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Abstract

Background: Online communities have been gaining popularity as support venues for chronic disease management. User
engagement, information exposure, and social influence mechanisms can play a significant role in the utility of these platforms.

Objective: In this paper, we characterize peer interactions in an online community for chronic disease management. Our objective
is to identify key communications and study their prevalence in online social interactions.

Methods: The American Diabetes Association Online community is an online social network for diabetes self-management.
We analyzed 80,481 randomly selected deidentified peer-to-peer messages from 1212 members, posted between June 1, 2012,
and May 30, 2019. Our mixed methods approach comprised qualitative coding and automated text analysis to identify, visualize,
and analyze content-specific communication patterns underlying diabetes self-management.

Results: Qualitative analysis revealed that “social support” was the most prevalent theme (84.9%), followed by “readiness to
change” (18.8%), “teachable moments” (14.7%), “pharmacotherapy” (13.7%), and “progress” (13.3%). The support vector
machine classifier resulted in reasonable accuracy with a recall of 0.76 and precision 0.78 and allowed us to extend our thematic
codes to the entire data set.

Conclusions: Modeling health-related communication through high throughput methods can enable the identification of specific
content related to sustainable chronic disease management, which facilitates targeted health promotion.

(JMIR Med Inform 2020;8(6):e18441) doi: 10.2196/18441
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Introduction

Background
Diabetes (specifically type 2 diabetes and prediabetes) is a
leading public health burden and global health issue. As of 2019,
more than 100 million US adults are now living with diabetes
or prediabetes [1]. The total estimated cost of diagnosed diabetes
in 2020 is $327 billion, including $237 billion in direct medical

costs and $90 billion in reduced productivity [1]. Individuals
with diagnosed diabetes have annual medical expenditures that
are $7900 or approximately 2.3 times higher than they would
be in the absence of diabetes ($13,700 vs $5800) [2]. Diabetes
can also lead to renal and cardiovascular complications [1].
Addressing lifestyle risk factors, such as poor diet and physical
activity, is vital to diabetes prevention and management.
Numerous interventions and public health campaigns have been
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developed to help patients incorporate new behaviors (eg,
medication regimen) and modify existing risky behaviors (eg,
poor diet) to prevent and manage diabetes (for reviews, see
[3-7]). However, the growth rate of diabetes is steady, adding
to the health care burden. Adherence to healthy behaviors (eg,
proper nutrition) and management of prevailing health
conditions (eg, medication adherence) requires a significant
support infrastructure that targets individualistic factors and
environmental influences for long time intervals [8,9].

Social Relationships and Health Management
Recent research suggests that social relationships play an
essential role in an individual’s engagement in health issues
[10-12]. For example, Christakis and Fowler’s analysis of the
Framingham data set shows an association between the behavior
of members of an individual’s social network and the likelihood
of smoking cessation [13]. Positive effects of social relationships
have been associated with chronic illness self-management
[14-17]. Increased levels of social integration are also found to
improve the overall wellbeing of individuals [18]. On the other
hand, some studies indicate the negative influence of social
relationships [19,20]. While community-based social
interventions harnessing the positive effects of social contacts
exist [21-24], the mechanisms underlying the impact of social
relationships on multiple behavioral domains of Diabetes
Self-Management (DSM) are not fully understood.
Consequently, an understanding of the mechanisms in play for
numerous behavioral domains within diabetes management is
crucial to promote wellness regimens that can result in sustained
adoption.

Online Communities as Secondary Data Sources
The ubiquity of online communities presents us with invaluable
data sets in the form of electronic traces of peer interactions
[25], which may help to understand social influence in diabetes
management. Thanks to the ready availability and accessibility
of the internet via mobile phones, peer interactions in online
communities often occur in real time. They can provide rich
documentation of certain crucial moments in everyday life that
influence diabetes prevention and management [26]. Further,
it is common for an individual to seek a related online
community (eg, newly diagnosed with type 2 diabetes) and
navigate the records of peers who have shared their experiences.
With the support of online communities and an associated bank
of collective knowledge, the individual reflects on the problem,
explores available information, and feels able to act, thus
eliciting multiple theoretical constructs described in existing
models of behavior change ([27-31]. Emerging research shows
the complex relationships between online social ties and
individuals’ self-management of health conditions, thus
highlighting the utility of online peer interactions as secondary
data sources [17,29]. While we must be cognizant of inferential
generalizability [30], these platforms have a tremendous capacity
to inform clinicians, behavioral scientists, and technology
developers about human health behaviors and ways to harness
knowledge from online social media to inform intervention
design, content curation, and information dissemination [31-34].
A more in-depth analysis of such interactions provides us with
a new lens to inform, enhance, and strengthen existing

