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Abstract

Background: Clinical trials need efficient tools to assist in recruiting patients at risk of Alzheimer disease and related dementias
(ADRD). Early detection can also assist patients with financial planning for long-term care. Clinical notes are an important,
underutilized source of information in machine learning models because of the cost of collection and complexity of analysis.

Objective: This study aimed to investigate the use of deidentified clinical notes from multiple hospital systems collected over
10 years to augment retrospective machine learning models of the risk of developing ADRD.

Methods: We used 2 years of data to predict the future outcome of ADRD onset. Clinical notes are provided in a deidentified
format with specific terms and sentiments. Terms in clinical notes are embedded into a 100-dimensional vector space to identify
clusters of related terms and abbreviations that differ across hospital systems and individual clinicians.

Results: When using clinical notes, the area under the curve (AUC) improved from 0.85 to 0.94, and positive predictive value
(PPV) increased from 45.07% (25,245/56,018) to 68.32% (14,153/20,717) in the model at disease onset. Models with clinical
notes improved in both AUC and PPV in years 3-6 when notes’ volume was largest; results are mixed in years 7 and 8 with the
smallest cohorts.

Conclusions: Although clinical notes helped in the short term, the presence of ADRD symptomatic terms years earlier than
onset adds evidence to other studies that clinicians undercode diagnoses of ADRD. De-identified clinical notes increase the
accuracy of risk models. Clinical notes collected across multiple hospital systems via natural language processing can be merged
using postprocessing techniques to aid model accuracy.

(JMIR Med Inform 2020;8(6):e17819) doi: 10.2196/17819
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Introduction

Background
Worldwide, up to 77% of people with dementia are undiagnosed,
and “lack of detection is a significant barrier to improving the
lives of people with Alzheimer’s disease and other dementias,
their families and careers” [1]. This also implies that more than
three-quarters of the patient population with dementia is not
being referred for participation in clinical trials to study new

potential treatments for neurodegenerative diseases. There are
many factors influencing clinical trial recruitment for Alzheimer
disease and related dementias (ADRD), including physician
awareness of clinical trial opportunities, availability of study
partners who can provide information on the study subject’s
functioning, the invasiveness of procedures often performed in
Alzheimer trials, and concerns about labeling a patient with a
serious dementia diagnosis with no known treatment [2].
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Accurate prediction of the future onset of ADRD has several
important practical applications. In particular, it facilitates the
identification of individuals who are at high risk of developing
ADRD to support the clinical development of novel treatments.
Commonly, patients are identified after they are already
symptomatic and have already experienced significant
neurodegeneration. Screening patients into high-risk groups can
facilitate the development of programs that investigate causal
relations to specific ADRD etiologies and recruitment to clinical
trials. Persons predicted to be at risk can also be offered the
opportunity to plan more thoughtfully for the future while
retaining their cognitive function.

A number of previous dementia risk models have been published
in peer-reviewed literature [2-10]. Most of these studies used
clinical data for model estimation, which limits their
generalizability to other settings. This paper extends previous
research by basing model estimation on a very large integrated
dataset of medical claims and electronic health record (EHR)
data as well as the use of more sophisticated machine learning
estimation methods than those used in most previous studies.
The use of medical claims and EHR data facilitates the use of
the model in settings where large numbers of patients are treated,
resulting in the identification of much larger potential patient
populations for clinical trial recruitment [3-12].

Objectives
Nori et al [12] showed that machine learning models predict
the onset of ADRD using medical claims and structured clinical
data can have good performance near the time of onset and that
performance diminishes with increasing time before onset. This
study adds clinical notes data to those datasets to enhance the
accuracy of the models and determines the prevalence of
cognitive concerns in patient clinical notes up to 10 years before
onset.

The quality of the clinical notes’ models depends on common
semantics in electronic medical record (EMR) systems. In their
groundbreaking work on using EMR data for machine learning,
Rajkomar et al [13] admitted, “Our current approach does not
harmonize data between sites,” but it can achieve similar
accuracy at sites with sufficient volumes of data. Our study uses
a dataset gathered from dozens of provider groups, mostly large
integrated delivery network or hospital systems [14], and applies
natural language processing (NLP) tools in a simple way to map
semantically similar terms into concepts used in the models
[15,16]. The processing of the clinical notes in this study favors
automation, not clinical insight and expertise. This focus allows
the methods to scale with little clinical intervention as new
provider groups, and even new concepts are added to the data.

