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Abstract

Background: Traditional Chinese medicine (TCM) has been shown to be an efficient mode to manage advanced lung cancer,
and accurate syndrome differentiation is crucial to treatment. Documented evidence of TCM treatment cases and the progress of
artificial intelligence technology are enabling the development of intelligent TCM syndrome differentiation models. This is
expected to expand the benefits of TCM to lung cancer patients.

Objective: The objective of this work was to establish end-to-end TCM diagnostic models to imitate lung cancer syndrome
differentiation. The proposed models used unstructured medical records as inputs to capitalize on data collected for practical
TCM treatment cases by lung cancer experts. The resulting models were expected to be more efficient than approaches that
leverage structured TCM datasets.

Methods: We approached lung cancer TCM syndrome differentiation as a multilabel text classification problem. First, entity
representation was conducted with Bidirectional Encoder Representations from Transformers and conditional random fields
models. Then, five deep learning–based text classification models were applied to the construction of a medical record multilabel
classifier, during which two data augmentation strategies were adopted to address overfitting issues. Finally, a fusion model
approach was used to elevate the performance of the models.

Results: The F1 score of the recurrent convolutional neural network (RCNN) model with augmentation was 0.8650, a 2.41%
improvement over the unaugmented model. The Hamming loss for RCNN with augmentation was 0.0987, which is 1.8% lower
than that of the same model without augmentation. Among the models, the text-hierarchical attention network (Text-HAN) model
achieved the highest F1 scores of 0.8676 and 0.8751. The mean average precision for the word encoding–based RCNN was 10%
higher than that of the character encoding–based representation. A fusion model of the text-convolutional neural network,
text-recurrent neural network, and Text-HAN models achieved an F1 score of 0.8884, which showed the best performance among
the models.

Conclusions: Medical records could be used more productively by constructing end-to-end models to facilitate TCM diagnosis.
With the aid of entity-level representation, data augmentation, and model fusion, deep learning–based multilabel classification
approaches can better imitate TCM syndrome differentiation in complex cases such as advanced lung cancer.

(JMIR Med Inform 2020;8(6):e17821) doi: 10.2196/17821
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Introduction

Lung cancer is a source of hardship worldwide, with high
incidence and mortality [1,2]. According to cancer registration
data collected by the Chinese National Central Cancer Registry,
over 650,000 people were diagnosed with lung cancer in 2011
[3]. Standard treatment options for lung cancer are surgery,
radiotherapy, and chemotherapy [4]. However, patients with
low health status, such as patients in advanced stages, tend to
have low tolerability of regular treatments [5]. As a respected
component of traditional Chinese medicine (TCM), Chinese
herbal medicine possesses the advantages of availability,
efficacy, and lower toxicity than chemotherapy and radiotherapy
[6]. Moreover, its benefits and underlying mechanisms in cancer
therapy have been elucidated by a body of research [7-10]. After
long-term practice, clinical evidence has also shown that TCM
for cancer therapy can stabilize tumor lesions, enhance quality
of life, and prolong survival [11,12]. More than 1 billion TCM
treatments are performed in China every year according to the
China Public Health Statistical Yearbook [13], and this figure
is expected to increase further; meanwhile, the number of
high-level TCM experts is insufficient to support the vast need
for TCM.

The efficacy of TCM treatment is based on syndrome
differentiation, a diagnosis method in TCM that stratifies
patients’conditions with their respective disease and then guides
the choice of TCM intervention [14]. Master TCM syndrome
differentiation is an intricate and time-consuming process.
Because the aptitudes of clinicians vary, it can be difficult to
maintain stable efficacy when treating a given disease.
Therefore, differentiating syndromes when confronted with
complex and aggressive cancers can be challenging [15].

From the perspective of informatics, the TCM syndrome
differentiation procedure can be regarded as supervised
classification. Statistical machine learning algorithms have been
applied to establish TCM diagnosis models [16], such as naïve
Bayes [17], decision tree [18], support vector machine [19], and
K-nearest neighbor [20]. However, in clinical practice, patients
can concurrently suffer from multiple diseases. In this case,
TCM diagnoses of several syndromes can coexist. In this
circumstance, multilabel classifiers are applied to address a
problem in which a set of syndromes designates one sample.
Utilizing inquiry diagnosis, Liu et al [21] constructed coronary
heart disease syndrome differentiation models through various
multilabel learning algorithms. Their experiment showed that
the multilabel k-nearest neighbor algorithm outperformed other
algorithms. Wang et al [22] formulated chronic fatigue syndrome
differentiation as a multilabel learning task. Combining random
forest, conformal prediction framework, and problem
transformation methods, they established a reliable diagnostic
tool with large-scale confidence levels from 80%-100%.

