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Abstract

Background: Previous conventional models for the prediction of diabetes could be updated by incorporating the increasing
amount of health data available and new risk prediction methodology.

Objective: We aimed to develop a substantially improved diabetes risk prediction model using sophisticated machine-learning
algorithms based on a large retrospective population cohort of over 230,000 people who were enrolled in the study during
2006-2017.

Methods: We collected demographic, medical, behavioral, and incidence data for type 2 diabetes mellitus (T2DM) in over
236,684 diabetes-free participants recruited from the 45 and Up Study. We predicted and compared the risk of diabetes onset in
these participants at 3, 5, 7, and 10 years based on three machine-learning approaches and the conventional regression model.

Results: Overall, 6.05% (14,313/236,684) of the participants developed T2DM during an average 8.8-year follow-up period.
The 10-year diabetes incidence in men was 8.30% (8.08%-8.49%), which was significantly higher (odds ratio 1.37, 95% CI
1.32-1.41) than that in women at 6.20% (6.00%-6.40%). The incidence of T2DM was doubled in individuals with obesity (men:
17.78% [17.05%-18.43%]; women: 14.59% [13.99%-15.17%]) compared with that of nonobese individuals. The gradient boosting
machine model showed the best performance among the four models (area under the curve of 79% in 3-year prediction and 75%
in 10-year prediction). All machine-learning models predicted BMI as the most significant factor contributing to diabetes onset,
which explained 12%-50% of the variance in the prediction of diabetes. The model predicted that if BMI in obese and overweight
participants could be hypothetically reduced to a healthy range, the 10-year probability of diabetes onset would be significantly
reduced from 8.3% to 2.8% (P<.001).

Conclusions: A one-time self-reported survey can accurately predict the risk of diabetes using a machine-learning approach.
Achieving a healthy BMI can significantly reduce the risk of developing T2DM.

(JMIR Med Inform 2020;8(7):e16850) doi: 10.2196/16850
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Introduction

Diabetes and its complications are major causes of premature
mortality globally. It is estimated that 451 million people
worldwide had diabetes in 2017, and this figure is projected to
rise by 35% to 693 million by 2045 [1]. In addition to the disease
burden of diabetes, the annual global economic cost associated
with diabetes is currently estimated to be US $1.3 trillion [2].

Predicting the risk of diabetes in adults has been a primary focus
in many health care systems internationally. In the last 20 years,
numerous diabetes risk prediction tools have been developed
with variable success [3-12]. Among these, four were published
by national government agencies (United States [10], Australia
[11], United Kingdom [9], and Canada [8]) and are freely
accessible online. The vast majority of these tools collect
information on individual demographical characteristics, medical
history, family history, anthropometric measurements, and
biomarkers, and produce a “risk score” based on regression
models. However, these conventional models share some major
shortcomings. First, all of these tools include blood glucose
level as a predictor, which leads to spurious inflated prediction
accuracy because the glucose level per se defines diabetes.
Prediction based on a predicting factor that defines outcomes
will inevitably achieve high accuracy. Second, these tools have
been developed based on relatively small sample sizes (typically
5200-6400 individuals) and include participants recruited from
only select communities. Third, the datasets utilized are outdated
and therefore represent a potential source of bias. For example,
the American Diabetes Association Questionnaire is based on
the National Health and Nutrition Examination conducted during
1999-2004 [10] and the Australian Type 2 Diabetes Risk
Assessment Tool is based on the 1999-2000 AusDiab-Australian
Diabetes, Obesity and Lifestyle study [11]. Fourth, all of these
tools employed a conventional regression model for risk
prediction.

Therefore, these models could be updated by incorporating the
increasing amount of health data available and new risk
prediction methodology available to date. Interestingly, the
2014 EPIC-InterACT study reviewed and validated 12
conventional prediction models based on a case-cohort sample
of 27,779 European individuals [12]. The results suggested that
these models can identify individuals at high risk of developing
type 2 diabetes mellitus (T2DM), but the performance of the
models varied substantially with country, age, sex, and body
weight. More recently, the QDiabetes study led by
Hippisley-Cox et al [13] overcame many of these shortcomings.
Based on a large population dataset of 11.5 million individuals,
this model provides a 10-year risk prediction for diabetes with
the option to include or exclude fasting blood glucose and
glycated hemoglobin as predictors. Despite this progress, the
study employed a conventional Cox proportional hazards model,
which suffers from some major limitations associated with its
assumptions in which the predictors are assumed to have
time-independent and linear impacts on the hazard.

