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Abstract

Background: Modern data-driven medical research provides new insights into the development and course of diseases and
enables novel methods of clinical decision support. Clinical and translational data warehouses, such as Informatics for Integrating
Biology and the Bedside (i2b2) and tranSMART, are important infrastructure components that provide users with unified access
to the large heterogeneous data sets needed to realize this and support use cases such as cohort selection, hypothesis generation,
and ad hoc data analysis.

Objective: Often, different warehousing platforms are needed to support different use cases and different types of data. Moreover,
to achieve an optimal data representation within the target systems, specific domain knowledge is needed when designing
data-loading processes. Consequently, informaticians need to work closely with clinicians and researchers in short iterations.
This is a challenging task as installing and maintaining warehousing platforms can be complex and time consuming. Furthermore,
data loading typically requires significant effort in terms of data preprocessing, cleansing, and restructuring. The platform described
in this study aims to address these challenges.

Methods: We formulated system requirements to achieve agility in terms of platform management and data loading. The derived
system architecture includes a cloud infrastructure with unified management interfaces for multiple warehouse platforms and a
data-loading pipeline with a declarative configuration paradigm and meta-loading approach. The latter compiles data and
configuration files into forms required by existing loading tools, thereby automating a wide range of data restructuring and
cleansing tasks. We demonstrated the fulfillment of the requirements and the originality of our approach by an experimental
evaluation and a comparison with previous work.

Results: The platform supports both i2b2 and tranSMART with built-in security. Our experiments showed that the loading
pipeline accepts input data that cannot be loaded with existing tools without preprocessing. Moreover, it lowered efforts significantly,
reducing the size of configuration files required by factors of up to 22 for tranSMART and 1135 for i2b2. The time required to
perform the compilation process was roughly equivalent to the time required for actual data loading. Comparison with other tools
showed that our solution was the only tool fulfilling all requirements.

Conclusions: Our platform significantly reduces the efforts required for managing clinical and translational warehouses and
for loading data in various formats and structures, such as complex entity-attribute-value structures often found in laboratory
data. Moreover, it facilitates the iterative refinement of data representations in the target platforms, as the required configuration
files are very compact. The quantitative measurements presented are consistent with our experiences of significantly reduced
efforts for building warehousing platforms in close cooperation with medical researchers. Both the cloud-based hosting infrastructure
and the data-loading pipeline are available to the community as open source software with comprehensive documentation.
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Introduction

Background
Digitalization of health care promises to enable personalized
and predictive medicine [1]. On the basis of digital data that
characterize patients and probands at comprehensive depth and
breadth [2], modern methods of data analytics can be used to
detect unknown relationships between biomedical parameters,
discover new patterns, and enable decision support systems by
using this knowledge to infer or predict parameters, for example,
diagnoses or outcomes [3,4]. A learning health system [5],
which makes health care data available for secondary research
purposes, is an important building block of this development.
By comprehensive data integration within and across sites, a
massive change in clinical and research processes is envisioned,
which will accelerate translation and lead to measurable benefits
for patients [6]. In this study, we focus on the integration of
structured, that is, typically tabular, clinical and research data.

Multiple technical challenges must be addressed to provide the
large, high-quality data sets needed for such purposes. Data
from distributed and heterogeneous sources must be integrated
at the technical, structural, and semantic levels [7]. To this end,
a 3-step extraction-transformation-loading (ETL) process is
often implemented:

1. Data from research and health care systems are transferred
into a staging area in the form of nearly exact copies of data
extracted from the source systems [8].

2. Within the staging area, the structure, syntax, and semantics
of these data extracts are then normalized into a common
data model (CDM) using standard terminologies. These
common data representations typically implement a specific
database schema, which efficiently and effectively supports
complex analytical query processing.

3. Finally, the data are loaded into the target system.

Important examples include clinical and translational data
warehousing platforms, such as Informatics for Integrating
Biology and the Bedside (i2b2) [9], tranSMART [10], and the
Observational Medical Outcomes Partnership (OMOP) CDM
[11]; federated and distributed solutions, such as the Shared
Health Research Information Network [12]; and the tools
provided by Observational Health Data Sciences and Informatics
(OHDSI) [11], which can be deployed on top of these analytical
databases.

These existing biomedical data analytics platforms offer a wide
range of functionalities and integrate different software solutions
for data storage, workflow orchestration, and data analysis using

multi-tier architectures. As a result of this complexity,
considerable technical expertise is required to set them up in a
secure manner. These challenges increase even further when
organizations run several data-driven research projects and
hence need to set up, configure, and maintain multiple
warehouse instances. Moreover, ensuring that input data are
represented in the analytics platforms in a sound structure with
reasonable semantics requires significant medical expertise. It
is well known that bridging the interdisciplinary gap between
these two worlds requires iterative development processes, in
which different solutions are evaluated in short feedback cycles
[13]. As we will show later, existing data-loading tools for the
aforementioned platforms, however, typically require complex
configuration files and input data that adhere to specific formats
and structures. Consequently, substantial data restructuring and
cleansing is required before data loading can be started and
initial feedback can be collected.

In an ideal world, upfront efforts for project-specific technical
setup, data cleansing, and data structuring can be avoided, and
development starts rapidly, while repeated discussions with
clinicians and medical researchers are carried out in parallel
[14]. Technical solutions that facilitate this approach have been
called dataspace management systems [15]. The key idea is to
implement a pay-as-you-go approach to data integration. A
comparison with traditional approaches is presented in Figure
1. It illustrates how the traditional approaches are characterized
by an initial development phase in which the data are being
integrated on a syntactic, structural, and semantic level, and no
service is provided to the users. In contrast, the pay-as-you-go
approach provides some initial functionality from the beginning,
which is then incrementally extended to better meet the
requirements [15,16]. This means that the associated
development process can be carried out in an agile manner,
involving close cooperation and short feedback cycles with end
users. This comes with multiple benefits for the parties involved:
clinicians or medical researchers are provided with initial
functionalities much more quickly, and feedback can be
provided to the development team more often. This is
particularly important for data loading because it has been
estimated that the development of ETL processes accounts for
up to 70% of the total effort required to set up data warehouses
[7,17]. For both end users and developers, this can also lead to
the reduction of duplicate and redundant work, thus significantly
reducing the efforts required. The approach is related to agile
methods of software engineering, in which software evolves
through continuous collaboration between developers and users.
It is well known that this can also help to better bridge the
interdisciplinary gaps [18].
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Figure 1. Schematic comparison of traditional approaches to data integration and the pay-as-you-go approach.

