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Abstract

Background: The radial artery pulse wave is a widely used physiological signal for disease diagnosis and personal health
monitoring because it provides insight into the overall health of the heart and blood vessels. Periodic radial artery pulse signals
are subsequently decomposed into single pulse wave periods (segments) for physiological parameter evaluations. However,
abnormal periods frequently arise due to external interference, the inherent imperfections of current segmentation methods, and
the quality of the pulse wave signals.

Objective: The objective of this paper was to develop a machine learning model to detect abnormal pulse periods in real clinical
data.

Methods: Various machine learning models, such as k-nearest neighbor, logistic regression, and support vector machines, were
applied to classify the normal and abnormal periods in 8561 segments extracted from the radial pulse waves of 390 outpatients.
The recursive feature elimination method was used to simplify the classifier.

Results: It was found that a logistic regression model with only four input features can achieve a satisfactory result. The area
under the receiver operating characteristic curve from the test set was 0.9920. In addition, these classifiers can be easily interpreted.

Conclusions: We expect that this model can be applied in smart sport watches and watchbands to accurately evaluate human
health status.

(JMIR Med Inform 2020;8(6):e18134) doi: 10.2196/18134
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Introduction

Pulse-taking is widely used in disease diagnosis and personal
health monitoring. For example, in traditional Chinese medicine
(TCM), pulse-taking is an important approach to differentiate
TCM syndrome patterns in which the physician uses their fingers
to detect patients’ pulsations. The radial artery is the most

frequently used position for pulse-taking because the pulse wave
of the radial artery contains abundant physiological information
and is convenient for pulse-taking due to the accessibility of
the vessels [1]. The development of smartwatches in recent
years, coupled with pulse-taking analysis applications, enables
individuals to monitor their pulse rates and physiological state
throughout the day. As the number of smartwatch users expands,
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researchers are increasingly attempting to detect a variety of
subclinical diseases such as atrial fibrillation (AF) by radial
artery pulse waves in the early stages of disease progression.
However, the majority of existing approaches are based on heart
rate variability, which ignores important information contained
in the changing pulse wave during a single cardiac cycle. The
deep neural network models used for prediction are sometimes
difficult to interpret [2]. Recently, researchers in the field of
TCM diagnostics and hemodynamics have successfully utilized
the information contained in single-period pulse waves not only
to differentiate traditional syndrome patterns and diseases such
as hypertension, diabetes, and other diseases not directly related
to heart rhythm but also to fit modern clinical indices through
objective recording [3-7]. Incorporating single-period pulse
wave signals in smartwatches may improve the accuracy of
existing applications in an interpretable way and expand the
application scope of radial artery pulse waves.

In general, the radial artery pulse wave is a periodic signal.
Therefore, it is necessary to segment the whole pulse wave
series into periods before performing data mining of
single-period pulse waves. However, the radial artery pulse
wave signal is so weak that it is vulnerable to interference (such
as breathing or vibration) during the acquisition process. These
interferences can lead to waveform distortion, which increases
the difficulty of segmenting the periods. In addition, no currently
existing algorithm can extract single-period pulse wave signals
from whole pulse wave series without error. Therefore, some
pulse wave segments (abnormal segments) obtained by period
segmentation are often remarkably different from the normal
waveforms (Figure 1). These abnormal waveform pulses may
affect future prediction results. As a result, automatically
identifying these outliers from single-period pulse wave signals
will significantly improve the accuracy of analysis.

Figure 1. Normal and abnormal pulse wave segments. A radial artery pulse wave series was segmented into periods by the segmentation method
detailed in the Preprocessing section with α=.7. The segments of the original waveform between two adjacent segmentation points are regarded as
single-period pulse waveforms. A and B show the abnormal segments caused by segmentation error and serious interference, respectively; C shows a
normal segment; t (s): time in seconds.

The early approach was to omit the waveform outliers that were
too long or too short [8]. However, this method cannot be used
to identify outliers with normal lengths. Thakker and Vyas [9]
used dynamic time warping as a similarity measure in a pulse
series in which the most dissimilar segments in the pulse series
were classified as outliers. However, for patients with atrial
fibrillation or other specific diseases, abnormal waveforms often
appear in one series. In addition, significant outside interference
may drastically reduce the number of normal segments. Due to

these factors, it is difficult to discriminate between normal
signals and outliers using this algorithm. This similarity is not
the only important criterion for classifying pulse segments.
Wang and Lu [10] utilized a k-nearest neighbor (KNN) classifier
based on manual label data to measure the quality of the
segmented single periods. However, the details and accuracy
of the classifier were not shown. In a recent study, a method
based on the Hilbert-Huang transform and an autoregressive
moving average model was proposed to remove noise-induced
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mutations [11]. The accuracy of this method could reach 91.8%
in a sample size of 207. However, because this method works
on the entire pulse series, segmentation mistakes could not be
identified. A consensus on the best method to evaluate the signal
quality of a single-period pulse wave has not been reached. The
purpose of this study was to utilize machine learning models to
develop a signal quality evaluation model that can separate
normal segments and abnormal segments. We expect that the
model can be applied to help smart sport watches and
watchbands evaluate human health status more accurately.