frameworks of diabetes care delivery, prevention, and
management [29,31]. Previous studies on diabetes-related social
media interactions have focused on general-purpose platforms
such as Twitter and Facebook interventions, where data volume
has ranged in the order of hundreds to billions [35-39]. A
majority of these studies have attempted to understand the types
of diabetes information disseminated, the levels of information
spread, and user engagement facilitated by these platforms.
However, our understanding of digital environments solely
dedicated to diabetes prevention and self-management are quite
limited. As such, the semantic context underlying
general-purpose and health-specific platforms can vary greatly,
consequently affecting the methodological underpinnings of
large-scale studies for unpacking the DSM domain in social
media.

In this paper, we describe our findings of large-scale analysis
of peer interactions in the health-related online community
focusing on diabetes management. In addition to abstracting
thematic strands underlying peer interactions, we provide a
more in-depth analysis of behavior change techniques that
manifest in these online discussions using manual coding
methods. Further, we extend the reach of qualitative analysis
using high throughput computational methods to understand
the thematic distribution of peer communication in a
diabetes-specific online community. The insights gained from
these investigations will enable us to gain a deeper
understanding of the digital environment and the nature of the
peer interactions they facilitate, inclusive of and beyond social
support. Our findings will help us design an enhanced support
infrastructure through the development of tailored education
interventions and digital solutions that harness social support
and influence to promote positive health changes. Such
“healthier life” technologies offer considerable advantages over
traditional approaches in affordability, scalability, user
engagement, and personalization.

Methods

Materials
For this study, we focus on user interactions within the American
Diabetes Association (ADA) online community, one of the
largest online communities focusing on engaging patients with
diabetes and their caregivers in optimizing self-health
management [40]. Members are required to have a registered
account with the ADA to share content and exchange messages
within the online community. The data set spans eight years
(2012-2019) and includes publicly available interactions.
Behavior before and after diagnosis, treatment effectiveness,
healthy behaviors (low carb diet, physical activity), medication
adherence, blood glucose self-monitoring, and other topics are
discretely captured in this data. For this project, we focused our
analysis on type 2–related entries. A total of 80,481 randomly
selected de-identified messages exchanged by 1212 members
were included in this analysis. We chose type 2 diabetes as the
focus of this study because health outcomes and disease
management among these patients are impacted by their lifestyle
behaviors (diet and physical activity), medication use, and
self-monitoring of blood glucose. The research has been
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reviewed and exempted by the Institutional Review Board at
the University of Texas Health Science Center at Houston.

Theme Abstraction
We adopted Directed Content Analysis [41] to identify the core
concepts and unifying themes that relate to diabetes prevention
and management. First, four independent coders characterized
the communication between members of each community,
assigning communication themes (inductively derived using
grounded theory techniques [42] in our prior work [43]) to
randomly selected messages that relate to diabetes prevention
and management. Table 1 provides an overview of the
qualitative analysis and coding categories. We coded 517
messages to assign thematic labels (shown in Table 1). Each

message could have multiple codes applied dependent on the
content of the message, and codes were individually and
independently assigned by four coders. Each message will have
a minimum of two independent coders applying codes. Coders
then met and reconciled codes into a master coded document
via weekly meeting discussion following iterative comparison
and consensus building to ensure objectivity in the coding
process. The qualitative analysis allowed us to explain how
online platforms are utilized by individual users to mend the
gaps in their social and information needs. Also, we conducted
a more in-depth analysis of the messages to understand types
of social support [44] and the taxonomy of behavior change
techniques [45] observed in peer interactions.
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Table 1. Sample messages from the American Diabetes Association (ADA) mapped to the communication themes.

Sample message snippets from ADADefinitionTheme

Congratulations on a job well done – and Welcome to the 5% club. Your
hard work and persistence paid off. Keep it up. :)

Messages where the content reflects the el-
ements of praise, advice, empathy, and
guidance

Social support

How did you do this morning? How’ve you been doing over time? Nobody
knew back then that there would be 28,196 replies to … question. Nobody
expected that twice that topic would grow so large that we would have to
start over again in a brand new topic to accommodate all those posts.

