the clinical activities at multiple
institutes could be merged. De-identification was performed on
all data by the platform administrators under supervision of the
Shenzhen Municipal Health Commission before collecting the
datasets for investigation. Since all of the data were collected
during regular clinical activities and were anonymized,
following the Guidelines of the World Medical Association’s
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Declaration of Helsinki term 32, a waive-of-consent protocol
was adopted, which was approved by the Shenzhen Institutes
of Advanced Technology Institutional Review Board (No.
SIAT-IRB-151115-H0084).

A total of 251,791 registered patients with hypertension were
identified in the platform data. The collected EHR data for each
patient included regular chronic disease follow-up records,
inpatient and outpatient records, and clinical examinations and
biochemical tests. Detailed field descriptions are provided in
Multimedia Appendix 1. CHD diagnosis results were extracted
from the main diagnosis field of the inpatient or outpatient
records using the International Statistical Classification of
Diseases and Related Health Problems (ICD)-10 [40] diagnostic
codes I20 to I25 or the keywords related to CHD conditions,
including “coronary heart disease,” “coronary sclerosis heart
disease,” “ischemic cardiomyopathy,” “angina,” “acute
myocardial infarction,” “myocardial ischemia,” “heart failure”
(all translated from Chinese), and others, resulting in 37,776
cases of CHD onset.

To ensure the reliability of the outcomes, we required all
samples to be associated with regular chronic disease follow-up
information. A total of 23,335 samples were thus removed,
resulting in 228,456 samples for analysis. We defined the
follow-up period for each patient as the time interval between
the most recent and the earliest record (regardless of record
types) collected in the system. For positive samples (patients
with CHD onset, n=33,279), we required the patient to be CHD
free at the initial state and for the interval between the time of
CHD diagnosis and the last CHD-free follow-up time to be
within 0-3 years, which excluded 9027 patients, leaving 24,252
patients. Among the excluded patients, 9018 had a diagnosis of
CHD onset but the diagnosis time was more than 3 years after
the latest CHD-free follow-up. To avoid possible latencies in
diagnosis, we excluded these patients from the present analysis,
but the distribution of their prediction scores was analyzed later.
For negative samples (non-CHD patients, n=195,177), we

excluded 23,054 patients with other severe diseases (eg, death,
stroke, cancer/tumor, renal failure, rheumatic heart disease,
pulmonary heart disease, pericardial defect, heart valve disease,
congestive heart failure, acute myocardial infarction) and
120,717 patients with a follow-up period less than 3 years,
resulting in a set of 51,606 non-CHD samples. The reason for
excluding patients with heart failure and myocardial infarction
from the non-CHD set was that there may be a suspicion of
CHD in such cases but without an explicit diagnosis. In addition,
patients with other severe diseases would receive intensive
medical interventions; thus, some of these patients may have
previously had cardiac risks but interventions were administered
prior to making a diagnosis of CHD. For example, the CHD
risk scores of stroke patients without CHD were predicted to
be high using our model (Multimedia Appendix 2); hence, these
cases were excluded to avoid confusion. For positive samples,
only the records during the CHD-free period were used for
investigation. For negative samples, only the records from at
least 3 years before the study endpoint were included. The
recording time of the most recent included record for each
patient was assigned as the baseline time point.

EHR data usually contain abundant missing values. To avoid
the influence of missing data on the prediction results, we used
four basic variables as the quality filter of samples: age, gender,
systolic blood pressure, and hypertension diagnosis time.
Samples with no valid values for any of the above variables
were excluded from the analysis. Moreover, only patients aged
between 20 to 85 years were included in the study. Finally, we
included data for 42,676 patients in the research cohort who
met the above conditions, comprising 20,156 patients with CHD
and 22,520 non-CHD patients. The above pipeline is
schematically presented in Figure 1. Finally, the positive and
negative samples were divided evenly to form the training set
and the test set, respectively. Table 1 and Table 2 summarize
the basic characteristics of both datasets. The distribution of the
CHD-free time for the CHD group is shown in Multimedia
Appendix 3.
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Figure 1. Patient cohort data processing. CHD: coronary heart disease; EHR: electronic health record.

