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Abstract

Background: Medicine 2.0—the adoption of Web 2.0 technologies such as social networks in health care—creates the need
for apps that can find other patients with similar experiences and health conditions based on a patient’s electronic health record
(EHR). Concurrently, there is an increasing number of longitudinal EHR data sets with rich information, which are essential to
fulfill this need.

Objective: This study aimed to evaluate the hypothesis that we can leverage similar EHRs to predict possible future medical
concepts (eg, disorders) from a patient’s EHR.

Methods: We represented patients’ EHRs using time-based prefixes and suffixes, where each prefix or suffix is a set of medical
concepts from a medical ontology. We compared the prefixes of other patients in the collection with the state of the current patient
using various interpatient distance measures. The set of similar prefixes yields a set of suffixes, which we used to determine
probable future concepts for the current patient’s EHR.

Results: We evaluated our methods on the Multiparameter Intelligent Monitoring in Intensive Care II data set of patients, where
we achieved precision up to 56.1% and recall up to 69.5%. For a limited set of clinically interesting concepts, specifically a set
of procedures, we found that 86.9% (353/406) of the true-positives are clinically useful, that is, these procedures were actually
performed later on the patient, and only 4.7% (19/406) of true-positives were completely irrelevant.

Conclusions: These initial results indicate that predicting patients’ future medical concepts is feasible. Effectively predicting
medical concepts can have several applications, such as managing resources in a hospital.

(JMIR Med Inform 2020;8(7):e16008) doi: 10.2196/16008
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Introduction

Background
Medicine 2.0—the intersection of Web 2.0 and health care
services, apps, and tools—brings new opportunities for patients
to actively contribute to their own care [1]. With the rapid

adoption of patients’ electronic health records (EHRs) [2],
allowing users to find patients with similar experiences and
health conditions based on their EHR has the potential to
improve the quality of care and expand options for health care
solutions [3]. This approach may lead to novel apps for patients,
such as self-management recommendations based on big data
aggregation across cohorts [4]. Apps that allow patients to find,
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discuss, and share health data and information can improve
patient outcomes while raising meaningful discussions in disease
management [5]. Therefore, finding patients with similar
experiences and health conditions is a critical step for patients
to contribute to their own care. This capability is becoming
more important as more patient records become available (with
user consent and commonly anonymized), for instance, through
health social networks that aim to connect patients, which drive
the need for patient-centered health informatics [6,7].

We evaluated the hypothesis that we can predict possible future
medical concepts in a patient’s EHR by leveraging the EHRs
of other patients in the collection. Medical concepts are entities
of a medical ontology, which is a knowledge network of medical
concepts, where concepts and their definitions are categorized
and interconnected (normally via a hierarchy) to present their
semantic meanings. Given a point of time, a patient’s current
medical history is stored in form of EHRs. Future medical
concepts are defined as the ones appearing in the patient’s EHRs
after that point, which is also the patient’s future medical record.
To evaluate our hypothesis, we first organized each patient’s
EHR in the database as a list of chronological medical events,
which can be divided into a prefix (a sequence of events up to
a time moment) and a suffix (a sequence of events that happened
after this time moment). Then, we used various interpatient
similarity measures to locate other patients’ EHRs that have
prefixes similar to the current patient’s EHR. Finally, we
processed the time-based suffixes of the matched EHRs to
determine which medical concepts are probable for the future
of the current patient’s EHR. In short, our method uses EHRs
of patients with similar past medical developments to predict a
patient’s upcoming developments.

Furthermore, our method offers the prediction’s explanation by
providing similar patients and medical concepts influencing the
prediction; thus, it does not suffer the interpretability limitation
of common deep learning techniques [8]. Although we used the
Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC) II database to evaluate our methods, our methods are
applicable to any database of EHRs, where a set of medical
concepts can be extracted for various time instances (eg, hospital
visits) during a patient’s care.

Patients are not the only stakeholders who stand to benefit from
the prediction of future medical concepts in an EHR; clinicians
and clinical researchers can also benefit from a what-if analysis
based on similar patients. For example, when a physician is
answering questions for a patient or the patient's family, such
an analysis may be helpful as supporting evidence, especially
to provide data-driven guidance in the absence of specific gold
standard [7]. Moreover, the clinician may view the changes in
the probable future EHR of a patient if a specific therapy is
undertaken. From a research standpoint, clinical researchers
may be interested in finding patients with similar predicted
concepts when performing nonrandomized studies, for example,
for matching cases and controls.

Related Work
Research related to our study is divided into 2 groups: those
that consider (1) interpatient similarity measures and (2) analysis
and prediction via aggregated patient data. The former is related

to patients with similar experiences, and health conditions were
used for predicting future medical concepts. The latter group is
related in that an aggregate of patient data across a database of
EHRs was used for predicting future medical concepts.
However, none of the related studies have defined the notion
of EHR prefixes and EHR suffixes when aggregating patient
data or finding patients with similar experiences and health
conditions.