Messages that focus on community-specific
rituals such as pledges or any engagement
practices conducted by moderators or users

Traditions

Stress can have a huge impact on your numbers. Even a single day can
raise my numbers significantly and I have had longer periods of stress that
I know upped my A1C. So when you are dealing with a stressful time you
want to increase your exercise and decrease your carbs.

Messages that describe incentives to make
positive health changes

Teachable moments

I did add 3 days of swimming that lasted for 3 months until my swim
buddies got on different schedules. I do miss the sun and water so I’m on
a search for other swimming holes and buddies. Transportation can be a
hurdle, too.

Messages focusing on hurdles to planned
health practices

Obstacles

Metformin may have a small effect reducing insulin resistance, but its
main effect is to keep the liver from sending out too much insulin and
over-compensating when blood glucose is a little low, like when it helps
to prevent the dawn effect.

Messages with explicit discussions on vari-
ous pharmacotherapy options

Pharmacotherapy

On the issue of my numbers being too high in general… that’s a separate
issue. I have gotten lax with exercise and eating too many carbs.

Messages with descriptions of relapse rea-
sons or confessions

Relapse

I discovered that I had to change “Can’t” to “Don’t” in my thinking. I
“can’t” eat that cookie… means “Poor me, someone… is not allowing me
to eat that cookie”… I “don’t” eat cookies… means that I have a choice
it’s not something that’s part of my life. I am in control.

Messages that inspire to initiate positive
health changes

Readiness to change

Do I miss stuffing my face with pizza or other carbilicious meals? I suppose
so, but it’s not much of a loss… I miss sugary snacks, I guess that the
biggest change.

Messages that capture real-time expressions
of the urges to deviate from planned health
behaviors

Cravings

The article has a story of one woman who was getting ready to have a
foot/leg amputated (after living with “a terrible wound for 5 years”), but
she tried ‘the sugar treatment’ (my term) and … She ended up not having
an amputation.

Messages that describe therapies that are
not regarded as orthodox by the medical
profession

Alternative medicine

This summer will mark 8 years since I have been diagnosed with Type 2
diabetes. So far low carb eating, exercise and metformin are keeping me
at my target blood glucose numbers.

Messages in which members communicate
their progress based on objective health
measures

Progress

Do I sometimes want to go back? Yes and no. I feel much better now and
I know I’m healthier now, so no, I don’t want to go back.

A message that focuses on subjective
progress (positive or negative)

Patient-reported Outcomes

Again I did not say it causes diabetes I said it can cause diabetes – which
was the original question. I did not say that there is a direct link between
alcoholism and diabetes – but the actions of an alcoholic can contribute
to developing diabetes.

A message which is argumentative or clari-
fying a point/topic (not necessarily support-
ive)

Conflict

I’m almost done with my First semester of college. Can you believe that?
I did lot hard work.

A message which contains questions or in-
formation not about an individual’s health
status or diabetes management

Miscellaneous

Automated Methods
Vector representations of all 80,481 messages were generated
using distributional semantics methods [46]. The entire data set
was then annotated by using the generated vectors as input to
a machine learning classifier trained on the manually annotated
messages. We exploited recent developments in automated text
analysis to measure the extent to which key concepts of interest
were expressed within messages between ADA community
users, regardless of the specific terms used to express these
concepts at the surface level. We applied latent semantic analysis
[47], a method of distributional semantics in conjunction with

a machine-learning classifier to derive a measure of relatedness
between a given message and the previously identified
communication themes to estimate the distribution of different
types of content across the ADA online community. Ten-fold
cross-validation was applied to determine the best performing
binary classifier for automating the classification of the entire
set of messages. We have used Weka [48] and Semantic Vectors
package [49] to build the pipeline for automated classification
of ADA peer interactions.
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Results

Qualitative Analysis

Theme Abstraction
Based on manual coding of 517 messages, “Social support” was
the most common comment theme (n=439, 84.9% of comments),
followed by “readiness” (n=97, 18.8%), “teachable moments”
(n=76, 14.7%), “pharmacotherapy” (n=71, 13.7%), and
“progress” (n=69, 13.3%), “obstacles” (n=48, 9.2% of
comments). Additional codes included, “miscellaneous” (n=33,
6.3%), “patient-reported outcomes” (n=29, 5.6%), “traditions”
(n=25, 4.8%), “conflict” (n=24, 4.6%), “alternative medicine”
(n=7, 1.3%), “relapse” (n=5, 0.97%), and “cravings” (n=1,
0.19%). Given the very nature of the social forum, the majority
of the messages exchanged in the ADA community were
fostering empathy, affection, and reinforcement that are essential
to the sustenance of healthy lifestyle changes. Medication use,

motivators for change, and sharing progress also seem to play
an important role in diabetes interactions in this community.