Methods

Data
In this study, the original radial artery pulse wave signals were
taken from 390 outpatients at Shanghai Shuguang Hospital. All
samples were split into an 80/20 ratio for training and testing
sets. In other words, the data set was randomly divided into a
training set with a capacity of 313 and a testing set with a
capacity of 77.

Preprocessing
The steps of preprocessing, including segmentation and
standardization, are illustrated in Figure 2.

Figure 2. The steps of data preprocessing. During segmentation, to reduce the influence of baseline wander, the derivative of the original signal was
used to locate segmentation points by the threshold method. The corresponding segments of the original signal between two adjacent period segmentation
points were single-period pulse wave segments. During standardization, each segment was rescaled and resampled to standardize its amplitude and
length.

A simple segmentation method is the threshold method, which
regards the minimum point below a specific threshold or the
maximum point above a specific threshold as the period
segmentation point. However, baseline wander is one of the
most common forms of interference in pulse wave signals. Thus,

it is difficult to apply the threshold method to the original signal.
In contrast, as shown in Figure 3, the derivative of the original
signal is almost entirely unaffected by baseline wander and also
shows clearer segmentation points. Therefore, the threshold
method can be used in the derivative for segmentation.

Figure 3. Sample pulse wave with baseline wander and the derivative of the pulse wave with an applied threshold. t (s): time in seconds.
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To collect more normal and abnormal segments with different
shapes, 5 different thresholds (between the maximum value of
the derivative and 0) were selected for segmentation. If M is
the maximum value of the derivative and α is a coefficient
between 0 and 1, the threshold is given by

threshold = Mα (1)

In this study, for each patient’s data, α takes 5 different values:
0.1, 0.3, 0.5, 0.7, and 0.9.

During segmentation, all threshold points of the derivative were
first found. The first zero point of the derivative before each
threshold point was defined as the period segmentation point,
and the corresponding segments of the original signal between
two adjacent period segmentation points were single-period
waveforms. To avoid the presence of repetitive waveforms with
significant similarities in the data set, only 5 segments were
randomly selected for each threshold (if sufficient). No more
than 25 segments were obtained from each patient by repeating
the above process with different thresholds.

After segmentation, each segment was manually labeled as
“normal” or “abnormal” by two expert annotators. A normal
segment was required to have similar lengths, amplitudes, and
shapes to most other segments in the same pulse series; be free
of serious interference that could not be explained by the laws
of physiology and pathology; have an approximately horizontal
baseline, in which the difference between the values of the start
point and the end point was not more than half the amplitude;
and include only one complete cardiac cycle. The segments in
which the two experts could not reach a consensus on their
labels were not included in subsequent analyses. A total of 6832
segments were collected in the training set, of which 3974
(58.2%) were normal segments and 2858 (41.8%) were
abnormal segments. In addition, a total of 1729 segments were
collected in the testing set; 965 normal segments (55.8%) and
764 abnormal segments (44.2%) were identified.

The amplitudes and lengths of the segments differed from one
another. To reduce the impact on the classification process, the
original signals were standardized before classification. The
segments were rescaled so that all values fell in the interval
(0,1). If X = {x1, x2, …, xn} was a segment, the rescaled segment
Y was given by

Cubic spline interpolation was used to resample the segments
to unify their lengths to a standard length. In this study, the trial
values for the standard length were integers between 3 and 100.
In general, the frequency range that contains useful information
is below 25 hertz, and the cardiac cycle is no longer than 2
seconds. 100 sampling points are sufficient to contain all the

useful information in one period. Hence, integers greater than
100 were not tested in this study.

Classification Methods
All 100 sampling points of the pulse wave segments were used
as input features of the classifiers in this study. Three machine
learning algorithms were applied to develop the classifiers:

1. KNN: The n_neighbors parameter was determined through
cross-validation; the trial values for n_neighbors were
integers in the range of 1-50.

2. Logistic regression: To reduce the influence of
multicollinearity, L2 regularized logistic regression was
chosen.

3. Support vector machine: support vector machine models
with the radial basis function kernel (SVM-RBF), linear
kernel (SVM-Linear), and 3-degree polynomial kernel
(SVM-Poly) were applied. The cost and gamma parameters
were determined through cross-validation, with trial cost
values of 0.01, 0.1, 1, 10, and 100 and trial gamma values
of 0.001, 0.01, 0.1, 1, and 10.

