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Abstract

Background: Posttraumatic stress disorder (PTSD) is a relatively common consequence of deployment to war zones. Early
postdeployment screening with the aim of identifying those at risk for PTSD in the years following deployment will help deliver
interventions to those in need but have so far proved unsuccessful.

Objective: This study aimed to test the applicability of automated model selection and the ability of automated machine learning
prediction models to transfer across cohorts and predict screening-level PTSD 2.5 years and 6.5 years after deployment.

Methods: Automated machine learning was applied to data routinely collected 6-8 months after return from deployment from
3 different cohorts of Danish soldiers deployed to Afghanistan in 2009 (cohort 1, N=287 or N=261 depending on the timing of
the outcome assessment), 2010 (cohort 2, N=352), and 2013 (cohort 3, N=232).

Results: Models transferred well between cohorts. For screening-level PTSD 2.5 and 6.5 years after deployment, random forest
models provided the highest accuracy as measured by area under the receiver operating characteristic curve (AUC): 2.5 years,
AUC=0.77, 95% CI 0.71-0.83; 6.5 years, AUC=0.78, 95% CI 0.73-0.83. Linear models performed equally well. Military rank,
hyperarousal symptoms, and total level of PTSD symptoms were highly predictive.

Conclusions: Automated machine learning provided validated models that can be readily implemented in future deployment
cohorts in the Danish Defense with the aim of targeting postdeployment support interventions to those at highest risk for developing
PTSD, provided the cohorts are deployed on similar missions.

(JMIR Med Inform 2020;8(7):e17119) doi: 10.2196/17119
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Introduction

Posttraumatic stress disorder (PTSD) is a relatively common
problem following exposure to trauma [1]. Following
deployment to war zones, PTSD or symptoms thereof are seen
in a significant percentage of soldiers. A recent review found
average PTSD rates of 12.9% (95% CI 11.3%-14.4%) for
military personnel deployed to Iraq and 7.1% (95% CI
4.6%-9.6%) for personnel deployed to Afghanistan among
military personnel from the United States, the United Kingdom,
and Canada [2]. Among Danish soldiers, cohort studies have
found that approximately 10% experience severe symptoms of
PTSD 2.5 years after returning from deployment to Afghanistan
[3]. With a total of 9949 Danish soldiers deployed to
Afghanistan as of December 31, 2018 and 33,131 deployed to
different combat zones including Afghanistan, Iraq, and the
Balkans, this poses a significant public health problem.

Preventing large-scale bouts of PTSD and the derivative effects
among previously deployed soldiers calls for reliable screening
tools that can be applied early relative to deployment [4].
However, previous efforts at mental health screening among
soldiers before deployment and shortly after returning have so
far proved futile [5]. As such, research efforts to date have not
enabled primary prevention, where highly vulnerable individuals
with a high risk of developing PTSD following deployment are
not deployed, or secondary prevention, where early treatment
is offered to those in need, best preventing them from developing
severe or chronic PTSD [6].

One reason for this lack of success might be the use of
traditional statistics when investigating and integrating risk
factors into predictive models of postdeployment PTSD [7].
Such models may not be able to account for the
multidimensionality and nonlinearity of interacting risk factors
for PTSD [8]; as such, they fail to provide an accurate
prediction. In recent years, methods of machine learning (ML)
have made their way into the literature on trauma reactions and
in psychiatry more generally, with the primary aim of early
prediction of psychological problems or psychiatric diagnoses
such as PTSD [9,10]. ML is a broad term covering
computational methods that work by learning from data with
the aim of building models that are able to recognize patterns,
distinguish between categories, or predict the level or degree
of some trait or characteristic [11]. In the specific case of
supervised ML, an algorithm is trained in relation to some
outcome of interest, with the aim of categorizing individuals as
belonging to one or another predefined category [12].