In accordance with the universal approximation theorem, a deep
neural network with a given number of hidden layers should be
able to approximate any function that exists between input and
output [23]. With the proliferation of neural networks and the
growing body of TCM clinical records, syndrome differentiation
modeling approaches adopting deep neural networks have

become a trend. Liu et al [24] collected 919 TCM inquiry
diagnosis scales and established a deep belief network based
on a multilabel model for chronic gastritis TCM syndrome
diagnosis. This network demonstrated superior performance for
all five evaluation measures. Moreover, the average precision
was 2% higher than that of the second best performing
algorithm. Xu et al [25] designed an artificial neural network
with 10 hidden layers for chronic obstructive pulmonary disease
TCM syndrome differentiation. According to the Global
Initiative for Chronic Obstructive Lung Disease, 18,471
structured TCM outpatient medical records were separated into
4 subgroup datasets, and the subgroup artificial neural network
models were trained. The evaluation indicated that subgroup
syndrome differentiation models outperformed the full-group
model.

Due to the flexibility and compactness of TCM clinical records,
datasets used in syndrome classifier training tend to be
constructed manually from free-text medical records to
reproduce the syndrome differentiation process. This is a
labor-intensive task that requires extensive medical expertise;
some information loss is inevitable [26,27]. Considering the
inaccessibility of TCM literature, Hu et al [28] modeled
yin-yang syndrome differentiation as a text classification task.
By employing a convolutional neural network (CNN) and the
fastText classifier, two sets of experiments were conducted.
The results showed that the CNN system using 5-gram
characters as its inputs was the most accurate.

The aforementioned studies denote that weighted mathematical
logic operation–based models can be used for intelligent TCM
syndrome differentiation. However, symptom classification and
the determination of diagnostic thresholds are subjective; thus,
many adjustments are needed. Moreover, disputes persist
regarding the objectification and correction of the weighted
coefficient. Furthermore, most TCM syndrome differentiation
models assume that input variables such as symptoms are
mutually independent. This assumption does not conform to
clinical observations.

To better generalize the experience of TCM experts, we modeled
syndrome differentiation for lung cancer in the form of medical
record text classification. As in previous research that seeks to
uncover relationships between symptoms and herbs and between
syndromes and prescriptions [29], this work models TCM
syndrome differentiation for lung cancer and the procedure for
TCM lung cancer diagnosis. The contributions of this work are
as follows:

1. Syndrome factors, rather than the syndromes themselves,
are adopted and standardized as labels to address the
redundancy and changeability of TCM syndromes.

2. Two encoding gradients represent medical entities by
applying Bidirectional Encoder Representations from
Transformers (BERT) and conditional random fields (CRF)
methods.

3. A data fusion approach capitalizes on all models to improve
performance by building ensemble models.

4. Two data augmentation approaches were used to overcome
the difficulties of ill-posed problems of samples and
overfitting.
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Methods

Study Design
Our work can be divided into entity-level representation learning
and multilabel classifier modeling. As classified objects, TCM
syndromes were split into sets of syndrome factors according
to the principle of TCM syndrome factor differentiation [30].

Medical record texts were sent to the established networks to
learn words and encode characters; then, the titles were
extracted. Considering the difficulties of ill-posed problems of
samples and overfitting, two data augmentation approaches
were added. Finally, a model fusion framework was constructed.
The optimum parameters for each deep learning algorithm and
the best-performing algorithm were selected separately through
the validation set. The framework is shown in Figure 1.

Figure 1. Framework of the end-to-end traditional Chinese medicine syndrome differentiation model.

Entity-Level Representation
We employed the BERT-CRF framework [31,32] to build
entity-level representation. We used both character and
word-row texts as input for the pre-trained BERT model to
obtain semantic coding. We then saved it as a code list according
to the word/character sequence. Meanwhile, a CRF architecture
was assembled as the output layer to predict the text sequence
labels and recognize the medical entities. Based on the semantic
code list and the recognized entities, we generated entity-level
representation with concatenating individual code in the order
of the defined code list. We believed that the entity-level strategy
would exploit the prior knowledge of TCM medical information
that was implicitly learned during training. Multilabel classifier
modelling was used for syndrome differentiation.