Objectives
The aim of this study was to implement a platform that enables
the deployment and customization of well-known clinical and
translational data warehousing solutions in close cooperation
with end users in an agile approach. Our solution consists of 2
parts with the following unique features:

1. A cloud-based warehouse management infrastructure, which
supports the installation and maintenance of i2b2 and
tranSMART in an integrated manner by providing a
common set of commands; implements security-by-default
features, including transport layer encryption, host-based
access control, and password management; and is based on
verifiable and authenticatable software to enable
installations within high-security perimeters of hospital
information technology (IT) environments.

2. A flexible data-loading pipeline, which supports loading
data into both i2b2 and tranSMART; is able to process
heterogeneous data with different degrees of structure and
cleanliness; and performs automated data cleansing and
preprocessing, including automatic detection of the syntax
and format of input data, and has the ability to handle
different encodings as well as missing and duplicate data.

The complete software stack is available to the community as
open source software [19,20]. In this study, we provide readers
with an overview of the most important system requirements
and design decisions. To demonstrate that our solution enables
an agile approach to be implemented in a professional context,
we present the results of a structured comparison with existing
management infrastructures and data-loading pipelines as well
as an experimental evaluation of data-loading processes. Our
results show that our management infrastructure is the only
publicly available open source implementation that supports all
the abovementioned features, which is essential for secure
deployments in professional IT environments. Moreover, the
experimental evaluation showed that no other open source
data-loading pipeline was able to process 3 different benchmark
data sets, including structured research data, complex

longitudinal clinical data, and highly structured billing data, in
their raw form. The experiments also showed that our solution
is feasible from a computational perspective. We believe that
the software presented in this study can be an important tool to
support medical informaticians with realizing data warehousing
projects and that the methods implemented can provide system
developers with novel ideas for the development of future
platforms.

Methods

Selection of Target Systems
Clinical and translational data warehouses provide users with
efficient analytical access to integrated data sets [21,22]. As an
initial step, we decided to utilize an infrastructure supporting
i2b2 and tranSMART as both of these have a broad installed
base and strong community support. For example, the integrated
solution of Hôpital Européen Georges-Pompidou [23] uses i2b2
and tranSMART, integrating data from electronic patient
records, including aggregated, anonymized, and deanonymized
patient data. The tranSMART platform [10] is based on the i2b2
framework, and its suitability for data from clinical studies has
already been demonstrated in various projects [24]. In
combination, they can be used to support a wide range of use
cases.

The i2b2 platform is very well suited for representing
longitudinal and often semistructured clinical data, and it
supports complex features such as temporal queries against time
series data [9]. TranSMART was built over the i2b2 data model
to provide improved support for high-dimensional data. The
system is well suited for integrating structured research data as
well as high-throughput data, and it provides comprehensive
support for ad hoc graphical data analysis and cohort comparison
[10]. TranSMART offers built-in support for various types of
omics data, such as protein and gene expression arrays,
single-nucleotide polymorphism data, and certain types of
genomic variants. With the recent merger of the i2b2 Foundation
and the tranSMART Foundation, a process has been started to
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unify both platforms. Until a combined solution becomes
available, installations of both systems are needed to support
different use cases and to handle different types of data.

The 2 systems offer web-based graphical user interfaces.
TranSMART employs a classical three-tier information system
architecture, whereas i2b2 consists of an extendable framework
consisting of several cells. Both platforms can be installed on
top of different database management systems. As we focus on
open source software, we decided to use PostgreSQL, an open
source relational database management system.

Cloud Infrastructure for Managing i2b2 and
tranSMART

Rationale and Requirements
Both i2b2 and tranSMART offer a wide range of functionalities,
and they are based on a software architecture that integrates
components for data storage, workflow orchestration, and data
analysis. Consequently, installation, configuration, and
maintenance procedures are complex and require solid technical
expertise. Concurrently, documentation is often lacking. As an
example, the number of tranSMART software dependencies is
very large, which regularly leads to some dependencies not
being up to date or having become incompatible with the
underlying (operating) system infrastructure, requiring manual
changes to installation scripts. In contrast, the i2b2 installation
process is fairly robust, well documented, and up to date [25].
However, it can be quite challenging to debug configuration
errors of i2b2 owing to its highly modular architecture, which
involves exchange of complex data via web services. These
challenges increase significantly when a larger number of
instances need to be set up, configured, and maintained.
Furthermore, when deploying such systems in production
environments, additional aspects such as transport encryption
and password management need to be considered. These and
further functionalities are not supported by existing cloud-based
deployment solutions for i2b2 and tranSMART, such as the
Integrated Data Repository Toolkit (IDRT) [26], i2b2 Quickstart
[27], or the prebuilt images available on Docker Hub [28] (see
the Discussion section for an in-depth comparison).

We, therefore, decided to employ clean virtual containers,
ideally together with associated maintenance scripts to quickly
boot up, configure, and shut down instances of i2b2 and
tranSMART in a uniform manner. The most important
requirements were as follows:

1. Robust installation of a trusted runtime environment: The
solution developed shall streamline the complex installation
process of tranSMART and enable rapid instantiation of
new instances of tranSMART and i2b2.

2. Unified installation and maintenance: The solution shall
provide a façade encapsulating important configuration
options and make the effective management of multiple
instances of i2b2 and tranSMART straightforward by
providing easy-to-use common commands for both
platforms.

3. Built-in security: The solution shall significantly improve
the security of i2b2 and tranSMART by enabling transport

encryption and host-based access control by default as well
as by automatically setting nontrivial passwords.

Technical Design
The cloud infrastructure has been designed to run on a physical
or virtual machine with a standard Linux operating system. In
this system, Docker needs to be installed as a virtualization
platform that enables the provisioning of software in deployment
units called containers. Each container encapsulates a complete
software stack together with all required dependencies, such as
libraries and configuration files. Docker employs OS-level
virtualization, which means that in contrast to full virtualization,
where each virtual machine contains and runs its own operation
system, Docker containers can share one single operating system
instance and are thus more lightweight than virtual machines.
Although containers are isolated from each other, they can be
enabled to communicate through definable channels (eg,
Transmission Control Protocol ports). Containers can quickly
be instantiated and customized via runtime parameters in this
process.