A recent review described 15 studies applying ML methods to
predict PTSD or categorize individuals as PTSD cases or
noncases [8] and found that, in general, ML prediction models
applied to the domain of PTSD prediction reveal promising
results. Most of the papers included in the review were
cross-sectional (both predictor values and the outcome were
measured at the same time point); hence, they were not
predictive, but diagnostic, of PTSD status. In general, these
cross-sectional studies classified PTSD with very high accuracy
(area under the receiver operating characteristic [ROC] curve
[AUC] ranging from 0.79 to 0.97). Another group of papers in

the review predicted PTSD at a follow-up of <1 year; in general,
the prediction accuracies of these studies are respectable. For
example, Saxe et al [13] and Rosellini et al [14] both aimed to
predict PTSD at 3 months after trauma or release from the
hospital, respectively, and did so with high accuracy
(AUC=0.79). Finally, three papers in the review predicted PTSD
at a follow-up of >1 year, 2 with a follow-up at 15 months
[15,16] and one with follow-up at 2.5 years [17]. All three
studies achieved acceptable to high accuracy (AUCs ranging
from 0.75 to 0.88). While these results are promising, it is clear
that more ML prediction studies with longer follow-ups are
needed to test the applicability of such methods in practice.
Further, focus on future efforts within ML prediction of PTSD
should be on how the trained and tested algorithms can be
implemented in clinical contexts and for screening purposes.

In the military context, Kessler and colleagues [18] applied ML
techniques to predict suicide after hospitalization with
psychiatric diagnoses in service members, whereas Rosellini
and colleagues [19] used ML to predict postdeployment
psychiatric disorder symptoms and interpersonal violence during
deployment based on predeployment characteristics. Both
studies found that ML provides relatively accurate prediction
of the targeted outcomes, with the best performing predictive
models in the study by Rosellini et al [19] significantly
outperforming logistic regression models. In an earlier study
by our own group, we applied a specific ML algorithm, namely
support vector machine (SVM), in a cohort study with Danish
soldiers deployed to Afghanistan with the aim of predicting
PTSD symptomatology 2.5 years after deployment based on
predeployment and early postdeployment characteristics [17].
Briefly, we found that long-term posttraumatic stress could be
predicted with good accuracy by predeployment indicators
(AUC=0.84) and by predeployment indicators combined with
indicators collected immediately postdeployment (AUC=0.88).

These studies applied ML to predict PTSD using a variety of
ML methods, each requiring expertise and resources for the
selection of appropriate algorithms and tuning of
hyperparameters. Automated machine learning (AutoML) is a
quickly rising subfield of ML promising to ease the application
while ensuring correct and optimal utilization of ML methods
[20]. Here, we use and test AutoML as implemented in the Just
Add Data Bio (JADBio) tool [21]. In brief, JADBio optimizes
the final model over a wealth of combinations of feature
selection and classification algorithm combinations, along with
their hyperparameter values, and estimates the predictive
performance of the best-found model.

For prediction models to be applicable across clinical contexts,
they must perform well when applied to data and populations
of slightly different distributions than the one they were trained
on [22]. However, this has not been tested in previous studies
using ML to predict PTSD. Further, as already mentioned, few
studies have aimed to predict PTSD symptoms over the long
term (ie, several years) after traumatic events or military
deployment. In this study, we aimed to address this by utilizing
data routinely collected from 3 different cohorts deployed to
Afghanistan with the Danish Defense that were followed for
2.5 and 6.5 years after returning from deployment. Specifically,
in 3 experiments, we test if AutoML, as implemented in
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JADBio, provides reliable performance estimates; if predictive
models trained on one deployment cohort can be used to predict
future screening-level PTSD in another deployment cohort; and
how accurately we can predict screening-level PTSD 2.5 and
6.5 years after returning home using routinely collected
questionnaire data. For the third aim, we report the model type
that predicts the outcome best as well as the features selected
as most predictive.

Methods

Population
The study population in this project included 3 different
deployment cohorts that were similar in many regards in that
all 3 cohorts were deployed to the same area in Afghanistan,
each for a period of approximately 6 months between 2009 and
2013. However, the cohorts were different in some regards too,
in that the mission purpose and level of threat were different
across the deployments. All 3 deployment cohorts were part of

