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Abstract

Background: Surgical site infection (SSI) is one of the most common types of health care–associated infections. It increases
mortality, prolongs hospital length of stay, and raises health care costs. Many institutions developed risk assessment models for
SSI to help surgeons preoperatively identify high-risk patients and guide clinical intervention. However, most of these models
had low accuracies.

Objective: We aimed to provide a solution in the form of an Artificial intelligence–based Multimodal Risk Assessment Model
for Surgical site infection (AMRAMS) for inpatients undergoing operations, using routinely collected clinical data. We internally
and externally validated the discriminations of the models, which combined various machine learning and natural language
processing techniques, and compared them with the National Nosocomial Infections Surveillance (NNIS) risk index.

Methods: We retrieved inpatient records between January 1, 2014, and June 30, 2019, from the electronic medical record (EMR)
system of Rui Jin Hospital, Luwan Branch, Shanghai, China. We used data from before July 1, 2018, as the development set for
internal validation and the remaining data as the test set for external validation. We included patient demographics, preoperative
lab results, and free-text preoperative notes as our features. We used word-embedding techniques to encode text information, and
we trained the LASSO (least absolute shrinkage and selection operator) model, random forest model, gradient boosting decision
tree (GBDT) model, convolutional neural network (CNN) model, and self-attention network model using the combined data.
Surgeons manually scored the NNIS risk index values.

Results: For internal bootstrapping validation, CNN yielded the highest mean area under the receiver operating characteristic
curve (AUROC) of 0.889 (95% CI 0.886-0.892), and the paired-sample t test revealed statistically significant advantages as
compared with other models (P<.001). The self-attention network yielded the second-highest mean AUROC of 0.882 (95% CI
0.878-0.886), but the AUROC was only numerically higher than the AUROC of the third-best model, GBDT with text embeddings
(mean AUROC 0.881, 95% CI 0.878-0.884, P=.47). The AUROCs of LASSO, random forest, and GBDT models using text
embeddings were statistically higher than the AUROCs of models not using text embeddings (P<.001). For external validation,
the self-attention network yielded the highest AUROC of 0.879. CNN was the second-best model (AUROC 0.878), and GBDT
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with text embeddings was the third-best model (AUROC 0.872). The NNIS risk index scored by surgeons had an AUROC of
0.651.

Conclusions: Our AMRAMS based on EMR data and deep learning methods—CNN and self-attention network—had significant
advantages in terms of accuracy compared with other conventional machine learning methods and the NNIS risk index. Moreover,
the semantic embeddings of preoperative notes improved the model performance further. Our models could replace the NNIS
risk index to provide personalized guidance for the preoperative intervention of SSIs. Through this case, we offered an
easy-to-implement solution for building multimodal RAMs for other similar scenarios.

(JMIR Med Inform 2020;8(6):e18186) doi: 10.2196/18186
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Introduction

Health care–associated infection (HAI) is a global patient safety
problem, with surgical site infection (SSI) being one of the most
common types of HAI [1-4]. The incidences of SSI for inpatients
undergoing operations are 2%-5% in the United States [5],
2%-10% in Europe [6-9], and 4%-6% in China [10-13]. SSIs
increase mortality and long-term disabilities, prolong hospital
length of stay (LOS), and raise health care costs [1,5,11]. In
China, SSIs prolong hospital LOS by 6-23 days and increase
medical costs by US $2000-$6000 per patient, with the
additional cost for one SSI patient needing to be offset by the
medical revenue from 13 surgical patients [11].

In 2016, the World Health Organization recommended a large
perioperative care bundle of interventions for preventing SSIs,
which includes perioperative oxygen inhalation; maintenance
of normal body temperature; maintenance of adequate glucose
and circulating volume; use of sterile drapes, surgical gowns,
wound-protector devices, and antimicrobial-coated sutures;
provision of incisional wound irrigation; and prophylactic
negative-pressure wound therapy [14]. However, the quality of
evidence for most of these recommended interventions remains
low. When we do not know whether these interventions are
effective enough, using several interventions together is
reasonable, and may even have a summation effect, for reducing
the risk of SSI as much as possible. However, the shortcomings
of bundle interventions are also apparent: they will consume
large amounts of medical resources, especially when we strictly
implement the recommendations of the guideline. Thus,
data-driven guidance for personalized intervention is key to
creating more effective SSI prevention and control programs.