Table 1. Sample distribution of the training and test datasets.

Test set (N=21,338), n (%)Training set (N=21,338), n (%)Subsample

12,286 (57.58)12,303 (57.66)Males

9052 (42.42)9035 (42.34)Females

10,078 (47.23)10,078 (47.23)Positive samples

11,260 (52.77)11,260 (52.77)Negative samples
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Table 2. Basic characteristics of subjects for the two datasets.

Test set (N=21,338), mean (SD)Training set (N=21,338), mean (SD)Characteristic

5.7 (5.01)5.8 (5.10)Duration of illness (years)

49.52 (11.99)49.97 (12.01)Age (years)

131.37 (10.37)131.39 (10.49)Last SBPa (mmHg)

135.70 (12.01)135.40 (11.85)Maximum SBP (mmHg)

127.96 (10.49)128.21 (10.45)Minimum SBP (mmHg)

131.69 (9.57)131.68 (9.66)Mean SBP (mmHg)

aSBP: systolic blood pressure.

Feature Processing
In contrast to most existing research in the field, our dataset
included multiple records with different record times for each
patient. Therefore, data preprocessing and feature variable
extraction, selection, and construction were crucial steps for the
establishment and analysis of our model.

First, variables with over 20% missing values were removed
from the study. Second, text parsing was performed. Inpatient
and outpatient diagnostic results are a mixture of ICD codes
and natural language text input. If the ICD codes were available
for a record, we used the ICD codes directly as the annotation
or features of the samples. Otherwise, by using an
inhouse-designed lexical parsing code with keyword mapping
and error corrections, we converted the diagnostic text into
corresponding ICD codes. The parser was rule-based, in which
each ICD code item was mapped to varied texts through a
regular expression of keywords. The parsing procedure was
carried out iteratively. At the end of each loop, the unparsed
texts were collected and sorted by word frequency, and then a
manual inspection was performed and the expressions were
modified to match more text (including tolerating typographical
errors). The loops continued until the unparsed texts were
considered noninformative.

Third, accounting was carried out. Features from multiple
sources (eg, examination, inpatient, and outpatient records) or
multiple time points representing the same physiology index
were gathered, and their maximum, minimum, or average values
were calculated and used as new features. Fourth, for some rare
diagnostic symptoms and similar symptoms (eg, diseases
belonging to the same ICD class but less related to cardiac
events) were merged into a single variable to avoid sparsity in
value distribution. Finally, we divided the follow-up period of
each patient into the early and late halves at the mid-time points.
The frequency of specified events (eg, in-hospital or out-hospital
visits, symptom onset) were accounted for each half, and the
ratios were used as a new variable representing the trending
status of the patients.

Machine-Learning Algorithms

Extreme Gradient Boosting
Our model is based on the machine-learning algorithm XGBoost
[41], which is short for extreme gradient boosting approach.
XGBoost is an integrated machine-learning algorithm based on

multiple decision trees with gradient boost as the framework.
The loss function of XGBoost is defined as follows:

Where l is a differentiable convex loss function that measures
the difference between the prediction ŷi and the target yi. The
second term Ω, as a regularization term, penalizes the
complexity of the model. In contrast to the traditional gradient
boosting decision tree method, XGBoost performs a
second-order Taylor expansion on the loss function, and the
additional regularization term helps to find the optimal solution
for the whole, followed by weighing the decline of the objective
function and the complexity of the model to avoid overfitting
[41].

XGBoost supports missing values by default and naturally
accepts a sparse feature format, allowing for directly feeding
the data as a sparse matrix, and only contains nonmissing values
(ie, features that are not presented in the sparse feature matrix
are treated as “missing” and XGBoost will handle them
internally). In tree algorithms, branch directions for missing
values are learned during training. Internally, XGBoost treats
nonpresence as a missing value and learns the best direction to
handle missing values [41]. Equivalently, this can be viewed
as automatically “learning” the best imputation values based
on loss reduction. For continuous features, a missing (default)
direction is learnt for missing value data to go into, so that
missing data of a specific value will go in the default direction.