the International Security Assistance Force (ISAF). In this study,
cohort 1 (N=287 or N=261 depending on the timing of the
outcome assessment, explained later) refers to ISAF7, who were
deployed from February 2009 to August 2009; cohort 2 (N=352)
refers to ISAF10, who were deployed from August 2010 to
February 2011; and cohort 3 (N=232) refers to ISAF15, who
were deployed from February 2013 to August 2013. Of note,
cohort 1 is a subcohort of that used by Karstoft et al [17];
however, the data are different. Here, we used a new set of
predictor data that was collected routinely for all 3 cohorts, but
which was not part of the 2015 analysis. Descriptive statistics
of the 3 cohorts can be seen in Table 1. In all 3 cohorts, most
participants were male (>90%), and the mean age was 30.6-31.3
years. Prior deployment had occurred for 55.0%-63.6% of the
cohorts, and 47.6%-59.2% of the cohorts had a military rank of
private. Finally, the proportion with screening-level PTSD
symptoms was 7.8%-10.0% 6 months after returning home, and
21.7%-27.3% were assessed as having PTSD 2.5 and 6.5 years
after deployment.

Table 1. Descriptive statistics of the 3 cohorts.

Cohort 3 (N=232), n (%)Cohort 2 (N=352), n (%)Cohort 1a (N=261), n (%)Characteristics

31.1 (8.7)31.3 (9.9)30.6 (8.2)Age (years)b

19 (8.2)21 (6.0)20 (7.7)Gender (female)

147 (63.6)193 (55.0)162 (62.3)Previously deployed (yes)

110 (47.6)193 (55.0)154 (59.2)Military rank (private)

18 (7.8)35 (10.0)22 (8.5)Screening-level PTSDc at 6 months

54 (23.4)76 (21.7)71 (27.3)Screening-level PTSD at the 2.5-year or 6.5-year follow-up

aDescriptive statistics for cohort 1 are based on the sample who provided outcome data at 6.5 years. Minor differences might be observed in the sample
providing outcome data at 2.5 years.
bmean (SD).
cPTSD: posttraumatic stress disorder.

Data Material

Outcome
The predicted outcome was screening-level PTSD. For all 3
cohorts, this was assessed using the civilian version of the PTSD
checklist (PCL-C) [23]. The PCL-C contains 17 items mirroring
the symptoms of PTSD as defined in the Diagnostic and
Statistical Manual of Mental Disorders, fourth edition [24]. Our
group has previously validated cutoff scores for the PCL-C in
a military population and found that a score ≥44 identifies
individuals with severe PTSD symptoms that indicates a likely
PTSD diagnosis, while a score ≥30 can be used to identify
individuals with moderate or screening-level PTSD [25]. For
this study, we applied the cutoff score of 30 since the aim was
not to identify individuals that most likely have a diagnosis but
to screen for individuals that might be in need of help due to
some elevation of symptomatology. For cohort 1, the outcome
was assessed 2.5 years and 6.5 years after returning home. For
cohort 2, the outcome was assessed 6.5 years after returning
home only, while for cohort 3, it was assessed 2.5 years after
returning home only. For the aim of this study, we combined
the 3 cohorts in the following ways: cohorts 1 and 3 were

combined (cohort 1&3_2.5, N=519) with the aim of predicting
PTSD 2.5 years after deployment, while cohorts 1 and 2 were
combined (cohort 1&2_6.5, N=613) with the aim of predicting
PTSD 6.5 years after deployment.

Predictors
Predictors for the current project were retrieved from a database
containing responses to the Psychological Reactions to
International Missions (PRIM) questionnaire, which has been
routinely distributed since 1998 to all Danish soldiers 6 months
after return from an international deployment with the Danish
Defense. The questionnaire contains 125 individual items
covering deployment experiences (reported at 6 months after
returning home), postdeployment reactions, and postdeployment
support as well as 5 validated scales: PTSD symptoms [26],
depression symptoms [27], perceived danger [28], witnessing
of war atrocities during deployment [28], and postdeployment
social support [29]. A list of all items in the PRIM questionnaire,
translated into English (Multimedia Appendix 1), as well as
their descriptive statistics including level of missingness
(Multimedia Appendix 2 and Multimedia Appendix 3) can be
seen in the supplementary material. Of note, the level of
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missingness was <2% for all items except two, which had levels
<3%.