Interpatient Similarity Measures
When measuring patients with similar experiences and health
conditions, we leveraged previous papers, which have studied
several interpatient distance functions. Methods include
case-based reasoning, vector space models, bag-of-concepts
(BoCs), information content, path length between concepts,
common ancestors of concepts, and combinations of these. None
of these methods have been applied to EHR prefixes and EHR
suffixes for predicting future medical concepts. Thus, the
intuitive question is, “Are these interpatient similarity measures
powerful enough to identify patients with similar histories and
futures?”

Cao et al [9] used case-based reasoning to find patients with
similar experiences and health conditions based on clinical text.
They found that medical concepts are superior features
compared with a bag-of-words approach. Similar to this study,
the authors restricted medical concepts to a specific subset of
semantic types, but the authors did not consider semantic
similarity between concepts—for example, 2 concepts may be
neighbors in the Systemized Nomenclature of MEDical Clinical
Terms (SNOMED-CT) ontology—when comparing patients.
Mabotuwana et al [10] studied an ontology-based similarity
measure for radiology reports where the authors extended cosine
similarity to include the semantic similarity of medical concepts
mentioned in radiology reports. The authors found that the
addition of semantic similarity allows a vector space model to
differentiate between radiology reports of different anatomical
and image procedure–based classes. Plaza and Diaz [11] studied
concept graphs for measuring interpatient similarity. Given a
set of concepts for a patient, all ancestors of each concept are
retrieved and assigned a weight based on their depth, where
deeper concepts have higher weights. This method is studied
in this study and explained in greater detail in the Methods
section. Melton et al [12] studied a variety of interpatient
distance measures, including BoCs and average path length
(APL). Both the BoCs and unweighted APLs are investigated
and described in greater detail in the Methods section.

Analysis and Prediction of Aggregated Patient Data
Related work on aggregating patient data for analytics employs
a patient database to provide recommendations, analysis, and/or
predictions. Gotz et al at IBM Corporation [13-15] developed
an interactive system to aid domain experts in retrospective
patient cohort analysis. Similar to our study, their system finds
a cohort of patients with similar health conditions based on the
EHR of the physician’s current patient via symptoms. Statistics
for the cohort are aggregated and visualized using a variety of
techniques, including an outflow graph that models the evolution
of symptoms over time and the respective outcomes. Unlike
this study, their system does not predict future medical concepts,
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nor do they use ontologies when measuring patients with similar
health conditions. However, their study complements our study
in that the user can use predicted symptoms to explore possible
outcomes in the outflow graph.

PatientsLikeMe has also examined the effects of aggregating
patient data [4,16]. A web-based survey found that users
reported several benefits from having access to aggregated
patient statistics. Furthermore, they found a correlation between
perceived benefit and the number of website features used by
a user, along with demographic similarities between the users
of the web-based platform and actual patient populations. This
study aimed to complement the data created by PatientsLikeMe
by employing aggregated data to predict future medical
concepts.

Recent advancements in deep learning offer a new, powerful
predictive tool for patients’ EHRs [17]. Miotto et al [18]
proposed a 3-layered stack of denoising autoencoders to learn
a vector representation of each patient from an EHR database
of approximately 700,000 patients and then used this deep
patient embedding to predict the probability of patients
developing 78 diseases. Studies by Razavian et al, Lipton et al,
Choi et al, and Nguyen et al [19-22] explored the temporal order
of medical events and different neural network architectures,
such as recurrent convolutional networks. Rajkomar et al [23]
represented a patient’s entire EHR as a temporal sequence of
medical events in the fast health care interoperability resources
format and applied various deep learning models to learn the
patient’s representation for further predictions: inpatient
mortality, 30-day unplanned readmission, long length of stay,
and 14,025 International Classification of Diseases-9th revision,
diagnosis codes. In general, these methods learn the patient’s
vector representation, which is used to model downstream
prediction tasks such as classification or regression problems.
Although these studies restrict their predictions to a predefined
medical concept set, our study makes predictions of any medical
concepts appearing in patients with similar health conditions.
Moreover, whereas deep learning approaches offer limited
interpretability [8], our method explains how a prediction is
made.

Methods

We represented each patient as a set of medical concepts from
SNOMED-CT [24]. We extracted medical concepts using the
MetaMap library [25]. Then, to identify patients with similar

health conditions, we adopted various distance functions studied
in the literature [11,12]. We showed how to extend these
distance functions to predict future medical concepts, given a
query patient. We demonstrated and evaluated these methods
on the MIMIC II clinical database, which contains patient data
from visits to an intensive care unit (ICU) [26].

Framework and Method for Predicting Future
Concepts Using Similar Patients
First, we proposed our framework for discretizing EHRs into
events, yielding the notion of EHR prefixes and EHR suffixes.
Consider a database of patient visits to an ICU. One possible
method to discretize these visits is to exploit transfers between
wards within the ICU, as illustrated by the example in Figure
1. In this example, the patient is admitted to the medical ICU,
transferred to the surgical ICU, and then transferred back to the
medical ICU. The patient’s time in each ward represents a
distinct event, where clinical notes are recorded that report the
patient’s status; thus, medical concepts reported in each ward
are associated with a specific event. Furthermore, these events
have a natural ordering, which produces the notion of EHR
prefixes and EHR suffixes. In this example, there are 2 possible
EHR prefixes, [Event1] and [Event1, Event2], and 2 possible
EHR suffixes, [Event2, Event3] and [Event3]. Hence, each EHR
prefix and EHR suffix is associated with a set of medical
concepts, as shown at the bottom of Figure 1.