We chose Docker for the following reasons: (1) it enables
describing and documenting installation processes in a machine
and human-readable format, thus fulfilling our requirement for
robust installation and quick instantiation; (2) it allows
customizing running containers by means of runtime parameters
(eg, access permissions, passwords, and instance names), thus
fulfilling our requirement to provide uniform configuration and
maintenance scripts for both platforms; (3) its efficient use of
resources allows rapid booting up and shutting down instances;
and (4) it integrates well with common software development
infrastructures, such as GitLab.

As a gateway component to provide transport encryption,
host-based access control, and data routing for the particular
warehouse instances, we decided to include the Apache HTTP
Server into the host environment utilizing its proxy and virtual
host modules.

Meeting Requirement 1: Robust Installation of a Trusted
Runtime Environment

The solution can be used to host an arbitrary number of i2b2
and tranSMART instances. Each host system includes the
following containers per instance: (1) a database server for i2b2,
(2) an application server for i2b2, (3) a web server for i2b2, and
(4) a complete tranSMART software stack. It can be accessed
via specific URLs. The subdomain in this URL denotes the
warehouse instance, for example, dwh01 or dwh02. Each
subdomain is represented by a dedicated Apache virtual host
and provides one instance of i2b2 and one instance of
tranSMART. As an example, the URL-pattern
[http|https]://dwh02.example.org/i2b2/ denotes the web
front-end of i2b2 instance 02, which is exposed by the Apache
virtual host dwh02.example.org.

Both tranSMART and i2b2 expose specific ports to provide
specific services. These include their web front-ends and various
web services. To avoid port clashes when running multiple
warehouse instances and their respective containers, the ports
used by each container are mapped to corresponding ports on
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the host system using specific offsets such that a certain set of
ports uniquely identifies each service of each container.

Figure 2 illustrates the components used by the environment
and their interactions. The actual instances of i2b2 and
tranSMART are implemented as (stacks of) Docker containers
(black boxes). Access to these containers is relayed by an

Apache web server, which acts as a gateway. Each warehouse
instance is represented by a virtual host of the gateway and is
identified by the first part of the hostname contained in the URL
of the request. Detailed installation instructions along with
well-documented configuration files are available on the web
[19].

Figure 2. Schematic overview of the components for the provisioning of multiple warehouse instances and their interaction.

Meeting Requirement 2: Unified Installation and
Maintenance

To support unified management for instances of both types of
systems, we have developed 2 configuration scripts that can be
parameterized. Target instances are identified by their type and
consecutive numbers (eg, i2b2-04). The first script can be used
to set up new warehouse instances and to reset existing
instances. It does so by creating configurations for Apache’s
proxy and virtual host modules and environment files for the
Docker compose scripts. If needed, the resulting files can be
edited by the administrator (eg, to replace randomly generated
passwords) before the new instances are created. The second
script can be used for starting, stopping, and deleting warehouse
instances as well as associated disk volumes. It has been
implemented as a wrapper for Docker compose commands that
access the environment variables defined in the associated
environment files.

Meeting Requirement 3: Built-In Security

The setup process implements several crucial security measures,
including transport layer encryption, server authentication,
restricted access paths, and nontrivial default passwords.

Access to the services running on each server is only permitted
indirectly via the Apache HTTP Server, which acts as a central
gateway. This component takes care of the transport encryption
and server authentication mentioned above as well as
address-based access control. The only service that can be
reached without having to pass the gateway is the database
system to enable efficient data loading. Here, access control is
implemented at the database level. Permission to access the
database has to be granted explicitly, which includes the
declaration of address ranges with specific access rights. To

simplify the Transport Layer Security configuration, we make
use of the subject alternative name extension to the X.509 server
certificates [29], which our platform uses for authenticating the
data warehouses and for transport layer encryption. Embedded
plain text secrets and the fact that the source and content of
many images cannot be verified have been identified as major
risks for system components based on container technologies
[30]. This impedes the use of prebuilt images in high-security
IT environments. Our infrastructure does not suffer from these
shortcomings as we employ Docker Content Trust [31] to verify
the authenticity of all base images used. As the current images
for i2b2 and tranSMART do not support this authentication
mechanism, we decided to build our own images based on
authenticated sources (by verifying Pretty Good Privacy
signatures of binaries used and/or building them from source).
Secure default passwords are automatically created via a random
password generator [32] with a default length of 10 characters
and injected into the containers at runtime.

Generic and Agile Data-Loading Pipeline for i2b2 and
tranSMART

Rationale and Requirements
Populating i2b2 and tranSMART with data is cumbersome and
requires significant expertise regarding the underlying database
schema and how both systems use it. For this reason, several
tools have been developed to simplify this process, including
tranSMART-ETL [33], tMDataLoader [34], transmart-batch
[35], Integrated Curation Environment (ICE) [36], IDRT [26],
transmart-copy [37], and TranSMART data curation toolkit
(tmtk) [38]. However, none of these tools fulfill the requirements
needed to implement agility (see the Discussion section for an
in-depth comparison).
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First, all available data loaders except transmart-batch are
strongly tied to 1 of the 2 target systems. As both are often
needed in parallel, this introduces additional preprocessing and
configuration efforts. The main reason is that loaders for
different systems make different assumptions about the degree
of structure and cleanliness of import data. In addition, different
loaders use different configuration mechanisms. Moreover,
existing tools follow imperative configuration paradigms, where
it must be specified how the loading process should be executed,
making this process complex and requiring substantial technical
expertise as well as domain knowledge. Finally, to support agile
and fast loading, tools should be able to automatically handle
heterogeneity and errors in input data, such as differences in
data encoding and syntax as well as missing and duplicate data.
To address these challenges, we needed a data-loading pipeline
fulfilling the following requirements:

1. Platform independence: The data-loading pipeline shall be
designed independent of a specific target system, enabling
the loading of data into both i2b2 and tranSMART with the
same pipeline using the same configuration files.

2. Support for different types of data: The pipeline shall
support heterogeneous data with different degrees of
structure and cleanliness, such as structured research data,
complex longitudinal clinical data, and highly structured
billing data, without requiring complex preprocessing or
configuration efforts.

3. Automated data cleansing and preprocessing: The pipeline
shall automatically detect the syntax and format of input
data and handle different encodings as well as missing and
duplicate data. This significantly reduces efforts and
improves agility when providing warehousing solutions.