Predictive Modeling With JADBio
For the predictive modeling in this project, we employed the
AutoML program JADBio. JADBio has been employed in
several other fields to produce novel scientific results (eg,
nanomaterial property predictions [21], suicide prediction [30],
speech classification [31], bank failure prediction [32], function
protein prediction [33], and breast cancer prognosis and drug
response prediction [34]). JADBio includes algorithms that are
also appropriate for small-sample, high-dimensional biological
data, hence the Bio part of the name, but can analyze any type
of data that is in a 2-dimensional matrix format, as indicated by
the examples provided. Internally, the system employs an
artificial intelligence (AI) subsystem that encodes statistical
knowledge to select the most appropriate algorithms for
transformations, imputation of missing values, feature selection,
and predictive modeling, as well as reasonable values for
hyperparameters of these algorithms [21]. These selections are
fed into what is called the Configuration Generator: Each
configuration is a pipeline comprised of algorithms for
transformations of features, imputation of missing values, feature
selection, and modeling and corresponding hyperparameter
values for each algorithm. Thus, a configuration accepts the
data matrix and performs all steps necessary to generate a
predictive model instance. Based on the choices of the AI
system, the Configurator Generator searches in the space of
possible configurations to identify one that is optimal, namely,
the one that produces, on average, the best performing model
instances. An important part of each configuration is the feature
selection step, which is based on the statistical equivalent
signatures algorithm [35]. The statistical equivalent signatures
algorithm aims at identifying multiple feature subsets with the
properties that they are of minimal size and optimally predictive
for the target. Notice that multiple feature subsets may be
equally predictive because of correlations among features. For
example, a psychometric score computed on a few individual
answers to a questionnaire may carry the same predictive
informational content as some or all of the individual answers.
For binary classification tasks, as in this work, JADBio employs
standard statistical models (ridge logistic regression),
non-statistical linear models (linear SVM), and non-linear
models (decision trees, random forests, polynomial and Gaussian
SVM). The final model is produced by applying the best
performing configuration on all data. Thus, no samples are lost
to estimation of performance.

To identify the winning configuration and estimate its predictive
performance in an unbiased way, JADBio uses appropriate
out-of-sample protocols (ie, protocols that hide some of the data
from a configuration) and then evaluate the corresponding model
on the held-out samples. Specifically, for small sample sizes,
JADBio uses a stratified, N repeated, K-fold cross validation
on each configuration. K-fold cross validation is a common
estimation procedure. It partitions the available samples to K
folds. It then feeds to a given configuration all folds but one
and produces a model, which is then applied on the held-out
fold to estimate performance (eg, AUC). The performance
estimation of the models produced by the given configuration

is the average over all folds. JADBio actually repeats the K-fold
procedure N times and averages out the performance estimate.
Each repetition randomly repartitions the data to different folds.
The purpose of repeating cross validation is to reduce the
variance of the estimate due to the specific partitioning to folds.
“Stratification” is a specific variant of cross validation where
each fold is constrained to have a class distribution (ie,
percentage of PTSD cases vs. controls) similar to the class
distribution in the original dataset. Stratification has been shown
to reduce the variance of the estimation. The choice of the
estimation protocol and the values of N and K are selected by
the AI system based on the data characteristics (eg, sample size,
imbalance of the classes) and the user preferences.

Notice that JADBio does not report the cross-validated estimate
of the winning configuration: When one tries numerous
configurations, the cross-validated estimate of the winner is
overly optimistic [36]. For example, if the winning configuration
has a cross-validated AUC of 0.9 out of 1000 other
configurations, then the true expected AUC is likely to be <0.9.
To remove the optimism, as well as compute confidence
intervals of predictive performance, JADBio applies a method
called Bootstrap Bias Corrected Cross-Validation. In general,
the estimates returned by JADBio are conservative. The theory,
algorithms, and empirical evidence for the estimation protocols
are described in detail by Tsamardinos et al [36].

Modeling Procedure: Three Experiments to Test
Performance Estimation, Model Transference, and
Overall Prediction Accuracy

Experiment 1
First, we performed a computational experiment to ensure that
JADBio’s predictive performance estimates are trustworthy.
JADBio uses internally, theoretically, and empirically backed-up
out-of-sample protocols to estimate performance of the final
model, while adjusting for bias [36]. Nevertheless, it is still
important to make sure the estimates of the system can be trusted
in this particular type of data and problem. To this end, we
initially combined the cohorts (cohorts 1 and 3 for 2.5-year
PTSD prediction [cohort1&3_2.5] and cohorts 1 and 2 for
6.5-year PTSD prediction [cohort1&2_6.5]) and randomly split
them into 5 subsets. Next, JADBio was used to train and
evaluate models on four-fifths of the data and externally validate
model performance on the remaining one-fifth of the data. We
did this repeatedly to utilize all data subsets for training and
validation, after which the performance achieved on the held-out
fold was compared against the estimate returned by JADBio on
the training folds.