The motivation for discretizing EHRs into events is that health
care changes over time with respect to medical conditions,
procedures, findings, and drugs observed from the past. Given
a new patient, our goal is to find similar EHR prefixes from the
EHR database such that the respective EHR suffixes will predict
the new patient’s future. Let the new patient’s EHR be denoted
by Q, where Q is represented as a set of medical concepts

defined on an ontology. Let Qp
k represent the set of medical

concepts obtained from the first k events, where the superscript
p denotes that this set is an EHR prefix. The corresponding EHR

suffix is denoted by QS
k+1, which represents the set of medical

concepts from event k+1 to the last event in the EHR. Note that

in a clinical setting, we would use the whole EHR as Qp
k as the

goal is to predict future concepts, given the current state of the
patient. Finally, let D be the database of records within the EHR.
We now define our concept prediction algorithm that consists
of 2 steps: (1) finding similar records and (2) returning concepts
with high confidence.
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Figure 1. An example of a patient visiting the intensive care unit, discretized by ward transfers. In this example, the patient was admitted to the medical
intensive care unit, transported to radiology, and transferred to the surgical intensive care unit. As this example contains 3 events, there are 2 possible
electronic health record prefixes and 2 possible electronic health record suffixes. ICU: intensive care unit; NICU: neonatal intensive care unit.

Concept Prediction Algorithm

Step 1: Compute Similar Electronic Health Record Prefixes

In particular, find the set S of EHR suffixes that correspond to
the EHR prefixes Pi in D whose dissimilarity with respect to

Qp
k is less than some dissimilarity threshold

τ: where Pi is an EHR
prefix of events from a single visit, Si is the corresponding EHR
suffix, and DisSim is an interpatient dissimilarity function. Note
that we only considered the most similar EHR prefix for each
visit.

Step 2: Return Concepts With High Confidence

Let be the confidence of concept c, where S'c is the
EHR suffixes from S that contain c. We return

, which is the set of concepts in S with
confidence greater than the confidence threshold   .

Figure 2 illustrates step 1 of the concept prediction algorithm,
where only prefixes P2 and P5 have dissimilarities from the

query prefix p (or with respect to Qp
k) smaller than the threshold

τ; thus, their corresponding suffixes S2 and S5 are included in

S. Define . Furthermore, let P5

and S5 be EHR prefix B and EHR suffix B from Figure 1. Thus,

. Let λ=0.7, then step 2 of the algorithm returns C={Intubated,
Seizure}.

Figure 2. Dissimilarities of electronic health record prefixes with respect to the k-events prefix of a patient Q denoted by Q_kp.
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Hence, we can evaluate both parameters and DisSim using
traditional measures of specificity, sensitivity, and precision.
Let, U be the universe of all medical concepts. True-positives
(TPs), true-negatives (TNs), false-positives (FPs), and
false-negatives (FNs) are defined by:

We have also extended our definitions of TP, TN, FP, and FN
to consider fresh concepts only. Fresh concepts are concepts

that appear in the query EHR suffix, , which do not appear

in the query EHR-prefix, . We argue that fresh concepts are
more challenging and have a higher potential to be clinically
useful for prediction. We analyzed fresh concepts separately

from all concepts as concepts that appear in the query EHR
prefix are likely to persist into the suffix and thus would skew
our evaluation of fresh concepts. Therefore, we ignore concepts

that appear in when evaluating any measures concerning
TP, TN, FP, or FN.

Figure 3 illustrates the connection between the entire set of
concepts U, the predicted set of concepts C, and the ground

truth . In our experiments, the size of , and
thus, the number of TNs skews the value of specificity.
Therefore, we assessed the parameters and interpatient distance
measures using the harmonic mean of sensitivity and precision,
commonly known as the F-measure in information retrieval.

Figure 3. The connection between the ground truth concepts and the predicted concept space.

Interpatient Distance Measures
We evaluated 4 interpatient dissimilarity measures proposed in
the literature [4,5]: (1) BoC, (2) CAs, (3) APL, and (4) symmetric
APL (APL_SYM).

Let A and B be the sets of medical concepts.

For BoC, the dissimilarity between A and B is defined as the
sum of the number of concepts that appear in A but not in B
and in B but not in A, divided by the size of their union [5].
union of A and B is also a set, and therefore, the size of the union
only considers each concept once:

BoC produces values between 0 and 1, where 0 represents
maximum similarity, and 1 represents minimum similarity. Note
that BoC is symmetric; hence, BoC(A, B)=BoC(B, A).

In CA, for each concept, for each concept ca in A, we retrieved
all ancestor concepts in the concept hierarchy and assigned to
each concept and its ancestors a weight, where each ca is
assigned a weight of 1, and ancestors of each ca are assigned a
weight relative to their distance from ca. An analogous weighting
procedure is applied to all concepts and their ancestors in B.