Many institutions have developed risk assessment models
(RAMs) focusing on SSIs to help surgeons preoperatively
identify high-risk patients and guide clinical interventions. The
most widely used traditional RAM is the National Nosocomial
Infections Surveillance (NNIS) risk index [15], which is a
scoring system ranging from 0 to 3. An American Society of
Anesthesiologists (ASA) preoperative assessment score higher
than 2; contaminated, dirty, or infected operation; and prolonged
operation duration each account for 1 point in the NNIS risk
index scoring system. The risk of SSI increases from 1.5% to
13.0% as the score goes up. Obviously, the three variables are
easy to calculate, but are not enough to describe the
characteristics of high-risk patients. To remedy these

deficiencies, Mu et al included more patient- and
hospital-specific variables and developed improved RAMs for
each procedure under the 39 National Healthcare Safety
Network (NHSN) procedure categories using stepwise logistic
regression [16]. They trained these procedure-specific models
using 849,659 patient records, from 2006 to 2008, from the
NHSN database. Each model used 12-15 variables, including
patient demographics, anesthesia, surgery, hospital settings, and
NNIS risk index factors. The overall area under the receiver
operating characteristic curve (AUROC) of the model reached
0.67, higher than the AUROC of the NNIS risk index, which is
0.60. The biggest problem with their RAM is that 39 different
models need to be deployed together to achieve full
functionality, which is cumbersome for clinical use. In a later
study, Grant et al developed another RAM, using routinely
collected surveillance data from three national networks in
Switzerland, France, and England [17]. They trained a logistic
regression model using 46,320 colorectal surgery records from
2007 to 2017 and compared it with the previous model
developed by Mu et al. In their dataset, the new model, with an
AUROC of 0.65, outperformed the model developed by Mu et
al. Their model was easy to use but was limited to colorectal
surgery only. Meanwhile, in the absence of a high-accuracy
RAM, van Walraven and Musselman developed a logistic
regression model based on 362,431 clinical data points from
the National Surgical Quality Improvement Program [18]. The
AUROC of this model reached 0.80. However, it required the
users to provide large amounts of medical history information,
such as ASA score, NNIS risk index, tumor history, medication
history, and operation history. These variables are not always
well structured in many electronic medical record (EMR)
systems, and without the support of automatic extraction,
completing evaluations based on this model undoubtedly
consumed large amounts of time. Therefore, a gap still exists
between current preoperative RAMs and the ideal RAM, which
is generalized, accurate, and easy to use or deploy.

With the widespread use of hospital information systems and
EMR systems in medical institutions, we can now use massive
clinical data to build RAMs. In addition to structured data, we
can also use natural language processing and deep learning
technology to parse semantics from unstructured clinical text
data and save time for manual extraction of text information.
Many researchers have developed surveillance models using
data from EMRs to automatically help infection control staff
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efficiently identify SSIs among massive medical records and
have achieved high accuracy [19-22]. However, these models
used not only preoperative information but also surgical,
postoperative, and antibiotic information. Thus, they cannot be
used to guide preoperative intervention.

To fill in the gap, we aimed to provide a solution in the form
of the Artificial intelligence–based Multimodal Risk Assessment
Model for Surgical site infection (AMRAMS) for inpatients
undergoing operations using routinely collected data from the
EMR system of a general hospital in China. We believed that
structured data, such as patient demographics and preoperative
lab results, and free-text data, such as preoperative notes that
record diagnoses and scheduled surgical information, would
both help to identify high-risk patients. Thus, we planned to
combine various machine learning, deep learning, and semantic
representation technologies; validate the discriminations of
multimodal implementations internally and externally; and
compare them with the NNIS risk index score. We tested the
following hypotheses: (1) AMRAMS, with various
implementations, would more accurately identify high-risk
patients than the old-fashioned NNIS risk index is capable of
doing, (2) semantic information from preoperative notes would
improve the model performance, and (3) deep learning
implementations would outperform conventional machine
learning implementations.

Methods

Source of Data
The Rui Jin Hospital, Luwan Branch, affiliated with the
Shanghai Jiao Tong University School of Medicine, is a
nonprofit academic medical center based in Huangpu District,
Shanghai, China. The hospital has a total of 526 beds, of which
89 are in general surgery, 33 are in gynecology, 27 are in
orthopedics, and 38 are in urology. The surgical staff performs
more than 4000 operations annually. About 300 of these cases
are emergency patients. We retrieved inpatient records that each
had only one operation record during the hospital stay and a
discharge record between January 1, 2014, and June 30, 2019,
from the EMR system of Rui Jin Hospital, Luwan Branch. We
used data from before July 1, 2018, as the development set for
model training, hyperparameter tuning, and internal validation;
we used the remaining data as the test set for external validation.
The data usage of patient records for this study had been
reviewed and approved by the ethics committee of the Rui Jin
Hospital, Luwan Branch.

Participants and Features
We included adult patients only and excluded patients under
the age of 18 years, patients with missing operation information
(ie, timestamp of operation, whether or not theirs was an
emergency operation, and type of anesthesia), and patients with
missing demographic information (ie, gender and age).

We used both structured and unstructured preoperative clinical
data from the EMR as our modeling features for this study.
Preoperative was defined as the last record before the timestamp
of the operation start time. Structured data included the
following:

1. Patient demographics: age (years), gender (male or female),
body height (cm), body weight (kg), and type of insurance
(insured or noninsured).