Experiment 2
Second, we performed a computational experiment to establish
transferability of the models (ie, test whether models trained on
one cohort transfer [generalize] to another cohort). Specifically,
we trained 2 models: one for PTSD status at 2.5 years after
returning home and one for PTSD status at 6.5 years after
returning home, both on data from cohort 1. We then tested
their performance on cohort 3 and cohort 2, respectively.

JMIR Med Inform 2020 | vol. 8 | iss. 7 | e17119 | p. 4http://medinform.jmir.org/2020/7/e17119/
(page number not for citation purposes)

Karstoft et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Experiment 3
Third, we produced final models for each outcome and
corresponding performance estimates from all available data.
The reasoning behind the use of all available data was that, on
average, the predictive performance of models increases with
increased available sample size. Of course, this leaves no
out-of-sample data to estimate the predictive performance;
however, provided that experiment 1 was successful, the
JADBio estimates can be trusted. In addition, provided that
experiment 2 was successful, the model is likely to transfer to
a new cohort and could potentially be employed in practice.
More specifically, we again used the combined data sets
(cohort1&3_2.5 and cohort1&2_6.5) to train models for each
outcome. In addition, JADBio also performs feature selection
during modeling. The selected features are the ones that enter
the final models and provide psychological insight into the
PTSD development.

Experiment 4 (Exploratory): Removal of Important
Variables to Check Model Flexibility
While not part of the study aims, results from experiments 1-3
encouraged us to examine if the PTSD symptom level was the
sole reason for the achieved prediction accuracy. Hence, we

repeated experiment 3, but removed the total PTSD symptom
score from the set of possible predictors. The purpose of this
experiment was to test the robustness of JADBio in real-world
screening situations, where some of the predictors can be
missing. A desirable property of a screening method is to
maintain predictive performance using available information.

Results

Experiment 1: Assessing the Quality of Out-of-Sample
Performance Estimation
Results from the testing of JADBio performance estimates are
displayed in Table 2. AUCs varied between 0.80 and 0.84 (mean
0.83) for the 2.5-year prediction and between 0.71 and 0.91
(mean 0.78) for the 6.5-year prediction. Importantly, the
performances achieved on the validation sets are consistent with
the JADBio performance estimates produced on the training
sets; in fact, performance on the validation set was higher on
average than the one estimated on the test sets. The results
corroborate previous work [36], indicating that the estimation
protocols within JADBio can be trusted on this data distribution.
This implies that there is no need to reserve a separate hold-out
set for estimating performance and lose samples to estimation.

Table 2. Areas under the receiver operating characteristic curves (AUCs) for the 5 training and test sets of the 2 cohorts.

6.5-year prediction2.5-year predictionTraining-Testing set

Performance on test set, AUCPerformance on training
set, AUC (95% CI)

Performance on test set, AUCPerformance on the training
set, AUC (95% CI)

0.730.77

(0.70-0.831)

0.820.77

(0.69-0.84)

Training1-Testing1

0.760.76

(0.69-0.83)

0.800.77

(0.68-0.84)

Training2-Testing2

0.910.74

(0.66-0.80)

0.840.73

(0.63-0.81)

Training3-Testing3

0.710.81

(0.74-0.87)

0.840.81

(0.73-0.88)

Training4-Testing4

0.790.74

(0.67-0.81)

0.820.78

(0.69-0.85)

Training5-Testing5

0.780.760.830.77Mean

Experiment 2: Assessing Model Transferability to
Different Cohorts
For the 2.5-year threshold, the AUC of the best-found model
was estimated at 0.76 (95% CI 0.67-0.84), while the AUC on
the external validation cohort 3 was 0.79. For the 6.5-year
threshold, the AUC of the best-found model was estimated at
0.70 (95% CI 0.60-0.80), while the AUC on the external
validation cohort 2 was 0.81. The results provide evidence that
models trained on one cohort transfer to a future cohort.
Obviously, care needs to be applied with this statement for
cohorts that are obtained far apart in time, on totally different
populations, and for different military conflicts.