Technical Design
The most important design decision made to fulfill the
requirements listed above was to center the tool around a
declarative and model-driven way of configuring the import
process. The basic idea was to enable users to match data to an
entity-relationship (ER) model that describes the desired target
representation of the data. The tool then automatically
determines how the input data must be interpreted, transformed,
and loaded to reflect this model in the target database. This
includes the automatic creation of the ontologies required by
i2b2 based on this model. This is in stark contrast to the
imperative configuration paradigm found in most ETL tools for
i2b2 and tranSMART and significantly reduces the complexity
of configuration files and hence efforts (see the Results and
Discussion sections). Moreover, the approach enables our tool
to automatically perform a wide range of data transformation
and cleansing tasks, thus fulfilling our requirements to support
different types of data and automate data cleansing. To fulfill
the requirement of platform independence, our tool acts as a
compiler for configuration files to be used for different ETL
tools for i2b2 and tranSMART.

The data-loading tool has been developed in Java using the
Spring Batch framework for robust, maintainable, and extensible
orchestration of the individual steps of the ETL process; the

Univocity parser for reading and writing comma-separated
values (CSV) files; and juniversalchardet, a Java port of
Mozilla’s library, for the automatic detection of file encodings.
Access to the target relational database systems has been
implemented using Java Database Connectivity.

Meeting Requirement 1: Platform Independence

As some powerful loading tools for the different target platforms
have already been developed, we decided to implement a
meta-loading process consisting of 2 phases: the first is the
staging phase, in which data are transformed into an
intermediate staging representation and configuration files are
compiled into the target configuration language for the
respective loading tool, which we term back-end loader in the
context of our meta-loading process. We refer to the transformed
data and the configuration files created in this phase as staging
files. The second is the loading phase, in which the staging files
are used to execute the respective back-end loader for the chosen
target platform.

Figure 3 illustrates a typical staging and loading process. The
staging phase is divided into 3 subphases: data extraction, data
transformation, and data writing. In the data extraction subphase,
our tool reads the declarative configuration, which describes
the structure of data to be represented in the target system. On
the basis of this configuration, it reads and parses the input data.
Details are presented in the 2 subsequent sections. In the data
transformation subphase, different data cleansing steps are
performed, which are also be presented in the 2 subsequent
sections. The last subphase involves writing the transformed
data into intermediate files, which are consumed by the back-end
data loaders in the loading phase. In the case of i2b2, visit data
are written separately. This is followed by writing the associated
configuration files, describing how the staging data are to be
loaded. In the case of i2b2, this (pre-)final step is concluded by
writing data describing the underlying ontologies into separate
files. In the loading phase, the actual data loading is performed
by executing the user-defined back-end loaders. If i2b2 has been
selected as the target system, this step is preceded by loading
the ontology trees into the target system. Currently, our tool
supports the following 2 back-ends for data loading:

• tMDataLoader, which has been implemented in Groovy
and in stored procedures of the underlying database system
to automate data loading for tranSMART [34]. The tool
relies on a specific directory structure, containing the data
sets and configurations, thus following the convention over
configuration approach. It supports the full spectrum of
features provided by tranSMART, including the annotation
of selected values with timestamps.

• transmart-batch, which is implemented in Groovy using
Spring Batch and which has been designed to support both
tranSMART and i2b2. It requires a specific set of files to
be provided about subjects and visits as well as further files
containing the actual payload data. It supports fewer features
of tranSMART than tMDataLoader and requires significant
data cleansing to be performed upfront to provide data in
the syntax and structure required.
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Figure 3. Overview of data staging and loading with the tool developed. i2b2: Informatics for Integrating Biology and the Bedside.

Meeting Requirement 2: Support for Different Types of
Data

As mentioned before, the configuration is performed using a
declarative approach [39]. This means that users do not need
to specify how data should be loaded, but instead map an ER
model to the data files to describe the relationship between input
and output data. Consequently, the tool can perform a wide
range of data transformations automatically without prior
normalization, including the automatic creation of the target
ontology. Although users are less flexible in defining how data
should be represented in the target system, a decent
representation can typically be achieved for almost all of the
data items, as we will show later, with just a fraction of the
effort required to use a more versatile loader. If needed, users
can still modify and fine-tune the intermediate staging files to
achieve an optimal representation.

The tool developed was designed in such a way that the
maximum degree of the work that needs to be done for
successful loading is automated. There are just a few
assumptions that are made about input data: (1) data must be
tabular, as this is in our experience the most typical format in
which clinical and research data can be provided; (2) every line
within a file must contain data for a specific patient, visit, or
encounter; (3) patients, visits, or encounters must be identified
by (composite) keys or timestamps; (4) one file must contain
information about the patients or probands—a file describing
visits or encounters is optional; and (5) entities may be related
to patients, visits, or encounters. Providing information on time
points is optional but recommended.

Figure 4 provides an example of how the tool is configured. As
can be seen, users are able to specify entities that are related to

a certain patient or visit and that have attributes. Attributes can
be mapped to specific columns in the input files. Attributes can
be annotated with meta-attributes, which are attributes that
further specify a specific value for an attribute of a specific
entity. In i2b2, these are mapped to modifiers. Although there
is no direct support for meta-attributes in tranSMART, they can
in some cases be represented by creating multiple variants of
an attribute that encodes the values of the associated
meta-attributes. In addition, there are specific attributes for
specifying timestamps and patient or visit identifiers.

The figure also shows an example of how data stored in an
entity-attribute-value (EAV) model can automatically be
denormalized. The EAV model is often used in data collection
systems when a large number of different observations are
recorded but only a few of them typically apply to a specific
patient or proband (eg, lab values). To support this, an additional
property value is introduced, which can be used to specify how
data in EAV form should be denormalized. In the example, one
entity will be created in the target systems for each instance of
the column Parameter having the value from the column Result
and being annotated with meta-attributes Unit and Norm range.
This is implemented by parsing the input files and populating
the configuration with automatically generated parameters for
each EAV-encoded data item.

By specifying basic patient, visit, and observational data, the
specified EAV entities, the patient data, the observations, an
internal model of the ontology, and optionally the associated
visits are automatically created. Furthermore, by mapping
patients to visits and by relating entities to visits or patients,
implicit relationships between the different types of data are
constructed. These will also be reflected within the target
systems.
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Figure 4. Simplified example of an annotation of input files with entities, attributes and relationships. LDL: low density lipoprotein.