2. Routine blood examination: white blood cell count (number

× 109/L), proportion of neutrophils (%), proportion of
lymphocytes (%), proportion of monocytes (%), proportion
of eosinophils (%), proportion of basophils (%), lymphocyte

count (number × 109/L), monocyte count (number × 109/L),

eosinophil count (number × 109/L), red blood cell count

(number × 1012/L), hemoglobin concentration (g/L), mean
corpuscular volume (fL), mean corpuscular hemoglobin
(g/L), mean corpuscular hemoglobin concentration (g/L),

and platelet count (number × 109/L).
3. Coagulation function examination: prothrombin time (sec),

international normalized ratio, fibrinogen concentration
(g/L), activated partial thromboplastin time (sec), thrombin
time (sec), and d-dimer concentration (mg/L).

4. Liver and kidney function examination: total bilirubin
concentration (μmol/L), direct bilirubin concentration
(μmol/L), indirect bilirubin concentration (μmol/L), total
bile acid concentration (μmol/L), alanine transaminase
concentration (IU/L), aspartate aminotransferase
concentration (IU/L), total protein concentration (g/L),
albumin concentration (g/L), urea nitrogen concentration
(mmol/L), creatinine concentration (μmol/L), uric acid
concentration (μmol/L), and blood glucose concentration
(mmol/L).

5. Plasmic electrolyte examination: potassium concentration
(mmol/L), sodium concentration (mmol/L), calcium
concentration (mmol/L), phosphorus concentration
(mmol/L), and magnesium concentration (mmol/L).

6. Structured data elements from admission notes: current
smoking status (true or false) and marital history (married,
unmarried, or divorced).

7. Structured data elements from preoperative notes:
emergency operation (true or false) and type of anesthesia
(general anesthesia, total intravenous anesthesia, spinal
anesthesia, epidural anesthesia, nerve block, or local
anesthesia).

8. Preoperative LOS: the number of inpatient days between
admission and operation.

Unstructured data included the free-text portion of the
preoperative notes. Preoperative notes usually contain
descriptions about preoperative diagnosis, operation name,
indication, complications, and preventive measures. Table
MA1-1 in Multimedia Appendix 1 shows two examples of
preoperative notes from the development set.

Outcome
According to the No. 48 Decree issued by the Ministry of Health
of the People’s Republic of China in 2006 [23], the infection
prevention and control department of the hospital should be
responsible for the regular surveillance, analysis, and feedback
on the epidemic situation of SSIs and their related risk factors.
SSIs includes superficial incisional infection, deep incisional
infection, and organ-space infection. In the Rui Jin Hospital,
Luwan Branch, the staff of the infection prevention and control
department manually identify SSIs via patient chart reviews
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and collect mandatory data for hospital administrators and
government reporting after patient discharge. In this study, all
the included patient records were reviewed by the infection
prevention and control department. We categorized patient
records with SSI identifications reported by the infection
prevention and control department as positive samples.
Likewise, we categorized patient records without SSI
identifications as negative samples.

Data Preprocessing
In this study, we used routinely collected clinical data from the
EMR system. Thus, outliers and missing data were common
and inevitable. For outlier adjustment, we first discarded patient
records with invalid age values (eg, age >120 years old). To
detect the outliers, we implemented a two-stage algorithm based
on the random-effects model adjusted for age and sex proposed
by Welch et al [24] for all continuous features. We used an
absolute standardized residual of more than 5 as a cutoff for
outlier detection and manually reviewed all the outliers
suggested by the model. If the outliers violated medical
knowledge, we tried to correct the values via a chart review. If
no information could be gained from the chart review, we
considered the outliers as missing values. For missing data, we
generated missing-value indicators [25] (ie, binary dummy
features indicating whether the values of the original features
were missing) and conducted mean imputation for continuous
features and mode imputation for binary or categorical features.
To make the results of model validation truly reflect real-world
performance, we performed outlier detection and adjustment
only on the development set. For the convenience of model
training and optimization, we performed one-hot encoding for
all the binary or categorical features and feature normalization
for all features.

Model

Overview
Using the fastText algorithm, we first generated word
embeddings based on a large Chinese corpus for further
text-information encoding [26]. The fastText algorithm is an
unsupervised neural network algorithm that learns distributional
embeddings of semantic representation based on subword
information for each word from the corpus. We then proposed
both conventional machine learning methods and deep learning
methods to predict the risk of SSI based on preoperative EMR
data. Because we expected the distribution of the labels to be
extremely imbalanced, we passed a positive sample weight (ie,
the ratio of the number of non-SSIs to the number of SSIs) to
the loss function (ie, cross-entropy) during the model training.
We used the mini-batch gradient descent and backpropagation
technique to update the parameters of the networks and set the
AdamW algorithm as optimizer [27]. Furthermore, we used a
random search method based on five-fold cross-validation and

early stopping, if necessary, to find the optimized
hyperparameters for each model.