Experiment 3: Predictive Modeling for Potential
Clinical Use
To produce the final predictive models for potential clinical
use, we ran JADBio on cohort1&3 and cohort1&2 with PTSD
status at 2.5 and 6.5 years, respectively, as the outcome. The
user preferences were set to enforce feature selection and the
analysis type to extensive, implying that a relatively large
number of configurations would be explored. Overall, the
analyses trained 450,200 and 417,800 models for the two
outcomes, respectively, taking 32 and 40 minutes. All these
models were trained using different configurations on different
subsets of the data (cross validation) to estimate performance
and produce a final optimal model. Detailed results from the
prediction can be accessed in Multimedia Appendix 4.
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For the 2.5-year prediction, the optimal model was a random
forest classifier trained with 100 trees and a minimal number
of observations per leaf of 5 (AUC=0.77, 95% CI 0.71-0.83).
For the 6.5-year prediction, the optimal model was also a
random forest classifier trained with 1000 trees and a minimal
number of observations per leaf of 5 (AUC=0.78, 95% CI
0.73-0.83). ROC curves as well as sensitivity, specificity,

positive predictive value, and negative predictive value for
selected cutoffs can be seen in Figure 1A and Figure 1B, along
with a confusion matrix for a suggested balanced cutoff (Figure
1C). The results indicate that 2.5-year, as well as 6.5-year,
prognosis of PTSD is possible with applicable levels of
predictive accuracy.

Figure 1. Results from the final prediction models (experiment 3): (A) receiver operating characteristic (ROC) curves for 2.5-year and 6.5-year
predictions; (B) sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for selected cutoffs on the ROC curve;
(C) confusion matrices for selected cutoffs on the ROC curve (marked in bold in Panel B).

Experiment 3: Comparison Between Linear and
Non-Linear Models
While random forests were the best overall performing models
for both outcomes, JADBio also reported the best performing
models out of those that are humanly interpretable. These were
generalized linear models (ridge logistic regression) and decision
trees. The best interpretable models for each outcome were both
ridge logistic regression models. Their predictive performance
was estimated to be indistinguishable from the random forests.
The results show that, in these predictive tasks, non-linear
models do not significantly improve predictive performance.

Experiment 3: Feature Selection
For the 2.5-year prediction, 4 similar, equally predictive feature
sets were selected, each consisting of 14 features and, in total,

including 16 different features across the 4 feature sets. For the
6.5-year prediction, a single, optimal feature subset was
discovered consisting of 9 features (see Multimedia Appendix
5 for a total list of selected features). Variable importance is
depicted in Figure 2, which includes all selected features of
both models that lead to an AUC reduction of at least 0.01 if
removed from the model. For both cohorts, total level of PTSD
symptoms, military rank, and little desire to be with friends and
family led to reductions in AUC if removed. Further, in both
models, having a hyperarousal symptom had relatively large
importance; for the 2.5-year prediction, hypervigilance showed
the greatest importance, whereas for the 6.5-year prediction, a
startle response led to a relatively large reduction in AUC if
removed.
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Figure 2. Cumulative variable importance for the two final prediction models. The x axis depicts the reduction in the area under the receiver operating
characteristic curve (AUC) if the particular variable is removed from the model. The figure includes all selected variables resulting in an AUC reduction
of at least 0.01 if removed. PTSD: posttraumatic stress disorder.

Experiment 4 (Exploratory): Removal of Important
Variables to Test Model Flexibility
For the 2.5-year as well as the 6.5-year prediction, the prediction
accuracy of the models when removing the total level of PTSD
symptoms remained the same (2.5-year prediction, AUC=0.77,
95% CI 0.71-0.82; 6.5-year prediction, AUC=0.78, 95% CI
0.72-0.84). The results indicate that, even when removing a
central feature, predictive accuracy can be maintained.