Weights are averaged if a node is assigned more than one
weight.

Let A' and B' be the set of concepts and their ancestors for A
and B, respectively. When computing the dissimilarity from A
to B, we examined each concept in A’ and check if it exists in
B’. If it exists, the given concept in A’ is assigned a value equal
to its own weight, and zero otherwise [4]:

where w (ci) is the weight assigned to the concept ci. Hence, the
abovementioned sum measures the overlap between the concepts
and the ancestors of A and B. Scores from CA range from 0 to
1, where a score of 0 represents maximum similarity, and 1
represents minimum similarity. By definition, CA is not
symmetric.

The APL measure finds the minimum number of edges between
each concept in A with every concept in B. APL sums the
distances across all concepts in A to obtain the dissimilarity of
A to B [5]:
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A score of 0 implies a maximum similarity. By definition, APL
is not symmetric; APL_SYM is the sum of A to B and B to A:

Preparation of Multiparameter Intelligent Monitoring
in Intensive Care II Data Set
We applied our framework and the aforementioned interpatient
dissimilarity measures to the MIMIC II clinical database—a
database of EHRs collected over a 7-year period from multiple
ICUs at a medical center in Boston [26]. Several types of clinical
notes are recorded during a visit, including radiology reports,
nursing notes, and physician notes. We parsed each note to
extract medical concepts from the clinical text. Each note is
associated with a timestamp that represents its creation time.
We used these timestamps to map notes to events, defined as
ward transfers, generating a list of concepts for each event.

First, we parsed medical concepts from each type of note using
the MetaMap library [25]. Before parsing each note,
abbreviations such as OMG were identified and expanded using
an abbreviation list similar to the list of Wiley et al [27]. The
MetaMap library maps free text to biomedical concepts are
defined in the Unified Medical Language System (UMLS) [28].
Each concept in the UMLS corresponds to one or more semantic
types [29], which further maps to semantic groups [30]. Previous
studies have shown that disorders, physiology, chemicals and
drugs, procedures, and anatomy are the most important UMLS
semantic groups when measuring interpatient similarity [11].
Negated concepts are identified via MetaMap, and these
concepts are ignored, as previous work has shown that absent
concepts are not relevant to patient similarity [11]. After
obtaining a list of relevant concepts, each concept from the
UMLS is converted to a concept from SNOMED-CT using the
MRCONSO table [31].

A single patient visit may consist of several transfers between
wards. Each of these transfers is considered to be a census event
in the MIMIC II database. The rationale for this definition of
an event is that each time a patient enters a new care unit, there
may be a significant change in the patient’s status, for example,
the patient’s condition worsened, and he was transferred to the
surgical ICU.

If a patient visits a hospital multiple times, each visit is treated
independently, that is, multiple visits are viewed as different
patients for the purpose of our similarity matching algorithm.
This decision is not critical for the MIMIC II data set because
a majority of patients only have one visit. Related work has
shown that the abovementioned concept of census events
provides an effective timeline of a patient’s record, where
concepts within an event are semantically associated with each
other [32].

Computation Time Analysis
The computation cost to extract ancestors is linear with respect
to the number of ancestors. As the ontology is a wide directed
acyclic graph (DAG) instead of a deep one, each concept has
up to 61 ancestors, and 29 ancestors on average. We used Dewey
encoding to speed up both the retrieval of ancestors and
calculation of concept distance. In particular, a concept’s Dewey

encoding encapsulates its ancestor information, for example, if
concept C2315591 is encoded as $.8.96.45, this implies that the
concept’s ancestors are $.8 and $.8.96. Using Dewey [33]
encodings, the distance between 2 concepts is reduced to be a
string comparison between their encodings; that is, we computed
the distance between the concepts and their lowest common
ancestor, which again has cost linear on the DAG depth.

Results

Anecdotal Example
We started with a real anonymized example from the MIMIC
II dataset to demonstrate the potential utility of our approach.
Bob was involved in a motor vehicle collision where he struck
his head and lost consciousness. He arrived at the medical ICU
with a chief complaint of severe shoulder pain and bleeding
from his nostrils. After arriving at the medical ICU (event 1),
Bob was transferred to the surgical ICU for further care (event
2). During his stay in the surgical ICU, the staff observed
symptoms of pneumonia and pulmonary aspiration. Bob was
then transported to radiology (event 3), where tests revealed
that Bob indeed had both pneumonia and pulmonary aspiration.
We executed our prediction method using event 1 as a query.
In particular, we used CA, with τ=0.5 and λ=0.3. Of the suffixes
of patients with similar EHR prefixes, 50% contain the concepts
of pneumonia and pulmonary aspiration, whereas 29% and 23%
of all patients in the general ICU population contained the
concepts of pneumonia and pulmonary aspiration, respectively.