Meeting Requirement 3: Automated Data Cleansing and
Preprocessing

There are multiple additional features that have been added to
the tool based on our experiences with loading a wide range of
real-world data sets, which help enforce the syntactic and
structural integrity of the input data and which are particularly
important due to the heterogeneity of the data sources with
respect to these parameters. Important examples include the
automated detection of charsets and syntax of input data as well
as the automated detection of data types of variables. Features
that help enforce semantic integrity include the detection and
handling of duplicate data, inconsistent timestamps, and missing
values. Finally, support for data filtering and methods for
handling uncertainty in timestamps are provided. On a technical
level, these tasks are executed as part of either the data loading
or the data transformation subphase.

Experimental Design
We evaluated our solution by performing an experimental
evaluation of our data-loading approach using different
real-world data sets. In the experimental evaluation, we focused
on 3 different aspects:

1. Flexibility: To demonstrate that our loading tool is able to
perform automated data cleansing and restructuring, we
used it to load three different types of data sets with varying
degrees of structure and cleanliness. Moreover, we also
tried to load these data sets using existing data-loading tools
to demonstrate that they are not able to process them
without prior data cleansing.

2. Reduced efforts: To demonstrate that the declarative
configuration paradigm of our loading tool significantly
reduces the effort required, we compared the number of
lines in the configuration files for our tool with the number
of lines of the configuration files generated for and needed
by existing data-loading tools.

3. Scalability: To demonstrate that our approach is
computationally feasible, we compared the time needed for
automated data cleansing and preprocessing with the time
required for actual data loading.

In the experiments, we used real-world data sets from 3 different
previous projects: (1) a research data set including microbiome
profiles, (2) clinical data on multiple sclerosis, and (3) billing
data.

The microbiome profile data set was collected in a study context
by our internal medicine department in 2019 and included
general information about the probands, lifestyle information
obtained through questionnaires, and microbiome profiles
(species identified by 16S rRNA gene sequencing) generated
from sampled stool, feces, and esophagus tissue. The multiple
sclerosis data set was collected by our neurology department
since 2010 in the health care context and consisted of
longitudinal clinical data, including diagnoses, procedures,
clinical scores, medication, lab values, references to biosamples,
and metadata of imaging tests. The billing data set consisted of
discharge data collected in our hospital in the years 2015-2017
containing demographics and visit data including ventilation
time, diagnoses, and procedures. Further details on the projects
and use cases supported by these data sets are presented in the
Discussion section.
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For loading data into i2b2, we used the transmart-batch backend,
and for loading data into tranSMART, we used the
tMDataLoader backend of the pipeline. The experiments were
performed with the warehouse instances hosted on a server with
Intel Xeon central processing units (CPUs) running at 2.4 GHz
with 80 cores, along with 512 GB RAM and 16 TB hard-drives
using kernel-based virtual machines provided by Quick
EMUlator 2.5.0 running on Ubuntu 18.04. The ETL processes
were executed on a desktop machine equipped with a quad-core
3.2 GHz Intel Core i5 CPU running a 64-bit Windows NT
kernel, with a 32-bit Java Virtual Machine (1.8.0_202_x86),
and with the data input files located on the local file system.

Results

Experiment 1: Flexibility of the Loading Process
In this section, we present results on the flexibility of the loading
process for our evaluation data sets and both i2b2 and
tranSMART as target systems. The basic properties of the data
sets and their representations in the target systems are shown
in Table 1.

The microbiome data set originates from a study context and is
highly structured. For this reason, and as can be seen in Table
1, i2b2 and tranSMART were both fully able to represent the
data set as is. The multiple sclerosis data set, in contrast, was
collected in the health care context and consisted of longitudinal
clinical data with less structure and a multitude of detailed
measurements, such as laboratory values. As can be seen in
Table 1, tranSMART could only capture parts of these data
(fewer facts by a factor of 6 compared with i2b2) because of
missing support for complex time series data and meta-attributes.
The billing data set was also highly structured and contained
dates of admission and discharge as well as coded diagnoses
and procedures. In general, these data could be represented well
in i2b2 as well as tranSMART, but the latter system was not
able to capture meta-attributes, for example, of diagnoses,
resulting in some loss of information.

We emphasize that loading into the different target systems was
achieved using the same configuration files. We conclude that
our tool provides a high degree of flexibility but that the
different target systems are not able to capture all aspects of
input data. In general, i2b2 is more suited for representing
longitudinal clinical data, and tranSMART is better suited for
analyzing highly structured research data.

We further emphasize that our loading pipeline was the only
tool with which we were able to load all the data sets described
in their raw form without prior transformations or preprocessing.
In the remainder of this section, we will briefly cover the issues
encountered when using existing open source loading software.
We present a detailed comparison with our approach in the
Discussion section.

When loading the data sets into i2b2, we encountered the
following issues: transmart-batch for i2b2 requires the extraction
and loading of concept trees into i2b2 before the import of the
actual facts. This process is not supported by the tool, and import
files also need to be annotated with codes associated with the
ontology nodes in the database in an additional preprocessing
step. The loading pipeline of IDRT is no longer maintained
(over 2.5 years old) and is not compatible with i2b2 1.7.09c and
higher, resulting in various errors during data loading. When
loading the data sets into tranSMART, we noticed the following
problems: tMDataLoader, tmtk, transmart-batch, and ICE could
not load the clinical data set where multiple values were
provided for the same variable and subject in the same visit.
Furthermore, values are required to conform to predefined
formats (eg, “yyyy-mm-dd hh:mm:ss” for dates), requiring
preprocessing. Transmart-copy could not load any of the data
sets used in our experiments without significant preprocessing
at the structural and syntactical level, as it required input data
to precisely conform to the target schema. TranSMART-ETL
could also not load the clinical data set as it was not able to
handle missing values. Moreover, it required specific column
separators and number formats to be used, requiring input files
to be preprocessed accordingly.

Table 1. Overview of the properties of the data sets used in the projects.

Billing dataMultiple sclerosisMicrobiome profilesData set

111915Number of input files

2524971Size of input files in MB

~100,000~7000~50Patients

~300,000~40,000~100Visits

~6,200,000~4,600,000~90,000Facts in i2b2a

~3,800,000~750,000~90,000Facts in tranSMART

ai2b2: Informatics for Integrating Biology and the Bedside.