As shown in Figure 2, the deep learning–based syndrome
differentiation models consisted of a classification layer and a
sigmoid activation function. The models were fed by
preprocessed TCM medical records and produced a sequence
of label scores corresponding to each category. If the confidence
score was higher than the threshold (ie, 0.5), the category label
was added to the final syndrome differentiation.

Let χ = (x1, x2, x3, …, xN) denote the N dimension sample space
of a medical record text and Υ = (y1, y2, y3, …, ym) denote the
set of lung cancer syndrome factor labels. Formally, the

syndrome differentiation multilabel learning task can then be
defined as follows:

The multilabel task is to learn a function f: χ 2Υ from a given
dataset ((x1, Y1), (x2, Y2), (x3, Y3), …, (xN, YN)), where xi∈χ and
Yi ⊆ Υ are the m-dimension label sets.

The universal approximation theorem indicates that a
feed-forward deep network with a single hidden layer containing
a finite number of neurons can approximate continuous functions
on compact subsets under mild assumptions on the activation
function [33]. In our experiment, the multilabel models with

deep learning approximated the function f: χ 2Υ and obtained
the syndrome factor prediction labels in lung cancer diagnosis.
Our experiment used fastText, text-convolutional neural network
(Text-CNN), text-recurrent neural network (Text-RNN),
recurrent convolutional neural network (RCNN), and
text-hierarchical attention network (Text-HAN) models to
approximate the function f.

For a deep learning–based multilabel classifier, the network
parameters in the label matching module must be learned from
a training dataset. The classifier is represented as C. For N-class
multilabel classification, we used binary cross-entropy loss
function and added L2 regularization to all model parameters.
The total function is as follows:
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(1)

where y*i indicates the ground truth predictions of the ith sample
from the training dataset, yi, is the label of the task, Φ denotes
all the parameters of the model, and λΦ is the regularization
hyperparameter.

We converted the multilabel classification to multiple binary
classifications. The confidence score for each label in the
prediction results was then obtained with multiple logistic

regression models. We employed the sigmoid activation function
for each label to compute the confidence score through a linear
combination of each vector as

score = sigmoid(wiO)

(2)

where O is the output of the last layer and wi indicates the
weight. In our experiment, if the confidence score for each
category was >0.5, the corresponding label was included in the
prediction results. If the score was <0.5, the corresponding label
was not included in the prediction results.

Figure 2. Schematic of the deep learning–based multilabel classifier.

Deep Learning–Based Classifiers
fastText [34] was used as the baseline model in our experiments.
fastText is often on par with deep neural networks in terms of
classification accuracy.

The first classifier was a Text-CNN model [35]. The input word
was embedded to obtain a 3D sensor. Next, a convolution layer
with multiple filter widths of varying sizes and pooling layers
was adopted to extract local features. We then concatenated the
sigmoid function with the final fully connected layer. In this
way, the Text-CNN could capture partial textual features.

The text-RNN model uses bidirectional long short term memory
to extract context information and global information about
sentences [36]. A traditional text-RNN uses the last hidden layer
as the classification. To extract context information for each

word, we used k-Max pooling for all hidden elements. We then
used a fully connected layer with a sigmoid function to classify
the lung cancer syndromes. In this experiment, we applied a
text-RNN model with N features as inputs per sentence.

In the RCNN model [37], a recurrent structure is utilized to
capture as much contextual information as possible when
learning word representations. This may introduce less noise
than traditional window-based neural networks. We employed
a convolution layer and max pooling layer to automatically
judge which words were crucial in the text classification and to
capture the key components in the text. Then, the lung cancer
syndrome was classified using a fully connected layer with a
sigmoid function.

The Hierarchical Attention Network (HAN) [38] mirrors the
document’s structure. It progressively constructs a document
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representation by aggregating important words into sentence
representation and then aggregating important sentence
representation into document representation. Therefore, two
bi-directional Gate Recurrent Unit (bi-GRU) models are set to
acquire the varying levels of sequence encoding. Furthermore,
considering the fact that the importance of words and sentences
is context-dependent, two levels of attention layers are added
separately after the sequence encoder. In this way, the model
can vary the amount of attention to individual words and
sentences when constructing the document’s representation.