Word Embedding
Our Chinese corpus contained approximately 4.1 GB of data
from the Chinese Wikipedia, downloaded from the linguatools
website [28], and approximately 96.9 MB of data from
A-hospital, a Chinese medical Wikipedia website [29]. After
we removed punctuations and numbers from the corpus, we
used Jieba, version 0.41 [30], a Chinese text-segmentation tool,
with a medical dictionary to segment the corpus into word
sequences. Using the skipgram model of the fastText algorithm
[31], we then trained 128-dimensional word embeddings using
the preprocessed word sequences. We set the minimum size of
the subwords as two and the maximum size as five. We left the
other parameters at their default values.

Conventional Machine Learning Method
The conventional machine learning methods analyzed in this
study included LASSO (least absolute shrinkage and selection
operator) logistic regression with L1 penalty, random forest,
and gradient boosting decision tree (GBDT), implemented by
the XGBoost framework [32]. Because these models can be
trained only by using tabular data, we first encoded the texts of
the preoperative notes into the text embeddings. We segmented
each text into a word sequence using Jieba and transformed it
into a sequence of word embeddings, which is represented as
follows:

T = [t1,t2,t3,...,tn] (1)

Here, ti is a 128-dimensional word-embedding vector of the i-th
word in a sequence of length n, and T is an n-by-128 embedding
matrix. We then pooled the embedding matrix into a
128-dimensional vector using the max-pooling method, which
took the maximum value among the n words for each feature
of the word embeddings. We concatenated the pooled vectors
with the structured feature vectors and fed them into the four
models for training.

Deep Learning Methods
The deep learning methods analyzed in this study included a
convolutional neural network (CNN) and a self-attention
network. In this study, we used CNN and self-attention
structures to encode text information on an end-to-end basis.
Figure 1 shows the architecture of both models. Before being
fed into the models, text data were transformed into n-by-128
embedding matrix T. Here, n was the padding length decided
by the upper boundary of the 1.5-IQR rule based on the
distribution of word sequence lengths in the development set.
If the actual length of the sequence was less than n, we added
zero-padding to the left side of the sequence. If the actual length
was more than n, we tailored the left side of the sequence to
suit the padding length.
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Figure 1. Deep learning network architecture diagrams. Bi-LSTM: bidirectional long short-term memory; GELU: Gaussian Error Linear Unit.

For the CNN, we referred to the structure proposed by Kim [33]
and applied convolutional kernel operation on the embedding
matrix T, which is represented as follows:

cj
i = GELU(wj

c ∙ ti:I+h–1 + b) (2)

Here, cj
i is the output value of the j-th convolutional channel of

filter window i, ti:i+h–1 is the word-embedding sequence from
the i-th word to the (i + h – 1)-th word, h is the size of the filter

window, wj
c is the weight vector for each word embedding in

the filter window of the j-th channel, b is the bias item, and
GELU (Gaussian Error Linear Unit) [34] is the active function;
the original paper used ReLU (Rectified Linear Unit). The filter
window slides from the first word to the last one. Let m represent
the number of channels for the convolutional kernel, and let n
represent the length of the text; then we have an (n – h + 1)-by-m

convolutional feature matrix:

C = [c1,c2,c3,...,cn–h+1] (3)

We used filter windows of three, four, and five; generated three
convolutional feature matrices; applied max-pooling operation
on these matrices; and concatenated the three pooled vectors
and the structured feature vector together. The entire vector was
then passed into a fully connected dense layer using GELU as
an active function and, finally, a sigmoid output layer.

For the self-attention network, we referred to the structure
proposed by Lin et al [35]. The embedding matrix T was first
passed into a bidirectional long short-term memory (Bi-LSTM)
layer. Let m represent the number of the hidden units for both
forward and backward long short-term memory (LSTM), and
let n represent the length of the word sequence. We obtained
an n-by-2m hidden state feature matrix:

H = [h1,h2,h3,...,hn] (4)

We then generated an attention matrix based on the hidden state
feature matrix. According to the original paper, this process was
similar to passing the hidden state feature matrix into two
bias-free, fully connected layers using tanh as the first active
function and softmax as the second function:

A = softmax(W1 ∙ tanh(W2 ∙ HT)) (5)

Here, W2 is a d1-by-2m weight matrix, where d1 is the hidden
unit number of the first layer and W2 is a d2-by-d1 weight matrix,
where d2 is the hidden unit number of the second layer. We
obtained a d1-by-2m text-embedding matrix by using the
following:

M = A ∙ H (6)

We flattened the embedding matrix into a d1 × 2m-dimensional
vector, concatenated it with the structured feature vector, and
passed the entire vector into the dense layer.
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Evaluation
We evaluated the discrimination capacities of the conventional
models, with or without text embeddings, and of the deep
learning models. We assessed internal validity using a
bootstrapping procedure of 100 iterations based on the
development set. In each iteration, we trained the model using
the sample data (ie, sampling with replacement) and tested the
AUROC on the out-of-bag data; the data were not sampled in
the iteration. We calculated the average AUROC and 95% CI
for each model and performed paired-sample t tests to compare
the performance among the models.