Machine learning is an emerging and widely accepted approach
for risk prediction [14]. Various machine-learning algorithms
have been proposed, ranging from conventional to more

advanced ensemble machine-learning approaches [15]. However,
a shared common trait in most models is reliance on the presence
of biomarkers. For instance, the blood glucose level is a
biomarker that is commonly adopted in several machine-learning
models with an estimated area under the receiver operating
characteristic curve (AUC) value in the 70%-80% range [16-18].
Combining the information of both blood glucose levels and
other biological parameters has been shown to improve the
machine-learning accuracy [19], but the collection of biomarkers
requires invasive blood sampling and is limited to clinical
settings. Therefore, development of an accurate prediction tool
that solely depends on self-reported information offers great
potential for wider application in resource-limited settings to
combat the growing global diabetes epidemic.

We argue that a new risk prediction tool is needed to address
the shortcomings of current tools. Toward this end, in this study,
we present a machine learning–based diabetes risk prediction
tool using only self-reported information. This model was based
on data from a large cohort of more than 230,000 residents in
New South Wales (NSW), Australia collected during the period
of 2006-2017. More specifically, the tool aims to address two
questions. First, can the risk of diabetes be predicted in both
the short and long term (3-10 years) based on a one-time
self-reported survey without any biomarkers? Second, can the
effects of modifiable risk factors for diabetes onset be assessed
with such a tool?

Methods

The 45 and Up Study
The Sax Institute’s 45 and Up Study is the largest prospective
cohort study conducted in Australia [20]. This study enrolled
266,896 residents aged 45 years and older from NSW, Australia
between 2006 and 2009, representing around 11% of the NSW
population in this age group [20]. The study methodology has
been described in detail elsewhere [20]. Eligible participants
aged 45 and over and residents of NSW were randomly sampled
from the Medicare Australia enrolment database, and received
an invitation by mail including a study questionnaire and a
written informed consent form. All participants provided consent
for linkage of their information to routine health databases. The
baseline questionnaire captured information on a broad range
of socioeconomic, health, and lifestyle factors. To track medical
procedures and medications received by the participants, the 45
and Up Study data was linked to the Medicare Benefits Schedule
and Pharmaceutical Benefits Scheme claims from 2004 to 2016
using a unique identifier provided by the Department of Human
Services. The Medicare Benefits Schedule code is a unique
identifying code for medical procedures, whereas the
Pharmaceutical Benefits Scheme is the identifying code for
medications prescribed by clinicians.

Ethical Considerations
Ethics approval of the 45 and Up Study was obtained from the
University of New South Wales Human Research Ethics
Committee. Approval to use data from the 45 and Up Study for
the current study was received from the Royal Victorian Eye
and Ear Hospital Human Research Ethics Committee.
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Inclusion and Exclusion Criteria
We excluded participants with established diabetes at baseline,
defined as those who: (1) provided a positive response to
question no. 24 “Has a doctor EVER told you that you have
diabetes?”; (2) used diabetes medications based on the
Pharmaceutical Benefits Scheme database before the baseline
survey [21]; or (3) had gestational diabetes, defined as a
diagnosis of diabetes earlier than the last childbirth, but without
diabetes medication use subsequently. We also excluded
participants who had incomplete physical activity data, and
those who reported an age of diabetes diagnosis older than the
age at the baseline survey. Among the 266,896 participants from
the 45 and Up Study, we included a total of 236,584 residents
in this study (Multimedia Appendix 1).

Key Outcome and Predicting Variables
The primary outcome of the study was the first occurrence of
prescription for any kind of medication for T2DM (including
oral hypoglycemic agents and insulin). Prescription of a diabetes
medication was defined as the corresponding Pharmaceutical
Benefits Scheme codes detailed in Multimedia Appendix 2. As
all participants were aged >45 years, we assumed that all cases
of new diabetes medication use were for T2DM rather than type
1 diabetes mellitus. We intended to project the risk of diabetes
with a one-time self-reported survey at baseline (Multimedia
Appendix 3), which included no biomarkers such as blood
glucose levels. The four categories of a total of 39 predicting
variables included: demographic characteristics, medical and
family history, lifestyle indicators, and dietary indicators. We
acknowledge that our definition of T2DM may likely overlook
cases of gestational diabetes.