Discussion

For predictive models of PTSD symptomatology following
military deployment to be useful in practical settings, several
things are important: Applied models are not overly optimistic,
predictive models built on current deployment cohorts can be
transferred to future cohorts, and sufficiently high predictive
accuracy can be reached for long-term PTSD outcomes (ie,
several years following deployment). Testing and optimizing
models manually are time-consuming; therefore, this study
tested the applicability of AutoML as a means of enhancing
model selection and parameter optimization. Hence, in the
current study, we aimed to evaluate if this was achievable by
combining data from 3 different cohorts deployed to Afghanistan
with the Danish Defense between 2009 and 2013 to build
predictive models using automated ML methods. Overall, we
found that our applied AutoML software produced reliable
estimates, the identified predictive models transferred well, and
acceptable predictive accuracies were reached for prediction of
screening-level PTSD 2.5 years after deployment (AUC=0.77,
95% CI 0.71-0.83) and 6.5 years after deployment (AUC=0.78,
95% CI 0.73-0.83). Further, we found that linear and nonlinear
models performed equally well, and that, even with removal of

one of the most central features, namely the total level of PTSD
symptoms, screening-level PTSD at 2.5 years and 6.5 years
could be predicted.

The use of an AutoML program such as JADBio warrants some
discussion. A major advantage of using such a program is that
it allows us to test multiple combinations of algorithms and
their hyperparameter values within a reasonable time frame
without need of extensive computer power. One drawback is
that we have to rely on the settings of JADBio in performance
evaluation. Here, one might worry that JADBio could be
overestimating performance of identified models, for example
by insufficient correction for the multitude of tested models
[37]. To test if this was the case, in experiment 1, we performed
a 5-fold cross validation of our two combined data sets where
one-fifth of the data were repeatedly held out for external
validation. Reassuringly, for all 10 validations, we found that
the external validations of the test set revealed similar prediction
accuracy as for the training set — all except three within the
training set Cis, one slightly below, two slightly above. Hence,
it seems reasonable to conclude that performance evaluation in
JADBio is not overly optimistic, at least for the size and type
of data examined here. This assured us that we can apply
JADBio on all samples available for a given task without having
to withhold a separate validation (hold-out) set and lose samples
to estimation.

Having established that, model transferability was the next
important prerequisite for the successful implementation of
ML-based screening of deployment cohorts based on routinely
collected data. Our results suggest that predictive models built
on one cohort can indeed transfer to other cohorts. When
predicting screening-level PTSD 2.5 years after deployment,
our results showed that the model trained and tested on cohort
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1 performed with similar accuracy in cohort 3 (cohort 3
AUC=0.79; cohort 1 AUC=0.76, 95% CI 0.67-0.84). When
predicting screening-level PTSD 6.5 years after deployment,
our results actually suggested that the model trained and tested
on cohort 1 performed better on cohort 2 (cohort 2 AUC=0.81;
cohort 1 AUC=0.70, 95% CI 0.60-0.80). Hence, for the
deployment cohorts included in this study, it seems safe to say
that models trained and tested on one cohort can transfer to
another cohort. Importantly, while all cohorts included in this
study deployed to Afghanistan, they did so at different times,
with cohort 1 deploying in 2009 and cohort 3 in 2013.
Conditions, tasks, threat levels, and deployment environments
were similar between cohorts 1 and 2 [38] while substantially
different between cohorts 1 and 3 [39], suggesting that even
when deployment characteristics are not the same, predictive
models can be transferred between cohorts deployed in similar
missions. This is important given a wish to apply predictive
models identified on existing data to future deployment cohorts.

This is one of the first few studies that tests how accurately
PTSD can be predicted several years following deployment,
more accurately, 2.5 and 6.5 years after returning home. From
the literature, we know that symptoms of PTSD might develop
with some delay following trauma, especially when the trauma
occurs in an occupational context such as during military
deployment [40,41]. Hence, predictive models trained to identify
people who develop symptoms only during the first months
following deployment might miss a great deal of those who go
on to experience PTSD symptomatology. Our models predict
screening-level PTSD at 2.5 years and 6.5 years with similar,
acceptable accuracy (AUCs=0.77 and 0.78, respectively).
Further, based on the model values of sensitivity, specificity,
positive predictive value, and negative predictive value (Table
1), our findings show that we can achieve a reasonable balance
for screening purposes. For example, with a sensitivity of 0.73
(for 6.5-year prediction), 89% of those who screen negative will
indeed be noncases, while 43% of those who screen positive
will indeed be cases. Optimally, our models would have higher
overall accuracy; however, we utilized routinely collected data
that were not collected with prediction in mind, and we were
interested in testing how accurately prediction models trained
on these data could predict screening-level PTSD. While the
prediction accuracy is acceptable, it is far from perfect, and
future endeavors should preferably include features that might
increase accuracy.