Event-Based Analysis of the Multiparameter Intelligent
Monitoring in Intensive Care II Data Set
We only considered visits with more than one event because
visits with 1 event cannot be split into EHR prefixes and EHR
suffixes. In total, there are 4083 visits over 3971 unique patients;
thus, patients with multiple visits account for less than 3% of
the total number of visits. Visits with 2 events dominate the
data set, accounting for 80% of the total visits, whereas visits
with 3 events accounted for 15% of the total visits. In general,
a longer visit produces more medical concepts, implying that
new concepts are found as the patient’s visit progresses. Visits
of length 2, 3, and 4, respectively, have 291, 434, and 539
unique medical concepts on average. The corresponding number
for visits of more than 4 events is 725. On average, each event
contains 187 medical concepts, and each visit contains 325
medical concepts. Furthermore, these concepts are dominated
by disorders (36%) and procedures (22%). The other concept
semantic groups are anatomy (20%), drugs (12%), and
physiology (10%).

Prediction Results
We evaluated the interpatient distance measures BoC, CA, APL,
and APL_SYM on the aforementioned admissions of the MIMIC
II database using our framework of EHR prefixes and EHR
suffixes. Our first objective was to tune the parameters τ and λ
using the F measure. We split the admissions into training and
testing datasets, where 20% of the admissions were used for
training, and 80% of the admissions were used for testing. Table
1 reports the combination of τ and λ that produced the highest
F measure for each interpatient distance measure using the
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training data set. APL_SYM obtains the highest F measure,
precision, and sensitivity, whereas APL obtains the highest

specificity.

Table 1. The best parameters for each distance function based on the training data set.

Precision (%)Sensitivity (%)Specificity (%)F measure (%)λτDisSim

50.652.986.951.80.080.7Bag-of-concept

43.955.294.048.90.250.46Common ancestor

45.452.694.948.70.301.5Average path length

52.052.984.452.40.071.86Symmetric average path length

Figure 4 illustrates a graphical representation of the optimal
parameters reported in Table 1, plotting λ on the y-axis and 1−τ
on the x-axis. Thus, all concepts from the EHR suffixes of
similar EHR prefixes are included with a score to the right of
the corresponding vertical dashed line, and from these concepts,
all concepts with a confidence above the corresponding
horizontal dashed line are included in the predicted EHR suffix.
Furthermore, APL and APL_SYM have been normalized by
the maximum possible similarity score, where the maximum
similarity score is defined as the maximum path length in
SNOMED-CT. As shown in this figure, CA and BoC have larger
values of dissimilarity compared with APL and APL_SYM.

The tightest bounds for both thresholds are for APL and
APL_SYM, and the loosest bound is for BoC. This is expected,
as the average scores for BoC, CA, APL, and APL_SYM are
0.86, 0.31, 0.07, and 0.07, respectively. Moreover, APL and
CA have tightest bounds on the confidence threshold; this is an
interesting point, as APL and CA are antisymmetric, implying
that symmetric interpatient distance measures require less
confidence when predicting future medical concepts.

Table 2 reports the results on the testing dataset using the
optimal set of parameters reported in Table 1 for fresh and not
fresh concepts.

Figure 4. Representation of the optimal choice of the dissimilarity threshold τ and confidence threshold λ for the training data set. APL: average path
length; BoC: bag-of-concept; CA: common ancestor; APL-SYM: symmetric average path length.
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Table 2. The results for the testing data set separated by semantic group, using the parameters tuned on the training data set for fresh and not fresh
concepts.

Precision (%)Sensitivity (%)Specificity (%)F measure (%)Semantic group and DisSim

All concepts

50.852.687.151.7BoCa

43.755.794.148.9CAb

45.252.894.848.7APLc

50.953.784.252.3 eAPL_SYMd

Disorders

49.049.887.849.4BoC

41.448.495.044.7CA

42.846.195.744.4APL

49.651.885.050.7APL_SYM

Procedures

51.353.385.652.2BoC

42.357.992.648.9CA

43.254.093.648.0APL

51.054.482.052.6APL_SYM

Chemicals and drugs

50.449.189.849.7BoC

47.149.996.448.5CA

48.947.396.948.1APL

50.749.887.750.2APL_SYM

Physiology

56.157.182.356.6BoC

49.569.589.557.8CA

51.467.690.658.4APL

56.157.780.156.9APL_SYM

aBOC: bag-of-concept.
bCA: common ancestor.
cAPL: average path length.
dAPL_SYM: symmetric average path length.
eItalicized numbers indicate the best result of the semantic group.

Similarly, Table 3 reports the same results for fresh concepts
only; fresh concepts are concepts that do not appear in the
query EHR prefix and, therefore, are fresh to the query EHR
suffix. We categorized each concept into its semantic group and

analyzed each interpatient distance measure with all concepts
and concepts restricted to a semantic group; anatomical concepts
are omitted in this analysis, as predicting an anatomical site,
such as lower back, is not useful in a clinical setting.
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Table 3. The results for the testing data set separated by semantic group, using the parameters tuned on the training data set for fresh concepts only.