Experiment 2: Reduction of Efforts
In this section, we present the results of the reduction of efforts
that can be achieved by using our loading tool. We captured
this aspect by analyzing the size of files used for actual data
loading, which are shown in Table 2. It shows the complexity
of configuration files required for data loading with our tool

compared with the complexity of the configuration files
generated for the backing data loaders. As can be seen, the tool
presented in this study generated a large number of files for the
different specified entities. Moreover, as a result of the
automated denormalization of EAV data and the automated
detection of data types, configuring data loading with our tool
required significantly fewer lines of configuration parameters

JMIR Med Inform 2020 | vol. 8 | iss. 7 | e15918 | p. 9https://medinform.jmir.org/2020/7/e15918
(page number not for citation purposes)

Spengler et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


than what would have been required using transmart-batch or
tMDataLoader. The configuration files for tranSMART for the
multiple sclerosis and the billing data sets were much smaller
than the corresponding files for i2b2, as they did not include
specifications for meta-attributes.

For the microbiome data set, configuration files for our tool
were smaller by factors of between 17.7 (i2b2) and 22.1
(tranSMART). For the multiple sclerosis data set, configuration

files for our tool were smaller by factors of between 3.9
(tranSMART) and 216.1 (i2b2). For the billing data set,
configuration files where smaller by factors of between 1.2
(tranSMART) and 1135.0 (i2b2). We note that the sizes were
(roughly) equal only for the billing data set and tranSMART,
which is because this data set is highly structured and because
this type of data is well supported by tranSMART. We conclude
that our tool can significantly reduce the efforts required for
configuring the loading process.

Table 2. Comparison of input required for data loading.

Billing dataMultiple sclerosisMicrobiome profilesData set

831090496LOCa input

94,213235,5828772LOC staging, i2b2b

99427210,976LOC staging, tranSMART

111915Input files

3110342207Staging files, i2b2

188542194Staging files, tranSMART

aLOC: lines of configuration.
bi2b2: Informatics for Integrating Biology and the Bedside.

Experiment 3: Scalability
In this section, we present the results on the scalability of our
tools with respect to increasing volumes of data. The execution
times measured in the experiments are provided in Table 3.

The table shows the time needed for staging and loading the
data from the 3 evaluation data sets for i2b2 and tranSMART.
As can be seen, the execution times scaled roughly linearly with
the number of facts loaded into the target systems. Moreover,
the relative time needed for data staging was the highest for the
multiple sclerosis data set, which is also the data set with the
highest complexity, thus requiring the most preprocessing.

Figure 5 provides an overview of the relationship between the
times needed for staging and loading. As can be seen, the
(relative) staging times for tranSMART were generally higher
than those for i2b2. This can be explained by the fact that more
data normalization and restructuring were needed to be
performed by the tool to ensure that the data could be loaded
into the target system. In addition, more complicated procedures
for duplicate detection were needed, as there is little support
for the time axis in tranSMART. In summary, we conclude that
our approach is scalable and can be used to process large data
sets.

Table 3. Execution times of data-loading processes in seconds.

Billing dataMultiple sclerosisMicrobiome profilesData set

tranSMART

9168713Staging time

5687413109Loading time

57781100122Total time

i2b2a

79080411Staging time

61,41713,895144Loading time

62,20814,699155Total time

ai2b2: Informatics for Integrating Biology and the Bedside.
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Figure 5. Percentage of loading and staging times regarding the complete process. i2b2: Informatics for Integrating Biology and the Bedside.

Discussion

Principal Findings
We have presented a comprehensive cloud-based platform and
a flexible data-loading pipeline to enable the agile provisioning
of clinical and translational data warehousing solutions. We
have presented an extensive experimental evaluation, dealing
with different types of data and targeting platforms with different
data analytics capabilities. The results of our analysis show that
the presented platform significantly simplifies the management
of the supported data warehousing solutions and enables quick
loading of data in various representations. This enables the
development of such platforms in close cooperation with users
based on short feedback cycles. The cloud-based hosting
infrastructure and the data-loading pipeline are available as open
source software.

The infrastructure and tools presented in this study and the data
sets used in our experimental evaluation have been used to
support a variety of real-world projects. In particular, the
infrastructure is being used to support a large clinical research
center [40] that studies shifts in the composition and activity of
the microbial ecosystem focusing on clinical endpoints that are
associated with well-documented changes in the gut microbiome
(inflammation and cancer). For this purpose, a platform is being
set up to provide researchers with integrated access to different
types of data generated within the consortium. Moreover, our
platform is being used within the DIFUTURE (Data Integration
for Future Medicine) project to improve data availability and
accessibility through an integrated view on health care and
research resources, such as biobanks [6]. An important example
of one of the use cases of the project is the development of an
infrastructure for personalized optimal treatment of multiple
sclerosis combined with efforts to better understand the disease
in general. Finally, the billing data set has been used in a
nationwide cross-site analysis aiming at the reproduction of
published comorbidity scores and the descriptive analysis and
visualization of the distribution of comorbidity scores as well
as the distribution of rare diseases in Germany [41].

Comparison With Prior Work

Analytics Platforms
Currently, our solutions support i2b2 version 1.7.09c and
tranSMART version 16.3. In future work, we plan to add support

for further warehousing platforms and further versions to support
further use cases. An important system of interest is
i2b2-tranSMART, which is the result of an initiative to integrate
tranSMART with the i2b2 cohort selection services and
improved support for managing time series data [42]. In theory,
this would obviate the need to support 2 different systems (i2b2
and tranSMART) with a similar technological basis. However,
i2b2-tranSMART is still under active development and is not
yet suitable for deployment in production environments. It is
planned to release this software directly as a Docker container;
therefore, we expect little effort to integrate it into the presented
environment.

The OMOP CDM and OHDSI toolset also provide an interesting
target platform [11]. OHDSI is an international collaborative
initiative aimed at making clinical data accessible to analytics
efforts, also in distributed settings, to generate actionable
insights for improving health care. The OMOP CDM is a CDM
for consistently representing health care data from diverse
sources by making the relationships between different concepts
explicit [11]. The OHDSI project provides a wide range of
analytics front-ends, such as ACHILLES (Automated
Characterization of Health Information at Large-scale
Longitudinal Evidence Systems) or Atlas, an open source
application developed as a part of OHDSI intended to provide
a unified interface to patient level data and analytics. Both are
aimed at end users and can be deployed over the OMOP CDM.
Supporting OMOP/OHDSI within the described cloud-based
hosting infrastructure will not be too complex. Implementing
an agile loading process, however, will be challenging as the
OMOP CDM requires a significant amount of data normalization
and encoding with standard terminologies. Finally, cBioPortal
would be an important additional system to support as it
provides a platform for interactive exploration of
multi-dimensional genomics data sets, intending to also support
rapid, intuitive, and high-quality access to molecular data and
clinical data [43]. A dockerized version for the presented cloud
environment has already been implemented, but integrating the
software with our data-loading pipeline requires more work.