Social Support—Anatomical Analysis
A more in-depth analysis of messages specific to social support
theme using House taxonomy [39] revealed that the most
common form of social support provided was “informational”
(n=361, 82.2%), followed by “emotional” (n=155, 35.3%), and
“appraisal” (n=9, 0.02%). “Instrumental” support did not apply
to our data set, given the lack of manifestation of tangible
support (Table 2).

Further analysis revealed the specific behavior change
techniques employed by ADA community users. “Social
Support,” “Shaping knowledge,” “Feedback and Monitoring,”
and “Goals and Planning” were the most utilized behavior
change techniques embedded within the messages related to
social support theme.

Table 2. Social support analysis.

ExampleDefinitionTypes of social support

“I wait for about 6-7 days of bg readings to
call a trend for myself when the differences
are small, but it is possible over a course of
days to note a slight uptick or downtick in bg.”

Providing advice, suggestions, and informationInformational

“Way to go …! Congratulations on changing
your way of eating and adding in all that exer-
cise.”

Expressions of empathy, love, trust, and caringEmotional

“Did you ever have diabetes education classes,
or consult with a diabetes educator? Do you
know how to count carbs? Read here and learn
how to make your efforts achieve the best
possible outcomes.”

Information that is useful for self-evaluationAppraisal

N/AaProviding tangible aid and serviceInstrumental

aN/A: not applicable.

Beyond Social Support—Anatomical Analysis
Figure 1 shows the thematic dispersion (excluding “Social
Support”) across various behavior change techniques, where
the color scale represents the number of messages in which a
given technique has been observed. “Feedback and monitoring”

was the most diversely used technique, followed by “Shaping
knowledge,” “Goals and Planning,” and “Repetition and
substitution,” and “Regulation.” The least used behavior change
techniques include “covert learning,” “rewards and threat,” and
“natural consequences.”
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Figure 1. Mapping of communication themes and behavior change techniques.

Automated Classification
The precision, recall, and f-measure for the cross-validation of
the machine learning technique using the SVM classifier were
0.76, 0.78, and 0.77, respectively. Table 3 provides a summary
of the performance for the most commonly used classifiers.

Due to insufficient training examples in the training set, we
disregarded 5 of the 13 themes for final classification. Due to
a lack of semantic context, we have not included
“miscellaneous” in our automated classification system. With
the application of our automated classification to the rest of the
ADA data set (n=80,481 posts), thematic coverage is as follows:

social support (74.2%), readiness to change (12.6%), progress
(18.8%), obstacles (10.2%), teachable moments (16.4%),
Pharmacotherapy (21.4%), and Patient-reported outcomes
(7.1%).

Given the use of high throughput analytical methods to extend
manual coding to the rest of the ADA data set, we were able to
gain an understanding of the prevalence of DSM-related
communication themes in this online community. Understanding
thematic prevalence at large scale will now help us with the
development of automated support systems using virtual
coaching and chatbots for seamless and sustained user
experience in online communities such as ADA.

Table 3. Machine learning classifiers applied to peer interactions.

F-measurePrecisionRecallNaïve

0.650.660.64LibLinear

0.770.780.76SVMa

0.660.650.68KNNb

0.690.660.72J48

0.640.540.78Naïve Bayes

aSVM: support vector machine.
bKNN: k-nearest neighbors.

Discussion

Principal Findings
In this digital era of connected health consumers, the interplay
between theory-driven models of diabetes management and

observed communication in social media is currently poorly
understood [50]. Previous studies have shown that those with
DSM who participate in social media forums or platforms saw
a decrease in their HbA1c (glycated hemoglobin) [51]. In the
future, physicians may “prescribe” a form of social media or
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platform to reinforce healthy lifestyle choices outside of the
clinic.

The results of this study facilitate the ecological analysis of
DSM as embedded in peer interactions. This analysis may
warrant refining existing models of DSM in the context of
face-to-face (rather than online) communication. By using
automated social media analysis methods, we will be able to
scale up the qualitative analysis to extract relevant
communication from large online social media data sets. Though
analysis of diabetes management in online health communities
is not without precedent [52], prior research does not address
methodological scalability and shortcomings to model variances
in multiple behaviors and underlying communication attributes
in social settings. In this research, we conducted an inductive
analysis of DSM strategies, without reliance on a single behavior
change theory, as embedded in communication exchanges
among members of a health-related online community. This
effort enables the extraction of information context significant
to behavior change events and social engagement levels in
self-management of health-related activities.