SVM
SVM is a generalized linear classifier that classifies data in a
supervised learning manner, which was developed by Cortes
and Vapnik [42]. The decision boundary is the maximum-margin
hyperplane that solves the learning sample. The model trains a
function that calculates a score for a new input to separate
samples into two classes by building this hyperplane [43].

Logistic Regression
Logistic regression is a generalized linear regression analysis
model [44], which is often used in data mining, automatic
disease diagnosis, economic forecasting, and other broad
applications. The algorithm is essentially a common
two-category model, and the category corresponding to the
object is obtained by inputting the attribute sequence of the
object. The model assumes that the data obey the Bernoulli
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distribution, and uses the method of maximizing the likelihood
function to solve the parameters with gradient descent to achieve
the purpose of classifying the data.

Decision Tree
A decision tree algorithm is a method of building a model based
on the characteristics of data using a tree structure [45]. A
decision tree is usually composed of nodes and directed edges.
The process of constructing decision trees usually includes
feature selection, tree generation, and pruning. The essence of
decision tree learning is to generalize a set of classification rules
from the training dataset, representing a mapping relationship
between object attributes and object values.

KNN
The KNN algorithm is used in the case where the data and labels
are known in the given training set. The characteristics of the
input test data are compared with the corresponding features of
the training set to find the top K dataset most similar in the
training set (ie, the most similar K instances, or nearest
neighbors), and then the most frequently occurring classification
among the K most similar data is summarized to classify the
test data [46].

Random Forest
Random forest is an integrated learning algorithm that integrates
multiple decision trees into a single classifier [47]. The random
forest algorithm selects different splitting features and training
samples to generate a forest of a large number of decision trees.
When predicting unknown samples, each tree in the forest is
made to make decisions, which improves the accuracy of the
prediction compared to a single decision tree. By statistically
determining the results of the decision, the classification with
the highest number of votes is taken as the final classification
result.

Missing Data
For handling missing values in variables, XGBoost adopts an
imputation-free approach in which missing values can be
directly marked as “missing” in the input and the model can
use only the nonmissing samples for creating trees, so that no
value imputation operation was carried out. For the other
algorithms, missing values were imputed with the average value
of the entire population before model building.

Implementation
All experiments were performed with the web-based interactive
tool Jupyter notebook under the environment manager
Anaconda, and a python3 kernel was used for data processing
and modeling analysis. The XGBoost model relied on the
“XGBClassifier” package, and the other machine-learning
models were respectively dependent on the
“LogisticRegression,” “svm,” “DecisionTreeClassifier,”
“RandomForestClassifier,” and “KNeighborsClassifier”

packages, which can be accessed from the sklearn library in the
public Python software [48,49].

Evaluation Criteria
We used a confusion matrix of the classification results to
compute the performance indices, as shown in Table 3.

Based on this confusion matrix, we obtained the following
indicators to evaluate the performance of our model. Accuracy
was calculated as the proportion of the correct number of
samples (true positives [TP]; the true category of the sample is
positive and the final predicted result is also positive) to the
total number of samples, including false negatives (FN; the true
category of the sample is positive and the final predicted result
is negative), TP, true negatives (TN; the true category of the
sample is negative and the final predicted result is also negative),
and false positives (FP; the true category of the sample is
negative and the final predicted result is positive) using the
following formula: TP+TN/TP+FP+TN+FN.

Sensitivity, also called recall, was calculated as the percentage
of TP examples that were correctly predicted: TP/TP+FN.

The positive predictive value (PPV), also known as precision,
was calculated as the percentage of positive samples that are
predicted correctly: TP/TP+FP.

Specificity was calculated as the proportion of TN samples that
was correctly predicted: TN/TN+FP.

The negative predictive value (NPV) was calculated as the
percentage of the sample predicted correctly as a negative
example: TN/TN+FN.