Precision (%)Sensitivity (%)Specificity (%)F measure (%)Semantic group and DisSim

All concepts

44.143.389.643.7BoCa

32.437.795.734.8CAb

34.035.096.534.5APLc

44.645.386.844.9 eAPL_SYMd

Disorders

43.540.890.042.1BoC

31.332.996.332.1CA

33.130.697.031.8APL

44.543.787.344.1APL_SYM

Procedures

44.542.788.543.6BoC

32.539.394.835.6CA

33.236.495.634.7APL

44.744.685.044.7APL_SYM

Chemicals and drugs

43.134.991.838.6BoC

35.626.697.530.4CA

36.323.797.928.7APL

44.136.589.739.9APL_SYM

Physiology

47.045.286.146.1BoC

37.345.392.840.9CA

39.243.493.841.2APL

47.546.883.947.2APL_SYM

aBOC: bag-of-concept.
bCA: common ancestor.
cAPL: average path length.
dAPL_SYM: symmetric average path length.
eItalicized numbers indicate the best result of the semantic group.

As shown in Table 2, the symmetric interpatient distance
measures outperform the antisymmetric distance measures
across all semantic groups, where APL_SYM performs the best;
the only exception is physiology. Comparing these results with
Table 3 shows that the gap between symmetric and
antisymmetric distance measures widens to a 10% difference
in terms of F measure. That is, symmetric interpatient distance
measures are more predictive of future medical concepts,
especially for fresh concepts. When considering the symmetric
measures APL_SYM and BoC, APL_SYM consistently performs
better, achieving higher rates of sensitivity and precision in
every case.

Furthermore, the antisymmetric interpatient distance measures
performed better with respect to specificity but achieved a lower
precision. That is, antisymmetric distance measures predicted

fewer concepts overall to achieve higher rates of specificity
with lower rates of sensitivity and precision, which is explained
by the conservative choice made during the tuning phase.
Another interesting point is that all interpatient distance
measures observed an increase in specificity for fresh concepts;
however, this increase was greatest for symmetric interpatient
distance measures. The reason is that the number of FP decreases
for fresh concepts, whereas the nonfresh concepts are more
frequently predicted to be in the suffix and, therefore, have a
higher frequency of FPs.

Clinical Significance of the Subset of Predicted Concepts
We further examined 16 individual concepts identified as
important by our physician author (RE) in the ICU setting. We
focused on the TP cases (correctly predicted mention in the
suffix) to validate the prediction’s importance and FN cases
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(incorrectly predicted no mention in the suffix) to detect possible
significant misses. We presented our predictions in a web
interface (Table 4), which is basically a table of predicted

concepts, the patient’s EHR prefix/suffix and concepts
influencing the prediction in highlight.

Table 4. Predictions and explanations provided to our medical student and physician authors to label the clinical significance of a prediction.

Suffix from time of predictionPrefix at time of predictionPredicted concept and timePatient ID

…Bronchoscopy done secondary
to low PaO2...

...Resp: RR 16-20 has periods of apnea when asleep...

…There is increased density in the right upper lung field with elevation
of the minor fissure consistent with developing atelectasis in the right
upper lobe…

Bronchoscopy (3 hours:23
min:0 seconds)

22,487

In Table 4, our domain expert is given a prediction, the patient
history, and asked to evaluate if the prediction is helpful.
Particularly, in the third column (Prefix at time of prediction),
we presented the patient history up to the point that our system
predicts that a concept(s) will appear in future (in the second
column Predicted concept and time). The last column in Table
4 (Suffix from time of prediction) shows events occurring after
the prediction time so that our domain expect can judge if the
system’s prediction is significant in the sense that the predicted
concepts actually affect the patient and the prediction is not
trivial, that is, obviously happen, thus no need for prediction.
As we focused on the positive cases, the predictions actually
appear in the patient’s suffix and thus are highlighted for the
domain expert to evaluate.

Our medical student and physician authors manually mark each
case with 1 of 4 categories: (1) mentioned and performed; (2)
concept mentioned but it is obvious (ie, little value to clinicians);
(3) mentioned but only considered by physician, not performed
(ie, the clinicians mentioned this concept in the suffix but in the
end did not perform the procedure); and (4) mentioned, but out
of context (eg, mentioned as part of the medical history of a
patient or while describing a similar case). We reported
additional metrics such as specificity, sensitivity, FP, and TN
of 7 important concepts in the Multimedia Appendix 1, ordered
by concept name. We do not count the cases in which a predicted
concept occurs in both the patient’s prefix and suffix. Moreover,
if a patient history can be divided into multiple prefix-suffix

pairs and the algorithm is able to make predictions for a long
prefix, not for the shorter prefix, we do not count the case of a
shorter prefix as a negative prediction.

True-Positive Analysis
Table 5 reports the fine-grained evaluation of TP cases. Note
that we only presented predictions of 7 concepts because our
algorithm did not predict the remaining 9 concepts. The
bronchoscopy concept was successfully mentioned and
performed in the suffix 63 of 63 times in a TP category.
Bronchoscopy was positively identified with the keywords in
the prefix, usually mentioning respiratory symptoms. Compared
with bronchoscopy, surgery is a much more invasive procedure
that requires consent of the patient and for the patient to be
medically cleared for surgery. This caused 215 surgical concepts
to be accurately mentioned and performed but have a significant
portion mentioned out of context (16 times) or mentioned but
only considered and not performed (25 times). Patients have a
craniotomy performed for a variety of reasons. One craniotomy
in the medical records analyzed was accurately mentioned and
performed, but it was not needed to be predicted. The patient
undergoing a craniotomy came in after a motor vehicle collision
with an obvious facial fracture, thus not needing to predict the
craniotomy, as it would be the only way to treat the patient. In
summary, most TP predictions are useful. Overall, 13.1% of
the predictions are unhelpful, and mostly fall into the surgery
concept.