To obtain a realistic estimation of the model performance, we
assessed external validity on the holdout test set. We trained
the models using the entire development set, tested the full
training performances on the test set, and compared them with
the performance of the NNIS risk index scored by surgeons
before an operation. Furthermore, we calculated the sensitivity
and specificity based on the test result and decided on the cutoff
point using Youden’s index method [36].

We used scikit-learn, version 0.22.1, via Python, version 3.7.4
(Python Software Foundation), to build the LASSO model and
random forest model; we used XGBoost, version 0.9, via Python
to build the GBDT model; and we used PyTorch, version 1.4.0,
via Python to build the CNN and self-attention network. We
performed all the statistical analyses using R, version 3.6.1 (The
R Foundation), and considered a two-sided P value of <.05 as
statistically significant.

Results

Patient Characteristics
We included a total of 21,611 inpatient records from January
1, 2014, to June 30, 2019. Of these records, 13,293 (61.51%)

were from female patients and 8318 (38.49%) were from male
patients with a median age of 54.3 years (IQR 44-65); 8375
(38.75%) were from the department of general surgery; 5903
(27.31%) were from the department of urology; 4649 (21.51%)
were from the department of gynecology; and 2684 (12.42%)
were from the department of orthopedics. According to the
distributions of the International Classification of Diseases,
Tenth Revision (ICD-10) code of operation and diagnosis that
were retrieved after patient discharge, the patients received
surgical treatment mainly for genitourinary system diseases,
neoplasms, and digestive system diseases; the main types of
operations were urinary system surgery, digestive system
surgery, female reproductive system surgery, and endocrine
system surgery. Overall, the incidence of SSIs in our dataset
was 1.13% (244/21,611). The assigned sample size of the
development set was 17,597 and that of the test set was 4014.
The missing-data rates of the included variables ranged from
0% to 70.9% in the development set and from 0% to 72.8% in
the test set. The variables with missing-data rates of more than
20% came from liver and kidney function examination, plasmic
electrolyte examination, and d-dimer measurement. A slight
difference was observed in the missing-data rate of each variable
between the development set and the test set. Among them, the
variables with the largest differences in the missing-data rates
came from the electrolyte examinations (ie, calcium,
phosphorous, and magnesium), with the rate differences reaching
8.0%. Figure 2 shows the selection process for the patient
records and Table MA1-2 in Multimedia Appendix 1 shows the
patient characteristics. We released a portion of the raw data in
Multimedia Appendix 2, and the data dictionary of the raw data
is located in the Data Description section of Multimedia
Appendix 1.
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Figure 2. Flowchart of the selection process for patient records. Gray boxes show records that were excluded due to patients not meeting inclusion
criteria and records containing outliers or missing data. SSI: surgical site infection.

Hyperparameters and Training
We selected the optimal hyperparameters for each model based
on the results of five-fold cross-validation. For LASSO, we
used an L1 penalty of 0.01 when using text embeddings and
0.003 when not using text embeddings. For random forest with
text embeddings, we used 300 trees, a maximum depth of 18,
and maximum features of 0.6. For random forest without text

embeddings, we used 1000 trees, a maximum tree depth of 4,
and maximum features of 0.6. For GBDT with text embeddings,
we used a learning rate (η) of 0.01, a maximum tree depth of
24, a subsample of 0.6, a column sample of 0.65, a gamma of
0.3, and 61 iterations. For GBDT without text embeddings, we
used a learning rate (η) of 0.003, a maximum tree depth of 4,
a subsample of 0.65, a column sample of 0.8, a gamma of 0,
and 132 iterations. For the CNN, we used a learning rate (η) of
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0.0001; an L2 penalty of 3; a word-embedding layer dropout
rate of 0; CNN filter windows of three, four, and five with 256
feature maps (ie, channels) each; a dropout rate of 0.35; a fully
connected layer with 128 feature maps; a dropout rate of 0.5;
and 18 epochs. For the self-attention network, we used a learning
rate (η) of 0.0001, an L2 penalty of 0.03, a word-embedding
layer dropout rate of 0.5, a Bi-LSTM with 256 feature maps (ie,
hidden nodes) each, a dropout rate of 0.45, an attention network
with 256 feature maps (ie, hidden nodes) on the first layer and
64 for the second layer, a fully connected layer with 128 feature
maps, a dropout rate of 0, and 19 epochs. We set the padding
length for deep learning to 244. Hyperparameters not mentioned
in this section were left at their default values.