Conventional Regression Model
We employed a conventional logistic regression model to
investigate the incidence of diabetes and its association with
the predicting variables. We investigated the risk of diabetes
and its associated factors for a duration of 3, 5, 7, and 10 years
after baseline using four separate models. For each of these
models, only participants who were part of the respective
follow-up duration were included. We used the conventional
regression model as the benchmark model as it is well
established to be the standard method for investigating
associations between a binary outcome and potential relevant
factors.

Machine-Learning Models
For comparison with the regression model, we applied three
commonly used machine-learning models, which included a
random forest, multilayer feedforward artificial neural network
implementing a deep-learning approach, and a gradient boosting
machine approach. These three models represent the mainstream
machine-learning models for risk prediction. The random forest
algorithm [22] is a supervised learning algorithm constructing
an ensemble of decision trees. In this study, we used the Gini
index [23] to determine the best predictive variable and location
for each tree split in our algorithm. We used a cost complexity
parameter to penalize more complex trees and controlled the
size of the final tree. The optimal value of the complexity
parameter was determined using 5-fold cross-validation. The

deep-learning approach is based on the construction of an
artificial neural network [24,25], and we trained this method
end-to-end by stochastic gradient descent with back propagation.
Gradient boosting machines employ a boosting ensemble method
by minimizing an exponential loss function of the
misclassification rate [26]. Gradient boosting machine performs
optimization in the function space by seeking the learner (eg,
decision tree) with the maximal negative gradient for the loss
function [27,28].

The dataset was iterated 500 times in the model (500 epochs
for deep learning, and 500 decision trees for the random forest
and gradient boosting machine). A range of values for each
hyperparameter was specified and all possible combinations of
the hyperparameters were examined; the combination with the
highest cross-validation performance metric was obtained. The
random forest includes hyperparameters specifying the number
of trees and the maximum depth of each tree. The parameters
for deep learning included activation, hidden layer size, L1 and
L2 regularization, and input dropout ratio as hyperparameters.
For gradient boosting machine, a grid search for model
optimization was conducted with the maximum number of
models, maximum depth of each tree, learning rate, row sample
rate per tree, and column sample rate as hyperparameters.

We randomly selected 70% of the total participants to form the
training dataset and the remaining 30% were treated as a testing
dataset. The training dataset was used for machine learning
while the testing dataset was used for assessment of prediction
performance of the fully trained classifiers. Five-fold
cross-validation was conducted based on the training dataset.

Model Comparisons
The AUC value was adopted to evaluate the performance of the
logistic regression and machine-learning models at the
predefined time points (3, 5, 7, 10 years). AUC is a robust
benchmark model comparison metric for classification models,
quantifying the probability of a classifier to differentiate a
random positive observation over a random negative
observation. The root mean square error was used to verify the
result. All analyses were performed using R 3.4.1 statistical
software (R Foundation for Statistical Computing, Vienna,
Austria), with machine learning toolbox h2o v 3.16.0.2 (H2O.ai
Inc, CA, USA). We ranked the top 10 strongest contributing
factors to diabetes incidence in all four models.

The relative importance of the risk factors was ranked by their
contributions to the variance in the onset of diabetes. For logistic
regression, the variance was equal to the squared standardized
beta coefficients. For random forest, the variance was the total
decrease in node impurities from splitting on the variable,
averaged over all trees. For gradient boosting machine,
importance was calculated and averaged for each decision tree
based on the amount that each attribute split point improves the
performance measure, weighted by the number of observations
the node is responsible for. For deep learning, importance was
determined by identifying all weighted connections between
the nodes of interest.
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Model Prediction
We used the most accurate (highest AUC value) validated model
to identify the potential reduction in the probability of diabetes
onset by assuming hypothetical changes in participants’ BMI
categories. We investigated three scenarios: (1) all individuals
in the “obese” BMI category (≥30) became “overweight”
(BMI=25.0-29.9); (2) in addition to scenario 1, all individuals
in the “overweight” BMI category moved to the “healthy” BMI
(18.5-24.9) category; and (3) all individuals in the “obese” and
“overweight” BMI categories moved to the “healthy” BMI
category.