The use of a commercially available deidentified dataset will
allow new studies to further refine the methods introduced here.

Methods

Overview
This study used deidentified medical claims and EHR data
between 2007 and 2017 from the OptumLabs Data Warehouse
(OLDW) [14]. The database contains longitudinal health
information on enrollees and patients, representing a diverse
mixture of ages, ethnicities, and geographical regions across
the United States. The data in OLDW include medical and
pharmacy claims, laboratory results, and enrollment records for
commercial and Medicare Advantage enrollees. Clinical notes
are available from a subset of EMR systems that chose to share
these data. As this study involved analysis of preexisting,
deidentified data, it was exempt from institutional review board
approval [14].

Data Sets
This study uses and extends the clinical dataset of Nori et al
[12]. That work created a matched case-control cohort of
patients with onset of ADRD (cases) and patients with no history
of any ADRD (controls). Index dates vary from 2009 to 2017
with 2 years of data per patient. In that earlier work, 7 different
models with lead times of 0, 3, 4, 5, 6, 7, and 8 years to index
were created from structured EHR and medical claims data to
understand how predictive accuracy can be sustained over time.
These models are called structured models because they only
use structured data—diagnosis codes, procedure codes, and
prescriptions—from the EMR and medical claims systems.

The outcome variable in this study was a confirmed incident
diagnosis of ADRD, which includes mild cognitive impairment
and forms of dementia but not alcohol-induced dementia [12].
These multiple forms of dementia diagnoses were included in
the outcome after consultation with clinicians, and a review of
the data indicated that specific diagnoses of a single type of
dementia are less reliable, and elderly patients often have
multiple dementias at onset [10,11].

This study uses the clinical notes of the same patients from
structured data. Not all EMR systems provide raw clinical notes
to the data collection process, so clinical notes are available
because of data use agreements. Hence, patients’ clinical notes
data are missing due to legal agreements, not at random per
patient and per encounter. To participate in the clinical notes’
models, a patient must have 2 unique dates with a clinical note
at least 31 days apart in the 2-year data collection period. The
numbers of patients that met this threshold are provided in Table
1. No other adjustment for missing data was made. The attrition
table of the population is shown in Figure 1. The first 3 filters
are the same as those of Nori et al’s study [12], with only the
last filter of availability of clinical note data being specific to
this analysis.
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Table 1. Demographics of the study population.

Females, n (%)Cases, n (%)Encounters, mean (SD)Age, mean (SD)NTraining setYears to index date