Table 5. Expert evaluation of true positive predictions using 4 fine-grained categories.

Mentioned, but out of
context

Mentioned but only considered by
physician, not performed

Concept mentioned, but is obviousMentioned and
performed

Concept

00063Bronchoscopy

0005Cardiac surgery

0001Colonoscopy

1119Craniotomy

16047Dialysis procedure

10013Refractive surgery enhance-
ment

16251215Surgery

We illustrated how our algorithm offers useful predictions using
a TP case example. In patient ID 22,487, a bronchoscopy was
successfully predicted in the suffix (Table 4). The patient had
a history of coronary artery disease with chest pain and had a
triple coronary artery bypass graft performed to alleviate his

symptoms before the prefix. In the prefix, our algorithm
highlighted (we highlighted a concept in the prefix if it is
contributing to the prediction of the target concept in the suffix)
effusion 7 times, apnea 6 times, and increased density one time,
all related to pulmonary pathology. Heparin, a blood thinner,
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was also highlighted 7 times by our algorithm. The patient’ s
respiratory state began to diminish and was eventually placed
on a ventilator, as his course in the hospital progressed.
Bronchoscopy was accurately predicted and performed on day
3 and hour 23 in the suffix secondary to low PaO2 with small
amounts of suctioned thin secretions, and no plugs were found.
The accurately predicted concept is interesting, as the patient
was initially presented with chest pain–related symptoms treated
by intervention through the cardiovascular organ system but
was found to have concurrent complications in the pulmonary
organ system.

To obtain the full picture, we presented a TP example that is
clinically incorrect. In patient 9122, a surgery was predicted in
the suffix, but no performance of a surgery in the suffix was
found. This patient was a 25-week premature twin baby born
by cesarean section. The only mention of surgery in the suffix
is an update by a neonatal intensive care unit nurse stating they
were awaiting surgical time for twin. No surgery was considered
or performed for this patient during the suffix and was only
being medically managed for being born prematurely. One of
the most highlighted words in the prefix used by the algorithm
to predict surgery was bili with 35 mentions, bilirubin had 3
mentions, and phototherapy with 20 mentions—all related to
jaundice. There were also multiple highlighted words related
to respiratory symptoms, such as gas with 18 mentions, bicarb
having 9 mentions, and 3 mentions for PCO2 Although no
surgery plan was considered for the patient, the word surgery

was present in the suffix, that is, this is an out of context
prediction.

In Multimedia Appendix 2, we examined how early our
algorithm can predict concept occurrences. In particular, in TP
cases, we calculated the time from the prefix’s end to the suffix’s
beginning. For most concepts, the minimum times are almost
0 because there are suffixes that occur right after their prefixes.
On average, our algorithm can predict concepts several days
before their actual occurrences.

False-Negative Analysis
We presented the same evaluation on FN cases in Table 6.
Although 53 bronchoscopies were accurately mentioned and
performed, the FN had an additional concept mentioned in
context (1 time) or mentioned but only considered and not
performed (3 times). Colonoscopy appeared more in the FN
group with 21 colonoscopies mentioned and performed but had
a high quantity of concepts mentioned in context (5) or
mentioned but only considered and not performed (13). The
surgery group also mentioned and performed 154 concepts;
however, similar to Table 5, it has a significant number of
predictions made out of context (8) or mentioned but only
considered and not performed (42). The refractive surgery
enhancement concept had the lowest ratio of concepts accurately
mentioned and performed (48) to those mentioned out of context
(21) or mentioned but only considered and not performed (14).
Overall, 24.8% of FN cases are unimportant because of being
out of context or not being performed by physicians.

Table 6. Expert evaluation of false negative predictions using 4 fine-grained categories (for instance, surgery was not predicted to be in suffix, and it
appears in the suffix).

Mentioned, but out of
context

Mentioned but only considered by
physician, not performed

Concept mentioned, but not needed
for prediction

Mentioned and
performed

Concept

13049Bronchoscopy

06040Cardiac surgery

513026Colonoscopy

12023Craniotomy

16046Dialysis procedure

2314048Refractive surgery enhance-
ment

9430154Surgery

Discussion

Principal Findings
Our results show that when applied to clinical concept prediction
in ICU patients, symmetric interpatient distance measures are
more robust in terms of F measure, sensitivity, and precision.
Furthermore, antisymmetric interpatient distance measures
performed the best in terms of specificity. Hence, antisymmetric
interpatient distance measures are more conservative when
predicting future medical concepts, as explained by their high
confidence thresholds and high levels of specificity, whereas
symmetric interpatient distance measures observe a 10% gain
in precision and sensitivity over antisymmetric measures. Thus,
symmetric interpatient distance measures are more predictive

of future medical concepts. Overall, the APL_SYM performed
the best.