Results

Participant Characteristics
The baseline demographic characteristics of the study population
are summarized in Multimedia Appendix 3. In brief, of the
236,684 individuals included in this retrospective cohort study,
approximately 6.05% (14,313/236,684) developed T2DM during

an average follow up of 8.8 years (range 7.0-11.5; 2,006,194
person years). Individuals with diabetes were significantly more
likely to be older, male, overweight or obese, less educated,
have a family history of diabetes, reside in a major city, and
have a lower income and socioeconomic status (Chi square
tests, all P<.0001). Further, individuals with diabetes were more
likely to have self-reported hypertension, cardiovascular disease,
and dyslipidemia at enrolment (all P<.0001). In terms of lifestyle
factors, individuals with diabetes were significantly more likely
to be former or current smokers, engage in less physical activity,
have longer daily sitting times, consume more processed meat,
and have lower milk intake (all P<.0001).

Cumulative Diabetes Incidence by Gender, Age, and
BMI Groups
The cumulative incidence of diabetes was significantly higher
in men than in women (Figure 1). At the end of 10 years, the
cumulative diabetes incidence was 7.66% (7.23%-8.12%) in
men, which was significantly higher than that of women (5.84%,
range 5.49%-6.20%; odds ratio 1.37, 95% CI 1.32-1.41).

Figure 1. Cumulative incidence of diabetes, stratified by age groups in men and women, and stratified by BMI groups in men and women.

In both men and women, the age group 65-74 years had the
highest cumulative incidence of diabetes (10-year incidence:
9.32%, range 8.34%-10.42%), followed by the age groups 45-54
(6.37%, range 5.67%-7.16%), 55-64 (8.68%, range
7.87%-9.57%), and ≥75 (5.84%, range 4.95%-6.88%) years.
The incidence of diabetes among participants aged ≥75 years
increased at a much slower rate than that of the other age groups
and showed a notable reduction after 6-7 years of follow up.
This occurred at a time point where the older age group
approached the average life expectancy (84.6 years old) in the
Australian population [29].

Men with obesity had the highest incidence of diabetes, with a
3, 5, 7, and 10 years cumulative incidence of 3.61%

(3.36%-3.89%), 6.82% (6.47%-7.19%), 11.84%
(11.37%-12.32%), and 17.39% (15.87%-19.05%), respectively.
These were significantly higher than the cumulative incidence
in men with a BMI in the overweight and healthy ranges. In
particular, the 10-year diabetes incidence in men with obesity
was 2.76 (2.61-2.91) and 5.83 (5.41-6.28) higher than that in
overweight and healthy weight men, respectively. Diabetes
incidence rates in women followed a similar pattern (Figure 1).

Prediction of Diabetes Risk With Machine-Learning
Techniques
Machine-learning approaches demonstrated an overall superior
prediction of diabetes risk than the conventional regression
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analysis (Table 1). The gradient boosting machine model
produced the highest accuracy of all four models for 3-year risk
prediction. This was followed by the random forest and
deep-learning models. Performance measured by AUC in all
three machine-learning models was significantly higher than

that of the regression analysis (Delong test, all P<.0001). A
similar pattern was observed for other follow-up durations, but
the power of model prediction was reduced by 5%-6% at 10-year
follow up. The root mean square error was also the lowest for
the gradient boosting machine model (Figure 2, Table 1).

Table 1. Comparison of model performance between logistic regression and machine-learning models.

Random forestDeep learningGradient boosting machineLogistic regressionDuration

RMSEAUC (range)RMSEAUC (range)RMSEAUC (range)RMSEbAUCa (range)

0.11980.7868 (0.7742-
0.7993)

0.12440.7769 (0.7639-
0.7899)

0.11970.7927 (0.7803-
0.8051)

0.12030.7401 (0.7262-
0.7541)

3 years

0.16220.7769 (0.7612-
0.7804)

0.16670.7610 (0.7566-
0.7762)

0.16200.7769 (0.7673-
0.7864)

0.16330.7192 (0.7084-
0.7301)

5 years

0.20660.7531 (0.7452-
0.761)

0.20990.7526 (0.7446-
0.7606)

0.20630.7589 (0.751-
0.7668)

0.20870.6990 (0.6901-
0.7077)

7 years

0.23180.7439 (0.7365-
0.7510)

0.24350.7374 (0.7339-
0.7486)

0.23140.7491 (0.7426-
0.7570 )

0.23180.6885 (0.6801-
0.6961)

10 years

aAUC: area under the receiver operating characteristic curve.
bRMSE: root mean squared error.