Model Performances
Table 1 lists the performances of the models in terms of both
internal and external validation, and Figure 3 shows the receiver
operating characteristic (ROC) curves of the top five models
based on full training and NNIS risk index. For internal
validation, CNN yielded the highest mean AUROC of 0.889
(95% CI 0.886-0.892), and the paired-sample t test (see

Multimedia Appendix 1, Table MA1-3) revealed statistically
significant advantages (P<.001) compared with the other models.
The self-attention network yielded the second-highest mean
AUROC of 0.882 (95% CI 0.878-0.886). However, the AUROC
of the self-attention network was only numerically higher than
the AUROC of the third-best model—GBDT with text
embeddings (mean AUROC 0.881, 95% CI 0.878-0.884)—and
did not exhibit statistical significance (P=.47). The AUROCs
of the machine learning models using text embeddings were
statistically higher than the AUROCs of the models not using
text embeddings (P<.001). For external validation, the
self-attention network yielded the highest AUROC of 0.879.
CNN was the second-best model (AUROC 0.878), and GBDT
with text embeddings was the third-best model (AUROC 0.872).
The NNIS risk index scored by surgeons had an AUROC of
0.651, which was remarkably lower than that of any other model
in our study. Based on the external validation, we could still
observe a trend with the text embeddings improving the model
performances in the external validation. All the models had
lower AUROC scores in internal validation than in external
validation (ie, mean AUROC).

Table 1. Model performances.

Specificitya

(full training)

Sensitivitya

(full training)

Area under the receiver operating characteristic
curve (AUROC)

Model and text embedding

Full trainingBootstrapping, mean (95% CI)

Least absolute shrinkage and selection operator (LASSO)

0.8440.7440.8560.870 (0.867-0.874)With text embedding

0.8420.6740.8160.856 (0.852-0.860)Without text embedding

Random forest

0.8130.8840.8670.877 (0.873-0.880)With text embedding

0.8710.5580.7720.846 (0.842-0.850)Without text embedding

Gradient boosting decision tree (GBDT)

0.9020.7910.8720.881 (0.878-0.884)With text embedding

0.8580.6050.7820.838 (0.834-0.843)Without text embedding

0.8690.8370.8780.889 (0.886-0.892)Convolutional neural network (CNN)

0.8880.8140.8790.882 (0.878-0.886)Self-attention

0.9300.3720.651N/AbNational Nosocomial Infections Surveillance (NNIS) risk
index

aThe optimal cutoff point was identified using Youden’s index method.
bN/A: not applicable.
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Figure 3. The receiver operating characteristic (ROC) curves of the top five models based on full training and National Nosocomial Infections
Surveillance (NNIS) risk index. AUROC: area under the receiver operating characteristic curve; CNN: convolutional neural network; GBDT: gradient
boosting decision tree; LASSO: least absolute shrinkage and selection operator.

Feature Analysis
Both deep learning models—CNN and self-attention
network—performed better than other models in our validations.
However, the deep learning models were black boxes and hard
to explain. To further explore the correlations between the
selected features and the occurrence of SSIs, we conducted a
population-level feature analysis for the structured features and
a case-level analysis for the text embeddings. The
population-level analysis explored the correlations by comparing
the normalized coefficient for each feature from LASSO without
text embeddings; the coefficients were based on the data after
normalization. For case-level analysis, we referenced the idea
from local interpretable model-agnostic explanations [37]. For
each case, we fixed the structured features and generated new
word sequences by randomly removing words from the raw
sequence and dummy binary vectors that indicated whether the
word in a certain position was removed or not. We generated
10,000 new sequences for each case, combined them with the
structured features, passed them to the deep learning models,

and obtained prediction scores. We then fitted a LASSO
regression model—with an L1 penalty of 0.01—that uses
dummy binary vectors as features and prediction scores as
targets. The coefficients of the LASSO regression model
indicated the relative contributions of the words to the prediction
scores in a case.

Figure 4 shows the features with nonzero coefficients and their
coefficients for the population-level analysis. We could observe
that preoperative LOS, marital history, anesthesia type, gender,
age, results of routine blood examination, coagulation function
examination, and many missing-value indicators had remarkable
impacts on the model. Among them, patients with prolonged
preoperative LOS, patients with missing AST results, married
patients, older patients, and patients with missing body weight
information had higher risks of SSI. Patients with higher
hemoglobin, female patients, patients with missing magnesium
results, patients that had received total intravenous anesthesia,
and patients with missing marital histories had lower risks of
SSI.
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Figure 4. The normalized coefficients of the features in the LASSO (least absolute shrinkage and selection operator) model without text embeddings.
ALB: albumin; APTT: activated partial thromboplastin time; AST: aspartate aminotransferase; CA: calcium; DBIL: direct bilirubin; EA: epidural
anesthesia; GLU: blood glucose; HGB: hemoglobin; INR: international normalized ratio; K: potassium; LOS: length of stay; LYMPH: lymphocyte;
MCH: mean corpuscular hemoglobin; MCV: mean corpuscular volume; MG: magnesium; MONO: monocyte; NA: sodium; PP: phosphorus; SA: spinal
anesthesia; TBIL: total bilirubin; TIVA: total intravenous anesthesia; TP: total protein; TT: thrombin time; UA: uric acid.