Cloud-Based Infrastructures
Regarding cloud-based management infrastructures for clinical
and translational data warehousing, most studies focus on i2b2
only. The i2b2 Wizard, which is part of the IDRT, as well as
i2b2 Quickstart aims to simplify installation, setup, and
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administration of single i2b2 instances. There are also images
available on Docker Hub. However, as neither the source code
of these images is publicly available in full nor can their
authenticity be verified (eg, using Docker Content Trust [DCT]),
we could not use them as a base for further development because
of security considerations. For tranSMART, a large number of
images are available on Docker Hub. However, they have not
been maintained for some time, contain artifacts with unclear
provenance, or their documentation leaves out important aspects.

We compared these alternative solutions with our approach with
respect to the following criteria:

1. Supported target platforms indicates whether a solution
can be used for the current major version of i2b2 (ie, 1.7.x)
and/or tranSMART (ie, 16.3).

2. Container-based denotes whether the solution is
encapsulated using container virtualization, which
significantly increases the ease and robustness of the
installation procedures.

3. Security by default covers 3 subcriteria—whether transport
encryption is part of the default deployment, whether the
solution automatically provides strong default passwords
and whether these can be changed in an integrated way,
that is, without risking to break the application (password
management), and whether the solution uses or provides
means to verify the trustworthiness of the installation
package, for example, by using digital signatures or by
providing the source code (trusted runtime environment).

4. Unified interface shows whether the solution helps manage
multiple warehouse instances of different types.

5. Sustainability covers 2 subcriteria—full availability of
source code is important for customizing the solution to
local requirements and the last update of the installation
package is an indicator of whether the solution is actively
maintained by the provider of the solution or by the
community.

The results of the comparison are presented in Tables 4-5.

As can be seen, our infrastructure is the only off-the-shelf
solution supporting both i2b2 and tranSMART. Moreover, our
software, the IDRT i2b2 Wizard, and i2b2 Quickstart are the
only solutions that fulfill requirement 1 (robust installation of
a trusted runtime environment), as the other (cloud-based)
solutions are not capable of providing a trusted runtime
environment due to the reasons explained above. However, i2b2
Wizard and i2b2 Quickstart are not container-based solutions
but rather script-based solutions and thus are significantly less
flexible than our tool, which is based on container virtualization.
Furthermore, our tool is the only solution that fulfills
requirement 2 (unified installation and maintenance) because
it provides integrated support for both i2b2 and tranSMART
through common commands. Finally, our tool is the only
solution that fulfills requirement 3 (built-in security) as it is the
only solution that provides out-of-the-box support for multiple
important security features, such as transport encryption and
strong passwords. The IDRT i2b2 Wizard is quite outdated and
has not received updates in more than 2 years.

Table 4. Comparison of provisioning infrastructures: Our solution, IDRTa and i2b2b Quickstart.

i2b2b Quickstart [27]IDRTa [26]Our solutionFeature

Supported target platforms

YesNoYesi2b2 (current major version)

NoNoYestranSMART (current major version)

NoNoYesContainer based

Security by default

NoNoYesTransport encryption

NoNoYesPassword management

YesYesYesTrusted runtime environment

Unified interface

NoNoYesCentral multi-instance management

Sustainability

YesYesYesFull availability of source code

February 2020August 2017March 2020Last update

aIDRT: Integrated Data Repository Toolkit.
bi2b2: Informatics for Integrating Biology and the Bedside.
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Table 5. Comparison of provisioning infrastructures: i2b2a on Dockerhub, tranSMART on Dockerhub, and manual installation.

Manual installationtranSMART on Dockerhubi2b2a on Dockerhub [28]Feature

Supported target platforms

YesNoYesi2b2 (current major version)

YesYesNotranSMART (current major version)

NoYesYesContainer based

Security by default

YesNoNoTransport encryption

YesNoNoPassword management

YesNoNoTrusted runtime environment

Unified interface

NoNoNoCentral multi-instance management

Sustainability

YesNoNoFull availability of source code

April 2020October 2019February 2020Last update

ai2b2: Informatics for Integrating Biology and the Bedside.

Data-Loading Tools
In addition to transmart-batch and tMDataLoader, which are
both used by our solution, there are further data loaders for
tranSMART and i2b2. First, transmart-ETL is the standard
loading tool for tranSMART. It is included in the standard
software installation of tranSMART and is based on the Pentaho
Data Integration platform. Second, ICE is a data loading and
curation tool supporting a graphical user interface [36]. Third,
transmart-copy is a very lightweight loading tool that copies
data provided in a tabular form into the tables of the tranSMART
database. tmtk is the solution most similar to our approach. It
is a Python-based solution that enables the integration of data
via a high-level language and several classes. It is typically used
in Jupyter notebooks. Analogous to our solution, it uses
transmart-batch as a loading tool. It also supports flexible means
for organizing data into entities and attributes through an
additional graphical tool called the Arborist. Moreover, for i2b2
only, there are other loading tools available. The most
comprehensive is the IDRT Import and Mapping Tool [26]. The
tool supports various import formats, such as CSV files;
provides access to structured query language databases, such
as Clinical Data Interchange Standards Consortium (CDISC)
Operational Data Model (ODM) [44,45]; and provides direct
support for CDMs, that are, for example, used for billing
purposes. Talend Open Studio is used for all ETL processes.

We compared these tools with our approach with respect to the
following criteria:

1. As in the previous section, the criterion supported target
platforms shows whether a solution can be used for the
current major version of i2b2 (ie, 1.7.x) and/or tranSMART
(ie, 16.3).

2. The criterion EAV schema support indicates whether the
tool supports EAV input data with multiple attribute
columns (multi-column) or with only one attribute column
(basic).

3. Automated data cleansing and preprocessing covers
subcriteria indicating whether the tool can handle different
encodings, data types, and syntaxes for different data
sources or if the tool requires all incoming data to conform
to a single, predefined specification, and the subsequent
subcriteria show whether the tool can handle missing or
invalid data and duplicate data or whether the ETL process
is aborted if it encounters one of these anomalies.

4. The criterion loading strategy indicates whether the tool
employs other data-loading tools (meta) or whether the tool
implements its own loading procedures (direct).

5. Configuration paradigm indicates whether the tool
configuration follows a declarative approach or an
imperative approach.

6. The criterion sustainability, as in the previous section,
covers 2 subcriteria with the same semantics—full
availability of source code and the last update.