We further evaluated the clinical value of the predictions. Our
medical student and physician authors manually examined the
TP and FN predictions of 16 important concepts. We found that
86.9% (353/406) of TP predictions are performed later, and
only 4.7% (19/406) of the cases are totally out of context. This
early concept prediction capability implies substantial impacts,
such as avoiding potential high-risk events and improving
patient outcomes at lower costs. On the other hand, our
algorithm missed 513 FN cases, but 24.7% of them were
clinically unimportant. Specifically, these missed concepts do
appear in the patient suffixes but are out of context, or not
needed, or not performed by the physician.
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As an example of an application of the proposed methods in a
real setting, we considered using these methods to periodically
automatically predict the estimated number of patients in a
hospital that will require bronchoscopy. This may allow for
better resource planning.

Limitations
We recognized that in its current form, our system is not
sufficiently accurate for deployment. In particular, concern
arises when giving a patient or their family access to our
proposed methods—incorrectly predicting an undesired concept
may incur unneeded stress and anxiety. In this regard, we may
calibrate the confidence parameters to achieve higher precision
and have an expert manually select the set of concepts that are
appropriate to present to patients. As an example of a potential
application, such a controlled prediction module could be
deployed in a patient portal of a health insurance company,
where a patient can already view his or her EHR.

From a medical perspective, ICUs are often numerically oriented
with vital signs, pressure readings, laboratory values, and
ventilator readings. Furthermore, ICUs move at a fast pace, and
hence, using the granularity of ward transfers is perhaps too
broad in the ICU setting. Therefore, our proposed methods will
most likely achieve different results in a primary care or
outpatient setting. An interesting analysis would be to compare
long-term predictions in the outpatient setting with near-term
predictions in the ICU setting.

However, the MIMIC database is one of the few, if only publicly
available databases of EHRs that are rich in both clinical notes
and temporal data. Clinical notes enable a rich collection of
clinical concepts and hence allow for the prediction of a broad
range of clinical concepts. For example, an EHR database
containing only disease classifications will represent diabetes
but will fail to represent insulin; hence, insulin cannot be
predicted. Furthermore, temporal data allow us to sort medical
concepts into prefixes and suffixes.

Another medical limitation is that we did not weigh concepts
based on their clinical importance. For example, the concept of
cardiac arrest is more important in terms of similarity and
predictive value than the concept of coughing. Moreover, the
importance of a clinical concept depends on its application and
domain. Furthermore, we need to assess the accuracy required
for our system to be useful to patients, clinicians, and

researchers. This accuracy requirement could be assessed
through user evaluations.

From a technical perspective, a key limitation is the assumption
that MetaMap correctly identifies all concepts written in a
clinical note. MetaMap has achieved reasonable precision and
recall values (80% and 79%, respectively) when identifying
medical concepts from clinical notes [34]. Given the raw text
of a clinical note, this assumption is clearly invalid because of
abbreviations in the clinical note and errors generated by
MetaMap. We address abbreviations by using a manually crafted
list of medical abbreviations common to clinical notes; thus,
potential errors caused by ambiguities because of common
abbreviations were minimized. Furthermore, we argue that errors
generated by MetaMap are a natural language processing
problem, which is beyond the scope of this study. MetaMap
limitation also holds with any other automatic extraction tool.
To mitigate this, our physician author manually evaluated the
clinical significance of TP predictions for a subset of interesting
concepts.

Another technical limitation is that we evaluated our algorithm
strictly, in that we only accepted predictions that exactly
predicted the corresponding concept. For example, if we
predicted cancer when the actual concept was breast cancer,
then our prediction of cancer would be marked as an FP, when
our prediction was semantically relevant. Hence, including
semantically similar concepts, either through is-a (ISA)
ancestors or other semantic relations, has the potential to
increase the accuracy of our algorithm while remaining relevant
to clinical decision support.

Conclusions
In this paper, we studied the problem of predicting future
medical concepts in a patient’s EHR. The key idea of our
method was to find patients with similar EHR prefixes using
various interpatient similarity measures and then predict medical
concepts that have high confidence in EHR suffixes of those
patients. Our results showed that this is a promising approach
to predict possible future concepts in a patient’s EHR. Of the
multiple symmetric and antisymmetric interpatient similarity
measures, the APL_SYM achieved the highest accuracy in our
evaluation. We further evaluated the predictions of 16 important
concepts manually and found that 86.9% of TP predictions are
performed later. These initial results indicate that predicting a
patient’s future medical concepts is feasible.
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Multimedia Appendix 1
Prediction performance results for important concepts selected by our physician author. We do not count the cases that a predicted
concept occurs in both patient’s prefix and suffix.
[DOCX File , 14 KB-Multimedia Appendix 1]
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Multimedia Appendix 2
Time from our algorithm prediction to the actual occurrence of the concepts in suffix for true positive cases (The time is formatted
as dd hh:mm:ss, where dd is dropped if the time is less than a day).
[DOCX File , 14 KB-Multimedia Appendix 2]
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TN: true-negative
TP: true-positive
UMLS: unified medical language system
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