Data Augmentation
To address possible overfitting, we added two data augmentation
approaches (ie, we shuffled the sentence randomly and dropped
words with a given probability). Consider the sentence ”胸片
结果发现胸腔积液,去胸科医院排除结核” (chest radiography
examination shows pleural effusion, went to Chest Hospital to
exclude the possibility of TB). Using the shuffle method, the
sentence may become “排除结核去胸科医院，结果发现胸
腔积液胸片” (to exclude the possibility of a TB patient going
to the Chest Hospital, the examination shows pleural effusion
chest radiography); in the dropping method, it may become “胸
片胸腔积液，胸科排除结核” (chest radiography pleural
effusion, Chest to exclude the possibility of TB). During the
model training batch, we used the shuffle mechanism and
dropping mechanism to avoid overfitting and to ensure that the
models demonstrated differences.

Evaluation Metrics
We used evaluation metrics to measure the performance of the
learning methods in our experiment. We employed
micro-averaging methods to average the classes. In this way,
each class could be summed and their averages could be
computed.

Precision
Precision and recall are useful prediction success evaluation
metrics when a class is imbalanced. Precision is the measure of
the relevancy of the results and was computed as follows:

(3)

where f(xi) is the output classifier function and yi indicates the
prediction results.

Recall
The recall is a measure of how many relevant results are
returned:

(4)

where f(xi) is the output classifier function and yi indicates the
prediction results.

F1 Score
The F1 score is defined as the harmonic mean of the precision
and recall:

(5)

Hamming Loss
In simplest terms, the Hamming loss is the percentage of labels
that are incorrectly predicted (ie, the percentage of wrong
labels). The smaller the Hamming loss value, the better the
performance:

(6)

where f(xi) is the output classifier function, ∆represents the
symmetry difference between the predicted label set and the
true label set, and N indicates the class number.

Mean Average Precision
The mean average precision is a score that is assigned to
multilabel tasks. Its value is between 0 and 1. The higher the
value, the better the performance.

(7)

Area Under the Curve
The area under the curve (AUC) is one of the most important
evaluation metrics for any classification model. The AUC refers
to the area under the receiver operating characteristic curve.

Results

Dataset
The dataset used in the experiment consisted of 1206 clinical
records of patients diagnosed with non–small cell lung cancer.
The records were collected by Professor Zhongying Zhou, a
renowned TCM master with expertise in lung cancer treatment.
The medical records were composed of chief complaints,
anamnesis, history of present illness, lab test results, four TCM
examinations, and syndrome differentiation results; each visit
resulted in several TCM syndrome diagnoses. Due to
redundancy, the collected syndrome set required standardization,
while syndromes in the dataset had distinctive personal
characteristics. This causes a mapping problem in the published
TCM syndrome standards that have been prevalent for decades
[39]. To preserve as much of the original diagnosis as possible,
we transformed each syndrome into a set of syndrome factors.
These were regarded as the assembly parts of the TCM
syndromes. The feasibility of this transformation has been
discussed by Luo et al [40]. The splitting followed TCM
syndrome factor differentiation [30]. Before factorizing, there
were nearly 600 distinctive TCM syndrome labels, with 2-4
labels for each record. When the syndromes were replaced by

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e17821 | p. 5https://medinform.jmir.org/2020/6/e17821
(page number not for citation purposes)

Liu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


TCM syndrome factors, only syndrome labels were left, with
2-6 labels for each record. The 12 obtained syndrome factor

labels and their frequencies are shown in Table 1.

Table 1. TCM syndrome factors for lung cancer and their frequencies.

FrequencySyndrome factor

1069Yin deficiency

1052Qi deficiency

1036Phlegm

1035Stasis

766Cancer toxin

522Irascibility

294Wind

79Thirst

72Dampness

27Yang deficiency

19Qi stagnation

6Blood deficiency

Model Training
Our experimental results were obtained by 10-fold
cross-validation. The entire dataset of 1206 medical records
was randomly split into 10 subsets of equal size, each consisting
of 120 medical records. In each of the 10 folds, a model was
trained on 8 subsets, tested on 1 subset, and validated on the
remaining subset. Then, the performance was averaged over
the 10 folds.

For algorithm robustness and efficiency, we applied dropout to
each pooling, highway, and long short term memory (LSTM)
layer. For the base model, the dropout probability was 0.5, and
the learning rate was set at 0.01-0.03. The hidden state
dimensions in Bi-LSTM were 256. All fully connected layers
contained 512 units. Moreover, the initialization network
weights were sampled in a Gaussian distribution, and the bias
was initialized to 0. The minimum batch size was set to 1024.
To prevent overfitting during the training process, the L2
(0.00002) regularization was added for all model parameters,
and we directly minimized the loss function using Adam
stochastic optimization [41].