417,390 (61.30)136,189 (20.00)30.5 (28.2)74.3 (10.5)680,945Matched training0

121,015 (61.30)39,486 (20.00)24.4 (21.9)71.4 (10.2)197,430Matched training3

79,795 (61.25)26,054 (20.00)22.5 (20.3)70.4 (10.0)130,270Matched training4

50,300 (61.26)16,421 (20.00)20.4 (18.8)69.5 (9.8)82,105Matched training5

29,620 (62.29)9511 (20.00)18.3 (16.8)68.6 (9.5)47,555Matched training6

14,630 (62.37)4691 (20.00)16.6 (16.1)67.6 (9.3)23,455Matched training7

4885 (62.07)1574 (20.00)16.2 (15.8)66.6 (9.1)7870Matched training8

292,683 (58.66)20,717 (4.15)21.0 (21.8)62.4 (11.3)498,935Validation0

60,560 (61.24)6525 (6.60)18.5 (17.9)62.1 (10.8)98,890Validation3

37,909 (61.67)4362 (7.10)17.4 (17.0)61.7 (10.6)61,471Validation4

22,464 (61.86)2763 (7.61)16.2 (15.9)61.3 (10.4)36,316Validation5

11,776 (62.35)1604 (8.49)15.2 (15.0)61.0 (10.2)18,888Validation6

5122 (62.57)806 (9.85)14.2 (14.4)60.6 (10.0)8186Validation7

1694 (63.68)292 (10.98)14.0 (13.7)60.0 (9.8)2660Validation8

587,326 (58.71)41,642 (4.16)21.0 (21.7)62.3 (11.3)1,000,448Test0

122,003 (61.59)13,064 (6.60)18.5 (18.0)62.1 (10.8)198,074Test3

75,996 (61.82)8810 (7.17)17.4 (16.9)61.7 (10.6)122,939Test4

44,926 (62.13)5561 (7.69)16.1 (15.7)61.3 (10.5)72,304Test5

23,709 (62.49)3248 (8.56)14.9 (14.3)61.0 (10.3)37,938Test6

10,465 (63.47)1673 (10.15)14.1 (13.5)60.8 (10.2)16,487Test7

3474 (64.55)586 (10.89)13.9 (13.8)60.5 (10.1)5382Test8

Figure 1. Attrition table. ADRD: Alzheimer disease and related dementias.
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Figure 1 shows that patients who entered the cohort via a scan
and a confirmatory diagnosis rarely had clinical notes that met
the thresholds for inclusion (68 of 1038 patients). The mean
number of encounters per patient is 21, but the patients that
enter by the scan rule have only 4.4 encounters. This low
encounter count before filtering by clinical note days indicates
that there is little opportunity to have 2 days with clinical notes
separated by a month. It is likely that these patients have
encounters in a specialty setting where there is no complete
view of the patient’s health history.

As in Nori et al’s study [12], cases and controls were matched
for age, gender, number of encounters, and index year at a 1:4
ratio to reduce confounding of variables. This step is important
to improve interpretability of variables and reduce
multicollinearity because of age, which, if not performed, would
lead to erroneous importance of age-related variables [17-21].
Due to filtering by days with a clinical note, the cases must be
matched to controls anew in this work versus reusing the same
sampling as in Nori et al’s study [12].

Clinical Notes
The raw clinical notes go through the Optum proprietary NLP
for determination of all patients’ medical concept extraction.
NLP concepts are identified and created based on broad topics
such as medications, signs, disease and symptoms,
measurements, and observations. The data are harvested from
the clinical notes fields within the EMRs provided to Optum
from over 50 large health care systems throughout the United
States. The data used for the development of each NLP concept
are deidentified, so the authors have no access to the raw notes.

The authors had access to the deidentified NLP data, which
contains the date of the note, an occurrence date, a term, a
sentiment, and possibly a family member. The terms are nouns,
or abbreviations, extracted from the notes; sentiment describes
the use of the noun (present, negative, possible, exhibit,
exhibit.not, discuss, deny, concern, complain, etc). The content

of the clinical notes are either about the patient or can be from
a medical history where the content is about a family member.
Family membership can be specific (mother, father, sibling,
etc), vague (mother’s relations, ancestor, and boyfriend), or a
combination of relationships. The occurrence date may differ
from the note date if the original text makes a temporal statement
such as “a year ago the patient complained of…” This study’s
modeling uses the occurrence date of the term, if it exists,
otherwise the date of the clinical note. We mapped the family
members into 3 classes: immediate, family, and other (see
Multimedia Appendix 1 for details). This mapping is based on
wildcard word matching, so it is simple to implement, but may
have errors. There are 29,528 unique terms and 1042 unique
sentiments (42 positive sentiments such as “present,” “exhibit,”
“observe”) with at least hundred patient clinical notes in all 7
yearly cohorts.

The NLP data have additional details, such as body location,
severity, extent, and duration, that are not used in this study.

With the large number of unique sentiments (1042), the study
decided to use only positive sentiment terms, indicating the
presence of the term. In the raw notes, many negative terms are
a collection of EMR survey questions Patient denies smoking,
Patient denies depression, etc. These negative terms were
excluded to reduce the complexity of processing the data and
handling 1000 nonpositive sentiments.

Table 2 shows the highest 20 relative risk diagnoses in the onset
year and their risks in the earlier years. The relative risk is the
ratio of the probability of that diagnosis in cases versus controls.
Each diagnosis must be supported by more than 10 cases, 10
controls, and 99 combined patients. Empty cells indicate that
this threshold was not met. Years 7 and 8 had no unsuppressed
values. These high-risk terms decay quickly over time; only 5
of the top 20 terms remain available for the model at year 3 and
only 1 at year 4. Additional tables of terms, including tables
with the most common terms, and the most common
comorbidities are given in Multimedia Appendix 1.
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Table 2. Top 20 relative risks of diagnosis.