Finally, the F1-score was calculated as a harmonic average of
model accuracy and recall according to the following formula:
2 × (precision×recall)/(precision+recall)

We then sorted the samples according to the prediction results
of the model, and predicted the samples as positive examples
one by one, successively obtaining the FP rate and TP rate,
which were plotted as the horizontal and vertical coordinates
to obtain the receiver operating characteristic curve (ROC). The
area under the ROC value (AUC) was then selected as the main
evaluation index. The more realistic meaning is that given a
random positive and a negative sample, the probability of a
positive sample output by the classifier is greater than that of
negative sample output by the classifier. The formula for
calculating AUC is as follows:

Where M represents the number of positive samples, N is the
number of negative samples, and ranki is the order of probability
from high to low for positive examples. Therefore, a larger AUC
value indicates a better classification result of the learner and
a better prediction effect of the model.
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Table 3. Confusion matrix.

Predicted_labelTrue_label

Positive example (1)Negative example (0)

False positiveTrue negativeNegative example (0)

True positiveFalse negativePositive example (1)

Results

Model Prediction Performances
After feature processing, a set of 65 feature variables were
finally used as the input of the machine-learning algorithms.
We conducted model training, verification, and prediction on
the divided training set and test set. The prediction accuracy
and AUC values of each model are shown in Table 4, and the
detailed ROC curves are depicted in Figure 2. The nonlinear
ensemble method XGBoost clearly achieved the highest
accuracy on the test dataset. As a similar ensemble method,
random forest achieved closely competitive performance.
Machine-learning methods with nonlinear models (ie, random
forest, KNN classifiers, decision trees, SVM) outperformed the
traditional linear logistic regression model that has been widely
used in most previous risk prediction models. This suggested
that sophisticated machine-learning methods help to improve
the performance of risk prediction with a sufficiently sized
training dataset.

One potential concern would be that patients in the non-CHD
group all had a total follow-up period of >3 years, whereas some
patients in the CHD group may have had a follow-up period of
less than 3 years, which would likely result in an inherent
imbalance between the two groups of data. To exclude the
possible bias introduced by variation in the total follow-up time,
we carried out an additional experiment in which the test sets
were divided into two groups: (1) CHD onset within 3 years
and total follow-up >3 years (5094 samples), and (2) CHD onset
within 3 years and total follow-up ≤3 years (4984 samples). We
applied the same derived prediction model on these two test
sets separately, which confirmed that the performance of the
model was analogous on both sets with similar AUC values
(0.9464 for group 1 vs 0.9389 for group 2; Multimedia Appendix
4) and there was no statistically significant difference on the
risk score distributions between the two groups (P=.34
Kolmogorov-Smirnov test). This suggest that the inclusion of
CHD patients with under a 3-year follow-up time did not
introduce observable data bias and the models developed would
be reliable in terms of generalization.

Table 4. Prediction scores of models created by different algorithms.

NPVdSpecificityPPVcSensitivityF1-scoreACCbAUCaAlgorithm/ model

0.7870.8740.8400.7360.7850.8090.865Logistic regression

0.7960.9030.8730.7420.8020.8270.882Decision tree

0.8100.8790.8510.7690.8080.8270.908KNNe

0.8240.9120.8880.7820.8320.8500.915SVMf

0.8430.9050.8840.8120.8460.8610.938Random forest

0.8490.9140.8950.8200.8550.8700.943XGBoost

aAUC: area under the receiver operating curve.
bACC: accuracy.
cPPV: positive predictive value.
dNPV: negative predictive value.
eKNN: K-nearest neighbor.
fSVM: support vector machine.
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Figure 2. The receiver operating characteristic curves of models established by different algorithms. AUC: area under the curve.

Contributions of EHR Feature Variables to Model
Prediction
The feature importance of the XGBoost model measures the
relative contribution of the feature variables in the process of
building the decision trees. Figure 3 depicts the top-ranked
features selected by the XGBoost model. In addition to
traditional risk factors such as age, systolic blood pressure, and
years since hypertension onset, several other features
representing the dynamic trends of medical activities also played
important roles in risk prediction. For example, an increased
frequency of medical activities (in-hospital or out-hospital visits)
in the late half or the last half year of the follow-up period would
be linked to a higher risk of CHD onset. In addition, the (highest

or lowest) blood pressure at the late half of the follow-up period
would provide additional information to the risk scores.