From the total number of features, relatively small features sets
were selected for both predictive models (14 features for
2.5-year prediction, 9 features for 6.5-year prediction). Some
overlap in selected features was seen, with 3 features showing
high cumulative importance in both cohorts: military rank,
diminished interest in being with friends and family, and total
level of PTSD symptoms 6 months after returning home. Neither
of these are surprising; Lower rank has consistently been
identified as a risk factor for PTSD following military trauma
[42], low levels of perceived social support following trauma
exposure is a known risk factor for PTSD [43], and early
post-trauma levels of PTSD symptoms has also been found to
predict PTSD later on [6].

Further, we found that a hyperarousal symptom is important in
both cohorts: For the 2.5-year prediction, hypervigilance was
the single most important feature, leading to a 0.15 reduction
in AUC if removed, while for the 6.5-year prediction, startle
response was among the most important features. While it is
somewhat surprising that individual hyperarousal symptoms
were selected as predictive features over and above the total
level of PTSD severity, hypervigilance and startle response
have been found to be central symptoms in PTSD in previous
research [44,45]. This finding illustrates one of the benefits of
using ML approaches for predictive modeling: In linear
approaches, overlapping constructs would likely go undetected
as significant, individual predictors of the outcome. The
Bayesian Network approach for feature selection implemented
in JADBio clearly allows for detection of such related predictors
that are nonetheless individually related to the outcome [35].

An analyst facing predictive modeling tasks does not know
whether interpretable, standard statistical linear models suffice
or more complex, nonlinear, ML-based models are necessary
to achieve optimal predictive performance. JADBio
automatically tries both types of models and allows an analyst
to compare them on equal grounds. An analyst can thus gauge
whether the use of complex, nonlinear models is justified by
the increase in predictive performance achieved. In our analyses,
it seems that the linear models performed equally well for any
practical purpose.

Also, we found that even when removing one of the most
important predictive features, the total level of PTSD symptoms
at 6 months, the prediction accuracy did not decrease. Hence,
even when total symptom level is not available at 6 months,
screening-level PTSD at 2.5 and 6.5 years can be predicted.
This implies that even with a limited number of individual
symptoms, personal characteristics, and demographic variables
available, we will be able to identify those who have the highest
risk of developing screening-level PTSD.

Our study has some limitations that should be noted. First, while
we included 3 different cohorts, they are similar in that they all
deployed to Afghanistan. Hence, to test if models transfer also
when, for example, the deployment country differs, we will
need to include cohorts who deployed to other conflict zones.
However, as already argued, the cohorts differed in important
ways. Second, the response rate to the questionnaire was
approximately 65% across cohorts. We know from earlier
analyses based on these cohorts that more individuals among
the nonresponders may have more mental health problems [3].
While this introduces a risk of bias, this is also the reality if
future screening efforts are to be based on this approach: For
all Danish deployment cohorts since 1998, the response rate
varies around 65%, so screening will be limited to those who
responded to the questionnaire. Third, since the PRIM
questionnaire is already being used for screening, individuals
might have been offered treatment as a result of their responses
to PRIM, which is another source of potential bias.

Despite these limitations, our study illustrates how screening
of future deployment cohorts can be based on ML-based
predictive models based solely on routinely collected
questionnaire data. Importantly, we have demonstrated that
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models developed on routinely collected data on one cohort can
be successfully transferred to predict screening-level PTSD in
another cohort deployed to similar missions and that satisfactory
predictive accuracy can be reached such that the model can be
used as an actual decision support tool. In future efforts, we
suggest that the models are further validated in cohorts deployed
to other missions. For cohort 3 of this study, a follow-up
collection of post-deployment data including measurement of

PTSD symptoms is being conducted in the spring and summer
of 2020. We predict that, based on a model trained on our
routinely collected data at 6 months after homecoming for
cohorts 1 and 2, we will be able to classify screening-level PTSD
6.5 years after returning home in cohort 3 with an AUC between
0.73 and 0.83. We intend to preregister and publish the results
of this endeavor.
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