To estimate the accuracy of the models (out-of-sample
accuracy), 10-fold cross-validation was applied. The most
appropriate machine learning model was chosen by comparing
the sensitivity, specificity and accuracy of the different
algorithms. Based on the selected model, a reasonable value of
standard input length was then identified by comparing the
classification accuracies with different standard lengths.

In addition, the pulse waveforms that point at different positions
in a cardiac cycle have different physiological significance and
may influence the signal quality evaluation to varying degrees.
To evaluate the contribution of each feature to the classification,
recursive feature elimination was used to rank the features
[12,13]. By excluding features one by one, it is possible to
identify the smallest subset of features that can achieve
satisfactory classification performance.

All the above steps were implemented in the training set. The
final prediction model was validated on the testing set.

Results

Accuracy, Sensitivity, and Specificity of the Three
Classification Models
The maximum accuracy, sensitivity, and specificity of each
classification algorithm are presented in Table 1. All values are
greater than 0.94, which indicates that all three algorithms
performed similarly and effectively in waveform classification.
To increase the simplicity and interpretability of the model,
logistic regression was selected for further investigation.
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Table 1. Comparison of the three classification algorithms, ±σ.

SpecificitySensitivityAccuracyMethod

0.9494±0.00660.9901±0.00850.9732±0.0086KNNa

0.9546±0.01280.9801±0.01410.9698±0.0122Logistic regression

Support vector machine

0.9691±0.00740.9862±0.01270.9797±0.0084SVM-RBFb (cost=10, gamma=0.1)

0.9540±0.01400.9814±0.01370.9703±0.0124SVM-Linearc (cost=0.1, gamma=0.001)

0.9594±0.01090.9866±0.01100.9756±0.0103SVM-Polyd (cost=1, gamma=0.1)

aKNN: k-nearest neighbors; n=6.
bSVM-RBF: support vector machine-radial basis function kernel.
cSVM-Linear: support vector machine-linear kernel.
dSVM-Poly: support vector machine-3-degree polynomial kernel.

Standard Length
Figure 4 shows the performance of the logistic regression model
with different standard lengths. When the standard length was
>15, the model was stable and performed well; when the

standard length was <15, the performance of the classifier
deteriorated gradually as the standard length decreased.
Therefore, 15 was selected as a reasonable value of the standard
length for simplification of the model.

Figure 4. Accuracy, sensitivity, specificity, and standard deviation intervals of the classifier with different standard lengths.

Each segment was resampled using the standard length of 15,
and the importance ranking of the 15 feature points (Table 2)
was then calculated based on the recursive feature elimination
algorithm. When we sequentially eliminated the features one
by one, as illustrated in Figure 5, the classifier performed equally
well when the number of features was equal to or greater than

4. As shown in Table 2, the four most important feature points
are the third, 14th, fourth, and first feature points. That is to say,
a satisfactory logistic regression classification model can be
established by using only four features (the third, 14th, fourth,
and first points of the 15 feature points).
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Table 2. Importance ranking of the feature points.

Position of the feature pointImportance ranking

31

142

43

14

75

156

137

118

69

910

1011

212

813

514

1215

Figure 5. Accuracy, sensitivity, and specificity of the classifier with sequentially eliminated input features and their standard deviation intervals.

Final Prediction Model
If xn is the value of the nth feature point, and P is the probability
that the segment is normal, the logistic regression classifier
identified based on the training set can be given by

P = sigmoid(–9.6919x1 + 8.2570x3 + 8.9216x4 – 7.9818x14 –
10.8732) (3)

where

The prediction model indicates that when x1 and x14 are close
to 0 and x3 and x4 are sufficiently large, the corresponding pulse
wave segment can be classified as normal.

We applied this classifier to the testing set, and the receiver
operating characteristic (ROC) curve is shown in Figure 6. The
area under the curve (AUC) was 0.9920. Using the default
threshold of 0.5, the accuracy, sensitivity, and specificity of the
classifier were 0.9607, 0.9741, and 0.9437, respectively. This
is consistent with the performance on the training set and
achieves the expected result.
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Figure 6. ROC curve of the final logistic regression classifier on the testing set. AUC: area under the curve.

Discussion

In this paper, we compared the performance of three
classification algorithms with different input features in the
signal quality evaluation of single-period pulse waves. It was
discovered that a logistic regression classifier with only four
input features could achieve a satisfactory result. The equation
of the final prediction model reveals that a pulse wave segment
will be classified as normal only when x1 and x14 are close to 0
and x3 and x4 are sufficiently large. This classifier is simple;
however, it is consistent with the physiological process of the
pulse wave.