Figure 2. Ranked contribution to the variance of diabetes prediction by various models. (+ increasing risk; - decreasing risk; * being male increases
risk compared with being female; # being born overseas increases diabetes risk compared with being born in Australia; § having private insurance
decreases risk compared with having no private insurance; $ being in major cities increases risk compared with being in inner or outside regional areas;
‡ having Asian or other ancestry increases diabetes risk compared with having Australian ancestry). GBM: gradient boost machine.

The machine-learning models indicated that BMI was the most
important predicting factor for the occurrence of diabetes (Figure
2). In the short term (3-year follow up), all three
machine-learning models consistently demonstrated that BMI
alone contributed to 12%-24% of the variance in the prediction

of diabetes. In contrast, BMI contributed to 20%-50% of the
variance in the long term (10-year follow up).
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Prediction of Diabetes Risk Reduction
Given that BMI was the most important predictor of diabetes,
we explored the potential impacts of BMI reduction on the risk
of diabetes onset using the validated gradient boosting machine
model. The model predicted that the probability of an obese
individual developing diabetes over a 10-year period was
approximately one in seven (13.4%, Table 2). In simulated
scenario 1, a change of BMI level from obese to overweight

significantly reduced the probability of diabetes onset to 6.2%
(Table 2). Further, if both obese and overweight individuals
were to improve their BMI by a single category (scenario 2),
the 10-year probability of diabetes reduced from 8.3% (pooled
overweight and obese subgroup) to 3.9%. A greater decline was
observed when overweight and obese individuals improved
their BMI to the healthy range (scenario 3), with a 10-year
probability of diabetes of 2.8%.

Table 2. Model-predicted probability of diabetes onset in three scenarios compared with their respective status quo scenarios.

P valuet statistic (df)Scenarios with hypothetical BMI changeBaseline scenarioScenario

Scenario 1a(N=46,645)

<.0016611.97 (93,288)1.54%3.04%Year 3

<.0017957.43 (93,288)2.89%5.81%Year 5

<.00112,120.59 (93,288)4.68%10.62%Year 7

<.00112,732.71 (93,288)6.22%13.43%Year 10

Scenario 2b(N=133,830)

<.00115,401.27 (267,658)1.02%1.93%Year 3

<.00117,086.55 (267,658)1.94%3.68%Year 5

<.00123,460.63 (267,658)2.98%6.41%Year 7

<.00124,604.81 (267,658)3.93%8.26%Year 10

Scenario 3c(N=133,830)

<.00120,856.85 (267,658)0.77%1.93%Year 3

<.00122,630.22 (267,658)1.50%3.68%Year 5

<.00131,002.83 (267,658)2.14%6.41%Year 7

<.00133,214.27 (267658)2.79%8.26%Year 10

aScenario 1: “obese” individuals but become “overweight.”
bScenario 2: “obese” individuals become “overweight” and “overweight” individuals reach a “healthy” BMI.
cScenario 3: all “obese” and “overweight” individuals reach a “healthy” BMI.

Model Sensitivity and Specificity
We identified the sensitivity and specificity trend versus the
risk of diabetes (Multimedia Appendix 4). The trend curves
were characterized by a sharp decline in sensitivity and an
increase in specificity as the risk of diabetes increased. Crossing
of the sensitivity and specificity represents the situation where
the two indicators were equal. The model-assigned cut-off levels
were consistently lower than the crossing values of the curves,
indicating that the models had preferentially weighted on higher
sensitivity than specificity.

Discussion

Principal Findings
Our study is a retrospective cohort study of more than 230,000
Australians over a follow-up period spanning a decade. Several
important findings can be highlighted. First, we confirmed that
machine-learning models performed significantly better than
the conventional regression model in predicting the risk of
diabetes onset. Notably, the models were developed based solely
on self-reported information that was ascertained at a single

time point but still achieved 73%-80% accuracy for diabetes
prediction for up to 10 years. Second, all machine-learning
models consistently demonstrated that BMI is a key risk factor
contributing to the onset of T2DM.