The above experiments were implemented using a computer
equipped with 2 GeForce GTX 1080 Ti graphics processing
units (Nvidia Corporation).

Experimental Process
The performance of the models without and with data
augmentation is shown in Tables 2 and 3. When character
encoding–based representation was used as the input, the
Text-HAN, RCNN, and fastText models performed best for all
indicators when data augmentation was applied. Moreover, the
micro-F1 scores of all five models improved. For example, in
the word-encoding RCNN results with the convergence model,
the F1 of RCNN with augmentation was 0.8650%-2.41% higher
than that of RCNN without augmentation. The Hamming loss
of RCNN with augmentation was 0.0987%-1.8% lower than

that of RCNN without augmentation. These results reveal that
data augmentation methods can mitigate overfitting problems.

Comparing the models, the micro-F1 scores of the Text-HAN
model reached 0.8676 and 0.8751 for the character
encoding–based and word encoding–based classifications,
respectively; these scores are higher than those of the other four
models. This may be due to the attention mechanisms and
hierarchical structure, which can overcome the diffusion
problem of backpropagation gradients and can detect additional
information by computing the word-level and sentence-level
attention. Theoretically, Text-HAN adopts two levels of
attention mechanisms and hierarchical structures; thus, it can
consider additional text information and ignore less relevant
content when constructing the document representation.

Observing the two representation methods, the evaluation
metrics denote that the models with word-encoding
representation as input performed better for all indicators except
for the mean average precision without data augmentation; the
mean average precision of the word encoding–based RCNN
with data augmentation was 10% higher than that of the
character encoding–based RCNN.

To improve the classifier performance, we applied the hybrid
predicting layer by linear weight after the sigmoid layer and
adopted grid search methods to obtain the best hyperparameters.
The hybrid results are shown in Table 4. Compared with Table
3, the model fusion approach improved the performance,
especially the F1 score of the fusion model of Text-CNN,
Text-RNN, and Text-HAN. The F1 score was 0.8884, which
represents the best performance among the models in the
experiment. Theoretically speaking, the ensemble selection used
forward stepwise selection by building optimized Text-CNN,
Text-RNN, and Text-HAN ensemble models. This is because
the selection of features from the ensemble learning approach
can exploit the advantages of all of the models to create an
optimized fusion model with superior performance.
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Table 2. Character encoding–based multilabel classification results.

AUCaMean average precisionHamming lossF1 scoreRecallPrecisionModel

Unaugmented

0.92110.81640.12020.80530.79230.8188fastText

0.94720.86340.10420.83340.83420.8327Text-CNNb

0.90210.87310.12310.83210.82400.8403Text-RNNc

0.93240.88420.10050.84090.83520.8467RCNNd

0.92610.83610.09900.84310.85520.8314Text-HANe

Augmented

0.95200.87520.09900.84470.84470.8447fastText

0.93990.88450.10940.85000.85050.8496Text-CNN

0.93210.80100.12320.84540.86500.8267Text-RNN

0.94660.90560.09870.86500.86480.8652RCNN

0.96020.90220.08360.86760.87740.8580Text-HAN

aAUC: area under the curve.
bText-CNN: text-convolutional neural network.
cText-RNN: text-recurrent neural network.
dRCNN: recurrent convolutional neural network.
eText-HAN: text-hierarchical attention network.

Table 3. Word encoding–based multilabel classification results.

AUCaMean average precisionHamming lossF1 scoreRecallPrecisionModel

Unaugmented

0.98100.86510.0400.85900.88150.8376fastText

0.93950.84680.09900.83780.85200.8241Text-CNNb

0.94030.86790.09600.83210.82400.8403Text-RNNc

0.93210.85320.08320.85590.86590.8461RCNNd

0.92600.83660.09700.84350.85050.8367Text-HANe

Augmented

0.95200.87520.0330.87250.87600.8690fastText

0.94790.87400.08860.84840.83380.8635Text-CNN

0.96400.90520.07820.85750.87830.8377Text-RNN

0.96320.92200.05320.87080.85480.8875RCNN

0.95750.92100.07890.87510.88570.8648Text-HAN

aAUC: area under the curve.
bText-CNN: text-convolutional neural network.
cText-RNN: text-recurrent neural network.
dRCNN: recurrent convolutional neural network.
eText-HAN: text-hierarchical attention network.
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Table 4. Fusion models for multilabel classification.