A pulse wave is excited by cardiac ejection. As shown in Figure
7 [14,15], the fluctuation of the radial artery pulse wave
corresponds to the events constituting the cardiac cycle.
Therefore, a radial pulse wave is very similar to an aortic pulse

wave. The pressure begins to rise rapidly as the aortic valve
opens and ventricular ejection occurs. Shortly after ejection
begins, the pressure reaches a peak and then gradually decreases.
On the other side, the aortic pulse wave is greatly influenced
by the reflection wave from the lower limbs, whereas the radial
pulse wave is mainly influenced by the reflection wave from
the upper limbs [16]. The peak of a radial pulse wave occurs
much earlier than that of an aortic pulse wave due to differences
in timing of the wave reflections in the upper limbs and the
relatively distant lower body. When the reflection wave from
the lower limbs and aortic valve closure propagates to the radial
artery, the radial pulse wave correspondingly increases for a
short time. These increases may not occur due to some
physiological or pathological factors [17]. However, the rapid
rise and gradual decline are essential features of a normal radial
artery pulse wave.

Figure 7. Comparison of cardiac pressure and radial artery pressure in the cardiac cycle. The fluctuation of the radial artery pulse wave corresponds
to the events constituting the cardiac cycle. For a normal waveform, both the starting and ending points should be close to 0, and the peak should appear
near the third feature point. mm Hg: millimeters of mercury.
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For a normal waveform, it is apparent that both the start and
end points should be close to 0. A high start or end point
indicates that the waveform exhibits significant interference.
As a result of the relatively long duration of the diastole, the
pulse wave remains low and steady at the end of the diastole.
Both x14 and x15 are small in normal waveforms. However, as
x15 is also the starting point of the next cardiac cycle, it is more
likely to increase due to cardiac activity before systole and
inaccurate cycle division. x14 is thus more representative of the
end point than x15. Correspondingly, at the beginning of the
cardiac cycle, due to the rapid rise of the pulse wave in the
systole, x2 is not more representative than x1. Therefore, x1 and
x14 were incorporated into the model to indicate the conditions
of the starting and ending points. In addition, x1 and x14 of an
incomplete cycle will not be sufficiently small for the signal to
be considered normal because the segmentation points of an
incomplete cycle only contain signals of part of the cardiac
cycle as opposed to both ends. Therefore, both x1 and x14 can
aid identification of the qualities of segmentation.

The peak of the radial artery pulse wave usually appears near
x3. Therefore, under normal conditions, x3 should be close to 1.
Due to the relatively slow rate of pressure drop during systole,
x4 does not have sufficient time to become very small. If either
x3 or x4 is not sufficiently large, it is sufficient to prove that the
waveform is abnormal. This can identify external interference;
for example, the maximum value will not appear near x3 due to
the elevation of the latter part of the waveform, which can also
lead to an anomaly in x14. Furthermore, this change can aid the
identification of segmentation errors. If we regard multiple
cycles as one cycle, the first peak appears too early; as a result,
x3 and x4 are not sufficiently large in most cases. If 5 or more
cycles happen to be segmented together, one of x3 or x4 may be
close to 1. However, under these circumstances, the waveforms
rise and fall much more rapidly; thus, it is difficult for x3 and
x4 to maintain large values simultaneously. Therefore, the
incorporation of x3 and x4 into the model can help classify the

waveform by detecting whether the peak of the waveform is
located at the correct position.

In summary, the four input features of the logistic regression
model are not only simple and effective but also interpretable.
However, this model also has limitations. Most of our samples
are free of heart disease, and the corresponding pathological
characteristics will not be shown in the data. Consequently, this
classifier only aimed to investigate common normal radial artery
pulse waves. When searching for differences in the pulse
waveforms of individuals without heart disease, we can
effectively identify and eliminate abnormal segments with this
classifier. However, for patients with some specific diseases,
their pulse waves may change due to various pathological
factors, which will ultimately lead to errors in classification.
An example of this is sinus arrest, a condition in which the sinus
node does not produce an impulse in one or more cardiac cycles;
this causes the heartbeat to pause for a while, which will
generate a long diastole segment in the pulse wave. This is a
very important pathological signal; however, our model will
classify it as a segmentation error due to the premature peak
value. On the other hand, we may be able to use this property
to improve the accuracy of some applications, such as
distinguishing between premature contraction and atrial
fibrillation. Premature contraction is the main cause of false
positive error in AF detection algorithms [18]. There is still a
certain proportion of normal segments in the pulse waves of
patients with premature contraction, whereas AF will decrease
the frequency of normal segments due to its irregular stroke
volume and cardiac rhythm. This classifier may help distinguish
the two cases by determining the ratio of normal segments to
abnormal segments in the pulse wave series. In general, this
classifier works well in normal cases, and its application scope
can potentially expand according to its physiological
significance. However, for some specific diseases, this classifier
may lead to misclassification and even loss of key information.
In the future, we hope to study the pulse wave characteristics
of different diseases and distinguish them from random
interference and the pulse wave characteristics of healthy people
to subsequently improve the classifier and expand its application
scope based on the new discoveries.
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