Figure 5 shows the heatmaps of the word contributions to the
CNN and attention prediction scores for three preoperative note
cases (see Table MA1-1 in Multimedia Appendix 1 for the
full-text translation), with green being a negative coefficient
(ie, protective factor) and red being a positive coefficient (ie,
risk factor). The deeper the color, the higher the absolute value.
Among the three cases, we could observe that terms like “甲状

腺 (thyroid),” “宫颈 (uterine neck),” “附件 (accessory),” “椎
体 (centrum),” “腹腔镜 (laparoscope),” and “胆囊结石
(gallstone)” were associated with lower risk of SSI, and terms
like “甲状腺癌 (thyroid cancer),” “恶性 (malignant),” “结核
(tuberculosis),” “恶性肿瘤 (malignant tumor),” “结肠 (colon),”
and “横结肠 (transverse colon)” were associated with higher
risk of SSI.

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e18186 | p. 10http://medinform.jmir.org/2020/6/e18186/
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. The heatmaps of the word contributions on three preoperative note cases. CNN: convolutional neural network.

Discussion

Principal Findings
In this study, we found that SSI RAMs based on clinical data
from an EMR system and modern machine learning techniques
could identify high-risk patients more accurately than the
old-fashioned NNIS risk index is capable of doing. Notably,
the vectorial embedding of preoperative notes, whether
generated using a simple max-pooling method or using a deep
learning method, improved the performance of the model further
without any handcrafted feature engineering. The multimodal
deep learning models that produced end-to-end feature
representations automatically through convolutional kernels,
LSTM, or attention mechanisms outperformed the traditional
machine learning models, such as LASSO, random forest, or
GBDT. Thus, our AMRAMS using a CNN or a self-attention
network could replace the NNIS risk index in providing

personalized guidance for the preoperative intervention of SSI.
At the same time, our study provided an easy-to-implement
solution to building a multimodal RAM for similar scenarios
based on both structured and Chinese text data. Because we
used routinely collected preoperative data only, such as the
results of routine blood tests and clinical notes, additional
manual data collection and clinician evaluation was no longer
necessary for achieving high accuracy.

Many factors could explain the advantages of the deep learning
AMRAMS. First, we used more objective quantitative features
of the patients. The NNIS risk index contained only three
elements, of which the ASA score was a subjective feature
provided by anesthesiologists. The model developed by Mu’s
team, on the other hand, utilized 12-15 features and included
the ASA score [16]. The model developed by Grant’s team
utilized seven features and also included the ASA score [17].
The model developed by van Walraven and Musselman utilized
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53 features and included not only subjective features, such as
the ASA score, the NNIS risk index score, and dyspnea
evaluation, but also 33 manually extracted variables from the
medical history of the patient [18]. Meanwhile, our model
included 47 objective features, among which age, gender, body
weight, anesthesia type, emergency operation, preoperative
hemoglobin, glucose, and LOS have proven to be related to the
occurrences of SSI [12,38,39]. All these features were the results
of routine preoperative blood tests and were automatically
extracted from the EMR system using SQL (Structured Query
Language) query script.

Second, we used sufficient information about the operative
procedures and risk prevention from the preoperative notes via
the fastText embeddings and the network structures. Many
studies on English text classification have demonstrated that
machine learning using fastText embeddings had better
performance than those of the algorithms using bag-of-words,
n-grams, TF-IDF (term frequency–inverse document frequency),
or word2vec embeddings [26,40]. The semantics of many words,
especially in the Chinese language, depend on the subwords or
characters they contain. The fastText algorithm generated the
semantic embeddings based on the internal structures of words,
which best suit the characteristics of natural language. Moreover,
our deep learning models enabled end-to-end learning: both
fastText embeddings and hidden nodes of the network could be
further fine-tuned simultaneously according to the specified
targets during the learning process. To encode text-level
semantics, we tried both convolutional kernel and attention
mechanisms. These network structures could automatically
represent n-grams and long-term dependency information, which
helped the deep learning models gain better performance than
those of conventional machine learning models (ie, logistic
regression, naïve-Bayes, and support-vector machine) trained
using the top of max-pooling embeddings [33,35]. Because of
the complexity of the deep learning models, we were not able
to precisely identify the decision mechanisms of the text
semantics. However, according to the heatmaps of case-level
word contribution, the potentially essential keywords helped
identify SSIs in the form of distributed representation without
any other handcrafted feature engineering or manual feature
extraction. Potentially essential keywords included those
suggesting endoscopic surgery, such as “laparoscope,” and
“gallstone”; those suggesting clean surgery, such as “thyroid”
and “centrum”; those suggesting colon surgery, such as “colon”
and “transverse colon”; and those suggesting complex operation
and prolonged operation time, such as “malignant,”
“tuberculosis,” and “malignant tumor.”