The results of the comparison are provided in Tables 6-7.
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Table 6. Comparison of extraction-transformation-loading tools: Our solution, tranSMART-ETLa, tMData-loader, and transmart-batch.

transmart-batch [35]tMData-loader [34]tranSMART-ETLa [33]Our solutionFeature

Supported target platforms

YesNoNoYesi2b2b (current major version)

YesYesYesYestranSMART (current major version)

BasicBasicBasicMulti-columnEAVc schema support

Automated data cleansing and preprocessing

NoNoNoYesDifferent encodings, data types, and syntaxes

NoNoNoYesMissing or invalid data

NoNoYesYesDuplicate data

DirectDirectDirectMetaLoading strategy

ImperativeImperativeImperativeDeclarativeConfiguration paradigm

Sustainability

YesYesYesYesSource code fully available

June 2016December 2017March 2018March 2020Last update

aETL: extraction-transformation-loading.
bi2b2: Informatics for Integrating Biology and the Bedside.
cEAV: entity-attribute-value.

Table 7. Comparison of extraction-transformation-loading tools: Integrated Curation Environment, Integrated Data Repository Toolkit, transmart-copy,

and tmtka.

tmtka [38]tranSMART-copy [37]IDRTc [26]ICEb [36]Feature

Supported target platforms

NoNoNoNoi2b2d (current major version) 

YesYesNoYestranSMART (current major version) 

BasicNoNoBasicEAVe schema support

Automated data cleansing and preprocessing

NoNoNoNoDifferent encodings, data types, and syntaxes 

YesNoNoNoMissing or invalid data 

NoNoYesNoDuplicate data 

MetaDirectDirectMetaLoading strategy

ImperativeImperativeImperativeImperativeConfiguration paradigm

Sustainability

YesYesYesNoSource code fully available 

February 2020December 2019August 2017July 2016Last update 

atmtk: TranSMART data curation toolkit.
bICE: Integrated Curation Environment.
cIDRT: Integrated Data Repository Toolkit.
di2b2: Informatics for Integrating Biology and the Bedside.
eEAV: entity-attribute-value.

As can be seen, our solution and transmart-batch are the only
tools to support both i2b2 and tranSMART and thus to fulfill
requirement 1 (platform independence). Requirement 2 (support
for different types of data) is strongly connected to requirement

3 (automated data cleansing and preprocessing). At the
structural level, our tool is the only tool to support EAV schema
resolution in which multiple columns can be combined (eg, lab
analytes together with units of measurement) and thus is the
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only one to fulfill requirement 2 (support for different types of
data). Moreover, our tool is also the only one that is capable of
automatically detecting and handling multiple input data
properties, such as encodings, syntaxes, and data types, and
thus to ingest heterogeneous data often encountered in the
clinical context. Our tool and tranSMART-ETL are both capable
of automatically handling duplicate data. In addition to our tool,
tmtk and ICE are also meta-loading tools; however, they have
fewer data cleansing functionalities. tMDataLoader, ICE, and
IDRT are quite outdated and have not received updates in more
than 1.5 years.

We conclude that our set of tools is the only solution that
supports all requirements outlined in the Methods section.
Moreover, our solutions are fully open source software, allowing
users to maintain their own version if needed, thus decreasing
the risks of adoption and improving sustainability.

Limitations and Future Work
In future work, we plan to address the limitations of the current
version of the infrastructure. First, the current implementation
does not scale to huge data volumes. At the infrastructure level,
this would require support for shared databases. On the
data-loading layer, support for processing data in the form of
smaller blocks or chunks is needed. Extending the data-loading
pipeline with this feature will be relatively straightforward.
However, the loading tools used as backends need to support
incremental loading, which is currently only supported for i2b2
with the transmart-batch backend. In general, the pipeline would
benefit significantly from incremental loading capabilities;
therefore, we are exploring options to integrate an incremental
loading procedure directly into the software.

An additional area of future improvements is authentication and
authorization management. For deployments with a large user
base, the use of single sign-on concepts, such as OAuth2 [46],
will become relevant. As tranSMART uses Spring Security
[47], which supports OAuth2, this should be straightforward to
accomplish. However, the software stack used by i2b2 does not
support OAuth2 natively. Therefore, we plan to evaluate the
approach described by Wagholikar et al [48]. Another limitation
in terms of information security is that our use of DCT [31] is
currently restricted to checking the authenticity and integrity
of the base images when building the images. In future versions,
we plan to use DCT to sign images as well, which is particularly
important when publishing them on the internet.

The current version of the infrastructure focuses on clinical data
or selected genomic variants. TranSMART, however, has
built-in support for a wide range of high-dimensional data types
(see the Selection of Target Systems section). In future work,
we plan to add support for loading these types of data as well.
Although this will require some effort, such data are typically
much more structured and represented in standardized formats
than the data considered in this study.

Currently, our loading pipeline focuses on automated structural
and syntactic harmonization. Automated mapping procedures
to standard terminologies are not yet implemented, mainly
because in a first step, we have developed the pipeline following
our project-specific requirements. Here, all data sets integrated
until now have mostly either been (1) collected in a structured
form, using standard terminologies as they were captured; (2)
mapped to standard terminologies before they were fed into our
pipeline; or (3) loaded for use cases that did not require mapping
to semantic standards. However, semantic harmonization is a
very important process, and the implementation of interfaces
to terminology and ontology services directly into our pipeline
is part of our development roadmap.

Finally, we also plan to integrate a wide range of
privacy-enhancing technologies into the pipeline. In previous
work, we have already integrated a flexible method for data
anonymization into an earlier version of our software [49].
Currently, we are working on integrating the pipeline with a
HL7 FHIR (Health Level Seven Fast Healthcare Interoperability
Resources)–based pseudonymization component.

Summary and Conclusions
In this paper, we have presented a flexible infrastructure that
supports the agile development and provisioning of translational
data analytics platforms to researchers. Our solution helps to
bridge the interdisciplinary gap between clinicians and
informaticians by enabling the creation of data warehousing
solutions in an iterative process involving short feedback cycles
following a pay-as-you-go approach [15]. We have achieved
this by combining a Docker-based (private) cloud infrastructure
for managing warehouse instances with a flexible and
easy-to-use loading pipeline based on a declarative configuration
paradigm. We have used the platform successfully to support
a wide range of projects that used different types of data, which
we used in our experiments. The solutions described in this
paper are available to the community as open source software
[19,20].
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