Frequent use of online networks for social support, mainly
informational, indicates a possible need for individualized
diabetes support personnel outside of physician offices. It was
noted that users would turn to the online forum to develop a
consensus regarding the effectiveness of their medication
regimen, exercise routines, and nutritional needs of people with
diabetes. A minority of the comments provided solely emotional
social support and many comments offered anecdotes to provide
context for their diabetes journey. The online forum is a potential
method of distributing information regarding their specific
illness and sharing new recommendations, as users often share
articles and studies they see as relevant or personal experience
that helped them better manage their diabetes.

Current research on diabetes prevention and self-management
has not addressed the effects of information and social
environment. Prior work on content-inclusive network analysis
[53-55] provided new methods for modeling network diffusion
of communication attributes in online health communities, thus
enabling us to disentangle the effects of the theoretical properties
of exchanged health information and social structure on health
outcomes. With the onset of mobile connectivity in the
communication sector, messages exchanged in health-related
online communities reflect the intricacies of human health as
experienced in real time at the individual, community, and
societal levels [33]. The majority of research studies on online
health communities focusing on diabetes have analyzed
peer-to-peer interactions based on social support categories
facilitated by the platforms (eg, informational support, emotional
support) [56-58]. However, social support is but one of the
numerous interpersonal mechanisms facilitated by the social
ties established in online communities. Existing theories of
behavior change suggest a myriad of content-driven strategies
to elicit specific socio-behavioral mechanisms beyond social
support (eg, stimulus control, observational learning) to help
individuals change their behavior and self-manage an illness
[43,59,60]. Our qualitative analysis of underlying behavior
change techniques in peer interactions has highlighted “feedback
and monitoring” to be the most used technique, which

emphasizes the complex functions of social relationships, which
goes beyond the provision of social support. ADA-like platforms
can help provide better self-health awareness for individuals
through monitoring and knowledge acquisition.

Limitations and Future Work
Our qualitative coding has been limited to inductive analysis
and mapping of behavior change techniques in a single online
community. Future research should focus on mapping of these
inductively derived themes to expansive theory-driven taxonomy
such as the Behavior Change Taxonomy [45,60] using
computational models for large-scale pattern recognition and
identification of independent behavior strands within the DSM
in online settings. Further, there may be differences in what is
gained from using social media platforms like ADA based on
user demographics. Future studies should consider age-specific
barriers to information consumption and comprehension in
social media platforms. Although we used multiple
computational models to perform a large-scale analysis of ADA
user interactions, the use of advanced deep learning methods
from artificial intelligence research, such as Convolutional
Neural Networks [61] and Bidirectional Encoder
Representations from Transformers [62], may improve the
training of the automated classification system.

Further analysis of peer communication can be deepened
through sentiment analysis to find specific emotions in
communication, such as anger, happiness, and others.
Quantifying sentiments [63] can also help in differentiating
their sentiments towards the interventions or other aspects of
the behavior change process and regimen. This effort will, in
turn, help interventionists identify attitudes and further
motivation for user engagement that can arise from
satisfaction/dissatisfaction with the intervention.

Conclusions
Behavior modification, such as balanced nutrition, an increase
in physical activity, and medication adherence, is a critical
component of DSM. Patient engagement in DSM consists of
the adoption of healthy behaviors and abstinence from risky
behaviors. However, the modification of such behaviors is
challenging. Numerous public health efforts have been made
to promote healthy behaviors over the years, but their utility
and efficacy have been suboptimal. The utility of online social
media to foster behavior change has been recognized as one
sustainable solution. However, little is known about how we
can harness social platforms to facilitate positive changes and
promote DSM. Health-related online communities present a
unique opportunity to improve our understanding of such
socio-behavioral mechanisms, as communication in this context
is digitally archived, permitting analysis of the dynamics of
social influence as they manifest in peer interactions. Our
methods have allowed us to abstract the essence of peer-to-peer
communication in online communities at scale and to elucidate
ways in which observable digital interactions relate to behavior
modification endeavors as related to diabetes prevention and
management. Our findings will provide the basis for an
integrated approach to the problem of chronic disease
management and underlying subtasks of behavior change. Such
work will have implications for the design of behavior support
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technologies that offer automated personalization to improve
self-management behaviors at the individual and population

level.
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