Third, we tried many algorithmic techniques to avoid overfitting.
For example, we used the L2 penalty, dropout, and
early-stopping techniques. These techniques ensured the
generalization ability of the model on different patient data to
a certain extent.

Although we verified the effectiveness of the deep learning
AMRAMS through both internal and external verification, many
limitations still exist. The first limitation came from the training
labels. The follow-up period of SSI by the infection prevention
and control department was limited only to the hospitalization,
which meant some of the SSIs that occurred after discharge

might have been ignored. Although surgeons would conduct a
careful examination of the incision before patient discharge, the
occurrence of SSIs outside secondary care could not be
completely eliminated. This bias would cause our model to
underestimate the risk of patients developing SSIs.

The second limitation came from the patient population. Our
dataset came from one medical site, and the time span of data
collection was about 5 years, in which changes in patient
population distribution, surgical procedures, and SSI prevention
education and measures were inevitable. In our study, the
internal validation results of the models were not completely
consistent with the external verification results, which implied
this point. If our model was to be applied to clinical practice,
regular validation and update would be necessary.

The third limitation came from the missing values. We observed
that many variables in our dataset had high missing rates, and
many missing-value indicators contributed greatly to the model.
In general, the missing data in the EMR system were not missing
at random and were caused mainly by two reasons: inability to
perform the measurement or a lack of indication to perform the
measurement. For example, missing body weight information
might indicate that the patient was unable to stand upright (eg,
paralyzed) in order to measure the weight, whereas missing
blood tests and liver function tests might suggest that the patient
was healthy and young. In our study, we were not able to
evaluate the potential influence of the missing data, because
speculating the reason behind each missing value was complex
and trivial. From a perspective of research, we could try to
model the probability of missingness using other observed
variables and conduct sensitivity analyses, which stimulate
various missing patterns based on the predicted probability
distributions, to evaluate the influences of missing data in our
future studies. However, the ideal solutions to missing-data
problems are still improving data quality and integrity in EMRs
or developing less-biased imputation methods based on the
patterns of the missing values in the patient records, the
conditions of the patients, and the behaviors of the physicians.

The fourth limitation came from the models. We did not observe
the attention mechanisms on the top of Bi-LSTM providing a
great benefit over the convolutional kernels as claimed by Lin
et al in their paper [35], probably because of the limited sizes
of the training samples relative to the model parameters. Thus,
we considered both self-attention and CNN as the best solutions
in our current task. Because of the limitations of computing
resources (ie, GPU [graphics processing unit] instances), we
did not apply other state-of-the-art language models, such as
BERT (bidirectional encoder representations from transformers)
and its derivatives [41,42], to encode text information.

The fifth limitation came from the feature analysis. In this study,
we only explored the correlations between the selected features
and the occurrences of SSIs via the LASSO models, with
detailed epidemic investigations and causal inferences remaining
beyond the scope of this study. Moreover, because the LASSO
models were trained using incomplete data and were not adjusted
for potential confounders, the statistical inferences would be
biased and the results would be hard to explain.
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Future studies will focus on four points. First, we will try various
new language models with deep transformers; encode various
text information types, such as admission records, progress
notes, and surgical records; and evaluate the models’
performance. Second, we will confirm the effectiveness of our
AMRAMS among multiple medical sites. Third, we will embed
the AMRAMS into the EMR system and evaluate whether it
can ultimately help reduce the occurrence of SSIs and optimize
medical decision making. Fourth, our multimodal RAM solution
could be validated for many other similar scenarios, such as
syndromic or notifiable disease surveillance, adverse event
monitoring, or ICD-10 coding support, in which both structured
and free-text features would contribute to the judgement of final
outcomes.

Conclusions
Our artificial intelligence–based multimodal risk assessment
models for SSI based on EMR data and deep learning methods
had significant advantages in terms of accuracy, compared with
other conventional machine learning methods and the NNIS
risk index. The semantic embeddings of clinical notes, whether
generated using a simple max-pooling method or a deep learning
method, improved the model performance further without any
handcrafted feature engineering. Our models could replace the
NNIS risk index to provide personalized guidance for the
preoperative intervention of SSI. Through this case, we offered
an easy-to-implement solution for building multimodal RAMs
for similar scenarios, based on both structured and free-text
data. Future studies should validate the generalization,
reproducibility, and clinical impact in other medical settings.
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