Based on these results, we argue that a sophisticated
machine-learning model is key for the risk prediction of T2DM
onset. In our study, machine-learning models were demonstrated
to be superior to the conventional regression model in diabetes
risk prediction in a large population-based dataset. Further, the
fact that our models were completely based on self-reported
information in the absence of any biomarkers suggests the
potential for self-assessment in individuals and primary
surveillance of diabetes risk in the community. The model
tracked over 230,000 Australian individuals for a duration of
10 years and is able to estimate the risk of diabetes development
for each individual. Notably, the 10 strongest contributing
factors explained over 74%-89% of the variation in diabetes
risk. Compared with similar models that are also based on
self-reported information [30,31], our model performed
consistently better in predicting the risk of diabetes in both the
short and long term. This provides further evidence that a simple
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and user-accessible self-assessment tool can be developed to
project the risk of diabetes with robust accuracy, without the
assistance of health care workers or need for biomarker sampling
or measurement. On a population level, by using a big data
platform, the collection of individual assessment surveys may
inform the trends in the diabetes epidemic. This can potentially
form an inexpensive user-driven online surveillance platform
that surveys diabetes risk factors in a large population, which
can in turn forecast the trend of the incidence of diabetes. This
is potentially more advantageous than the passive hospital-based
case report of diabetes diagnosis that inevitably falls behind the
epidemic and population studies that are expensive and
unsustainable. Our findings suggest a feasible method such as
an electronic health platform for both self-assessment of diabetes
risk in individuals and the monitoring of diabetes trends on a
population level.

Our finding that BMI is the leading risk factor for T2DM risk
was consistent across all machine-learning models. A previous
study demonstrated that excessive BMI gain and earlier onset
of overweight/obesity are associated with impaired glucose
tolerance and diabetes onset [32]. Mokdad et al [33] further
demonstrated that being overweight increases the risk of diabetes
by 2 fold, while obesity increases the diabetes risk by 3-7 fold.
Consistent with previous reports [34], we found that BMI alone
accounted for 25%-50% of the variance in diabetes risk.

We further quantified the impact of BMI reduction on the risk
of diabetes onset in several hypothetical scenarios. We predicted
that reducing an individual’s BMI from “obese” to “overweight”
would reduce their risk of diabetes in the short and long term
by more than half. Further, if BMI could be changed from the
“obese and overweight” to “healthy” range, the corresponding
risk of diabetes could be reduced by almost two-thirds. This
implies that interventions for diabetes prevention should
prioritize weight control, especially for those in their late 60s
and early 70s. According to the World Health Organization
(WHO) global status report on noncommunicable diseases [35],
39% and 12.9% of adults aged 18 years or over in 2014 globally
were overweight and obese, respectively, and the worldwide
prevalence of obesity has doubled since 1980. Actions to address
overweight and obesity are critical to preventing T2DM, as
advocated in the WHO report on diabetes [2]. The WHO Global
NCD Action Plan 2013–2020 listed halting the rise in diabetes
and obesity as one of its voluntary global targets [36]. Our

findings are in line with these WHO reports and support their
key recommendations.

Strengths and Limitations
The key strengths of the current study include the utilization of
a large cohort study dataset (>230,000 participants) with a long
follow-up period, and the robust performance of our algorithm
for diabetes risk prediction using machine-learning models.
Several study limitations should also be noted. First, the analysis
was based on a large population survey with information that
is subject to self-report bias. Second, the incidence of diabetes
in our study was not based on the actual diagnosis of diabetes
but was instead inferred by the new use of diabetes-related
medications as reported in the Pharmaceutical Benefits Scheme
database. This may have resulted in not identifying participants
with early diabetes or prediabetes that were not on diabetic
medications, and could have therefore underestimated the true
diabetes incidence rate over the follow-up period. Nevertheless,
one study based on 45 and Up data and linked clinical data
proved that diabetes classification based on the Pharmaceutical
Benefits Scheme database is more accurate than clinical data
[21]. Third, questions related to eating habits in the 45 and Up
Study were oversimplified and may not be comparable to
standard nutritional surveys. We did not find any association
between eating habits and diabetes in our study. Fourth, the
absence of mortality data in our dataset implies that the T2DM
risk in participants who died before its onset cannot be
determined. Fifth, similar to other machine-learning algorithms,
the gradient boosting machine model is likely to suffer from
overfitting as it automatically removes less fit simulations during
its optimization. Regularization parameters and processes such
as grid search-tuned learning rate and cross-validation were
utilized in this study to enhance the generality of the model.
Future work will focus on further validating this model in an
independent existing dataset before its official deployment.

Conclusion
In conclusion, we have presented a sophisticated and accurate
machine-learning model that allows for the prediction of T2DM
incidence for up to 10 years following a single self-reported
survey. The model findings highlight the significant impact of
higher BMI on diabetes risk and reinforce interventions for
weight control to reduce the growing prevalence of diabetes.
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AUC: area under the curve
NSW: New South Wales
T2DM: type 2 diabetes mellitus
WHO: World Health Organization
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