AUCaMean average precisionHamming lossF1 scoreRecallPrecisionFusion model

0.94320.88360.04320.87710.86480.8898Text-CNNb and Text-RNNc

0.95240.88760.05210.88180.87320.8905Text-CNN and Text-HANd

0.96870.89680.03050.87610.86350.8890Text-RNN and Text-HAN

0.96180.90120.03120.88840.88900.8920Text-CNN, Text-RNN, and Text-
HAN

aAUC: area under the curve.
bText-CNN: text-convolutional neural network.
cText-RNN: text-recurrent neural network.
dText-HAN: text-hierarchical attention network.

Discussion

Principal Findings
Syndrome differentiation is the basis of rules, prescriptions, and
medication in Chinese medicine. The results of syndrome
differentiation directly influence clinical outcomes. Over the
long history of medical practice in China, many syndrome
differentiation methods have been proposed, such as six
meridian, wei, qi, ying, and blood, three-energizer, viscera, and
eight principles. These methods are interdependent and guide
TCM clinical practice. However, the similarities and differences
of these syndromes are difficult to distinguish, as disease
conditions change constantly in clinical practice. The greater
the number of methods for syndrome differentiation, the more
chaotic the syndrome differentiation theory. This results in
confusion regarding clinical syndrome differentiation. The
establishment of a model to imitate syndrome differentiation
has become an active research topic in TCM informatics. In
recent years, statistics-based methods such as naïve Bayes,
decision tree, and ensemble learning have been used in this
field. However, these methods need to extract features from
raw data in advance; this is a difficult task that directly
influences the outcomes. Thus, reducing this influence and
building a more reasonable model for TCM practice have
emerged as new challenges in scientific research of clinical
TCM.

The symptoms of advanced lung cancer patients are complex;
therefore, their TCM diagnoses usually combine multiple
syndromes. This combination is difficult to master. In this study,
we ensembled end-to-end classification models based on deep
learning to solve syndrome differentiation problems in TCM.
This process did not require preexisting structured TCM medical
records. In this study, we used syndrome factor sets instead of
syndromes for the TCM diagnosis. This produces superior
standardization of the various TCM lung cancer syndromes. On
this basis, we established multilabel classifiers to accomplish

lung cancer syndrome differentiation based on medical records
collected by TCM expert Zhongying Zhou. During
preprocessing, the entity-level strategy was explored due to its
ability to capture partial textual features from context
information. These features are implicitly learned during
training. Finally, we integrated five deep learning models and
conducted experiments to test their validity and benefit for TCM
syndrome differentiation. Two data augmentation methods and
model fusion strategies were utilized to address the overfitting
problem.

Limitations and Future Work
There are some limitations to our research. This experiment
focused on a small lung cancer dataset. Although some data
reinforcement methods were used, the generated data are not
authentic TCM clinical data. Thus, the ensuing effects require
further validation. In the future, we plan to incorporate an
attention capsule network, XLNet pretrained models, and a
graph neural network for lung cancer syndrome differentiation.
We also plan to popularize additional TCM syndrome
differentiation datasets and applications.

Conclusion
The end-to-end models we ensembled based on deep learning
can imitate syndrome differentiation from the perspective of
natural language processing and may have more substantial
applicability than traditional statistics-based algorithms.
Therefore, these models can be embedded in TCM clinical
information systems and provide clinical decision support for
TCM physicians during their clinical practice, especially primary
care physicians and physicians in rural areas. With the aid of
our ensembled end-to-end models, TCM experiences can be
learned and transferred to TCM clinical support systems, which
will address the imbalance of TCM medical needs and medical
supplies and provide tremendous social and economic benefit.
Moreover, these end-to-end models may enable TCM
institutions to efficiently transform their health record metadata
into data assets.
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Abbreviations
AUC: area under the curve
BERT: Bidirectional Encoder Representations from Transformers
CNN: convolutional neural network
CRF: conditional random fields
LSTM: long short term memory
RCNN: recurrent convolutional neural network
TCM: traditional Chinese medicine
Text-CNN: text-convolutional neural network
Text-HAN: text-hierarchical attention network
Text-RNN: text-recurrent neural network
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