To further confirm the contributions of different EHR features
on model precision, we performed an experiment in which a
series of models were created using an increasing sequence of
EHR features and the same XGBoost algorithm, and the
performances of these models were tested on the same
independent test set. Table 5 summarizes the variation trends
of the models with different numbers of features added. Initially,
variables that are traditionally used for most risk scales were
selected. With only six basic variables, the model reached an
AUC of 0.81, which is analogous to the performances of most
of the traditional risk scales reported in the literature. Next,
diagnosis variables extracted from regular follow-ups,
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in-hospital, or out-hospital visits were added. Although these
symptom data helped to improve the model performance, the
effect was quite marginal, which may be attributed to the fact
that pre-CHD symptoms are mostly hidden or nonspecific and
are often undiagnosed before CHD onset. Finally, variables
created by combining multiple EHRs accumulated over time
were added. Surprisingly, adding multiple time-point systolic
blood pressure values significantly improved the accuracy of
the model, suggesting that the long-term variations of blood
pressure measurements can be an independent risk factor for
CHD prediction. Moreover, variables indicating an increasing
trend of medical activities (eg, in-hospital or out-hospital records
but without a CHD-related diagnosis or medical examinations)
were shown to be correlated with a future risk of CHD onset,
which warrants further investigations.

To further analyze the marginal effect of each variable, we
performed a univariate trend analysis to describe the relationship
between a given variable and the predicted risk probability based
on the obtained model, which was visualized with a scatter plot.
First, we binned all training samples (including both positive
and negative samples) according to the value interval of the
studied variable, which was plotted on the x-axis. The
corresponding predicted risk probability for each sample was
then plotted on the y-axis. Subsequently, a trend curve was
plotted showing the averaged risk probability at the given value
(or interval) of the studied variable. An example of the marginal
effects for four typical variables is depicted in Figure 4. Many
variables exhibited highly nonlinear correlations with the overall
risk probability scores. This could provide useful insights for
CHD prevention through improving risk factor control.
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Figure 3. The importance rankings of feature variables for the XGBoost model.
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Table 5. Trends of model performance with increasing feature sets.

ACCbAUCaNumber of featuresVariables included in the model

0.69410.75474SBPc_last, Age, Gender, Years_After_Hypertension (in the last CHDd-free record)

0.70900.77665+ Diabetes diagnosis

0.73390.81116+ Hyperlipidemia diagnosis

0.73410.81349+Inpatient diagnosis flag

+Total in-hospital days

+ Total in-hospital visit number

0.74600.828919+ Diagnosed symptoms

(eg, hypertension level, cerebral disease, dizziness, nephropathy, gout, hyperuricemia, palpitation)

0.77660.858922+ Multipoint SBP statistics

(SBP_max, SBP_min, SBP_mean)

0.79290.875228+ Dynamic SBP trends

(SBP_ min(max.mean)_1st(2nd)_half)

0.83500.919531+ Medical activities trends

(N_visits_1st_half, N_visits_2nd_half, Visit_trend_ratio)

0.86860.942733+ Medical activities trends

(N_visits_last_3me, N_visits_last_6mf)

aAUC: area under the receiver operating characteristic curve.
bACC: accuracy.
cSBP: systolic blood pressure.
dCHD: coronary heart disease.
e3m: 3 months.
f6m: 6 months.
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Figure 4. The univariate marginal effects of typical variables on the risk probability scores. The blue dots represent the CHD samples and the green
dots represent the non-CHD samples in the training set. The y-axis shows the calculated risk probability scores (0=low risk, 1=high risk). The red curve
shows the average risk probability at the given value/interval of the studied variables. CHD: coronary heart disease; SBP: systolic blood pressure; HTN:
hypertension.

Impact of Population Size on Model Performance
The creation of most disease prediction models relies on
large-scale research cohorts. The size of the research population
is one of the important factors that affects the final performance
of the created models. To determine the impact of population
size on model performance, we carried out an experiment with
a series of subpopulations of varying sizes and a fixed number
of variables to explore the impact of different data volumes on
model performance. The results are depicted in Table 6,

demonstrating that the accuracy and reliability of model
prediction will be improved with an increase in the size of the
research population when the characteristic variables are fixed.
However, given adequate variable sets, the model can reach
fairly competitive performance (ie, AUC>0.8) even with a small
training population size, surpassing the results obtained with a
large training population but with limited feature variables (eg,
Table 5). This suggested that population size is indeed a very
important consideration in building disease risk prediction
models but is not an overwhelming limitation.
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Table 6. Trends of model accuracy with respect to varying training population sizea.

AUCcACCbTraining population size (N)

200

0.8500.780Subpopulation 1

0.8070.745Subpopulation 2

0.8230.740Subpopulation 3

0.8400.770Subpopulation 4

0.8390.800Subpopulation 5

0.8320.767Mean

2000

0.9330.847Subpopulation 1

0.9270.838Subpopulation 2

0.9210.833Subpopulation 3

0.9270.838Subpopulation 4

0.9240.835Subpopulation 5

0.9260.838Mean

20,000

0.9430.869Subpopulation 1

0.9430.868Subpopulation 2

0.9430.869Subpopulation 3

0.9420.868Subpopulation 4

0.9430.870Subpopulation 5

0.9430.869Mean

aFor each size, five subpopulations were created and the results were averaged.
bACC: accuracy.
cAUC: area under the receiver operating characteristic curve.

Comparison With Traditional Statistical Models
Risk scales obtained by statistical analyses of relatively large
samples have long been used in the prevention and screening
of the high cardiovascular risk population. Several CHD risk
scales have been proposed and widely adopted, such as
Framingham risk scales. Therefore, it is also necessary to
compare the performance of risk models obtained by
machine-learning methods with these traditional risk scales.
However, most existing risk scales for CVDs included lifestyle
factors and blood test or medical imaging examinations that are
not included in routine health checks or chronic disease
follow-ups, making it hard to achieve direct comparison with
EHR-based studies. In this study, we screened the cohort
database to identify a subset of 536 patients (498 with CHD
onset and 38 with no CHD onset) with sufficient lifestyle and
blood test information required for comparison with the major
existing CHD risk scales. These patients were assigned to the
test dataset in the first step of our model-building process. We
applied the developed XGBoost model as well as the traditional
risk scales for these patients, and compared their prediction
performance based on the AUC value as the evaluation metric.
We should emphasize that due to the low availability in the
overall population, some of the features used in the risk scales

(such as smoking, diastolic blood pressure, low-density
lipoprotein cholesterol, and high-density lipoprotein cholesterol)
were not included in the XGBoost risk model. The following
three popular risk scales were used for comparison.

The Framingham 10-Years CHD Risk Scale
Proposed by the Framingham Heart Study team in 1998, the
Framingham 10-years CHD risk scale is now recognized as an
effective tool worldwide to predict the risk and make appropriate
preventive management decisions for future CHD onset at the
individual level. The age range of the study population is
between 30 and 74 years, and the main predictors of this
simplified model include gender, age, diabetes, smoking,
stratification of blood pressure (systolic and diastolic), and
stratification of total cholesterol and high-density lipoprotein
cholesterol [50]. It should be noted that the 10-year risk scale
was designed for predicting long-term risks, which is somehow
divergent from the goal of the present study. However, given
that it is one of the most frequently used risk scales, we included
the results for reference.

The Framingham 2-Years CHD Risk Scale
Proposed by the Framingham Heart Study team in 2000, the
CHD 2-year risk score was developed based on the original
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10-year model taking into account updated research results,
further deepening and expanding models that predict the risk
of recurrent or subsequent CHD events in people with a history
of CHD or CVD. The age range of the model population is
between 35 and 74 years. The main predictors of this simplified
model include gender, age, diabetes, smoking, stratification of
blood pressure (systolic), and stratification of total cholesterol
and high-density lipoprotein cholesterol [4].

The China Multiprovincial Cohort Study Risk Scale
In 2003, based on a cohort of individuals aged 35 to 64 years
living in 11 provinces and cities of China, a risk model for CVD
in the Chinese population was established. This model used a
prospective cohort study method to calculate the risk factors
and the incidence of CVD based on predictive models. The
main predictors of this simplified model include gender, age,
diabetes, smoking, stratification of blood pressure (systolic),

and stratification of total cholesterol and high-density lipoprotein
cholesterol [51,52].

Figure 5 shows the ROC curves achieved by the XGBoost model
and traditional risk scales. The prediction model established by
the XGBoost algorithm showed the best classification
performance, with the AUC value reaching 0.8994, followed
by the Chinese Multiprovincial Cohort Study queue model, with
an AUC value of 0.7519. The prediction accuracy of the
Framingham 10-year risk prediction model and 2-year risk
prediction model was slightly lower, with AUC values of 0.7144
and 0.6185, respectively. Therefore, our model based on big
data and machine-learning algorithms has a better classification
effect, higher prediction accuracy, and better performance than
traditional statistical models. Moreover, compared with
traditional risk scales, our EHR-based model does not require
additional medical examinations, which can reduce the patient
burden and is beneficial for large-scale population screening.

Figure 5. Comparison of the machine learning-based model and traditional risk scales on the same dataset.

Discussion

We established a high-precision CHD prediction model through
EHR big data and machine-learning techniques, and evaluated
the effects of different modeling methods, the impact of feature
variables, and the dataset size on the model performance. Unlike
previous EHR-based studies, our model achieved high prediction
accuracy (AUC=0.943) in predicting 3-year CHD onset with
the independent test dataset. Further comparison analyses
showed that nonlinear models outperform linear models, which
was supported by the univariate marginal effect analysis
showing that many feature variables had strong nonlinear effects
on risk predictions.

We also demonstrated that the construction of secondary feature
variables played an important role in the performances of model

building. Specifically, we discovered that using time-dependent
features obtained from multiple records, including both
statistical variables and changing-trend variables, helped to
improve the performance rather than using only static features.
Moreover, with proper feather variable choices, the prediction
model can achieve fairly sufficient precision even when the
training sample size is small (compared with datasets from a
large population but very few features). This explains the large
gap of our models compared with previous EHR-based models.

In summary, our study demonstrated that accurate prediction
of 3-year CHD onset risk is possible for a large group of patients
with hypertension solely based on EHR data collected during
routing follow-up visits for chronic diseases with in-hospital
and out-hospital diagnostic records. Using an independent test
dataset, we verified that EHR-based models can achieve better
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risk prediction performance than traditional risk scales.
Compared with traditional risk scales, the EHR-based model
does not involve additional medical examinations, which reduces
the patient burden and is beneficial for large-scale population
screening. Moreover, compared with traditional patient cohort
studies, EHR-based studies are far easier to conduct with respect
to data acquisition and facilitate investigating many variables
in a batch simultaneously. Our results indicate that long-term
accumulation of EHR big data through centralized platforms,
especially the multiple time-point changes of patient health
status, provides very important information for the prediction
and early prevention of chronic diseases. Further investigations
are needed to explore the power of accumulated historical data.

The major limitation of our study is that we used anonymized
historical EHR data, which had a high missing rate. Some known

potential risk factors such as diastolic blood pressure, BMI, and
blood test indicators were not considered as important factors
in the modeling process because of the large proportion of data
missing in the population. The missing data also affected the
acquisition of outcome status for each patient. The CHD onset
label can be imprecise if the patient did not receive a hospital
diagnosis during the study period and within the regional
hospital system. This is a defect compared with traditional
cohort studies. However, the impact of missing information is
equal for both the positive and negative groups so that no
significant biases are likely to be introduced through missing
data. Compared with the benefits obtained by the enlarged
population and the abundance of clinical features, the increased
noise in the data is considered to be acceptable.
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