Relative risk at years to index dateInternational Classification of
Diseases, Ninth Revision code

Diagnosis

65430

————a21.57V403.1Wandering in diseases classified elsewhere

————19.26290.9Unspecified senile psychotic condition

5.076.205.896.7817.38294.9Unspecified persistent mental disorders due to conditions classified elsewhere

————16.48797.Senility without mention of psychosis

————16.27780.9Other general symptoms

———5.9216.25310.9Unspecified nonpsychotic mental disorder following organic brain damage

————15.99310.89Other specified nonpsychotic mental disorders following organic brain damage

————15.78310.8Other specified nonpsychotic mental disorder following organic brain damage

———4.4515.06799.59Other signs and symptoms involving cognition

————15.01799.55Frontal lobe executive functional deficit

————13.52300.12Dissociative amnesia

———4.4213.52310.1Personality change due to conditions classified elsewhere

————13.39300.16Factitious disorder with predominantly psychological signs and symptoms

————12.86293.81Psychotic disorder with delusions in conditions classified elsewhere

————12.48327.41Confusional arousals

————12.42799.53Visuospatial deficit

———4.5412.21298.2Reactive confusion

————12.15293.1Subacute delirium

————12.07291.1Alcohol-induced persisting amnestic disorder

————12.07310.0Frontal lobe syndrome

aNot applicable.

Clinical Notes Clusters
With 29,528 unique terms in all the datasets, and without access
to the algorithms that create the terms, the study needed to
determine how the terms map to clinical concepts. In the raw
clinical note, we expect that different clinicians will have
alternative spellings—mi, ami, or acute myocardial infarction;
htn or hypertension—depending on their training, the EMR they
use, and many other factors. This study’s upstream NLP does
not map these terms into concepts but leaves them in their raw
form. This creates a need to gather alternative spellings and
related clinical terms into groups, or clusters, before using them.
Without such a grouping, an individual term’s impact may be
diluted to the point of uselessness due to idiosyncratic
abbreviations, spellings, and synonyms (eg, Alzheimer disease
vs Alzheimer dementia). The methods here will ameliorate this
situation. The terms are filtered to terms having at least 500
patients in any annual model, yielding 14,236 terms.

It would be possible, but time consuming, to map these terms
to a medical ontology, but the study decided to pursue an
algorithmic strategy relying on additional NLP processing. The
end goal of this step is to map the terms to data-driven concepts
that will group similar terms into more powerful machine
learning features. The positive sentiment patient terms are
processed into a sequence of terms, ordered by date, for each

patient. Most of the clinical notes data lack a specific time of
day, so the terms have no order other than a date. If the raw
NLP provided a sequence number for the extracted terms, then
that sequence could be used to order the patient’s terms. Term
sequences with less than 50 characters long are omitted. Due
to database limits on the length of a single character field, the
process needed to count characters in the concatenated terms.
The choice was made to use these character counts to limit the
patient stories used. In total, 50 characters is approximately 8
distinct terms. The word windows used are 10 words long.

At this step, there is a term-based story of 50-31,341 terms for
each patient. The story file for all patients across all years is 5.9
gigabytes of text. The training text is collected and analyzed as
1 text file, with a row for each patient containing the patient’s
terms. To limit duplication of data from overlapping model
years, model years 4 and 6 are not in the NLP training model
(all year 4 terms are in either year 3 or year 5).

This text file can be analyzed using any NLP algorithm to build
semantic knowledge among its words. The study chose to use
Fasttext by the Facebook artificial intelligence research team
for its speed and simplicity [22]. Fasttext builds a conditional
probability model of term appearances in the context of their
surrounding terms. The output of Fasttext is a numeric vector
for each term. These term vectors are a meaningful mapping of
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each term to a vector space where the vector distance maintains
word similarity. Thus, if 2 terms are very close to each other,
measured by their vector distance, then they are synonyms.
Alternate spellings of the same medical concept should be
nearby in the vector space because the terms that surround them
in the clinical notes will be similar. The study chose
100-dimension vectors to embed the terms.

To run the Fasttext algorithm, we chose the unsupervised
continuous bag-of-words option with 8 epochs and a window
of 10 terms. We explicitly turn off subwords because we do not
want the algorithm associating the term alzheimers_disease
with crohns_disease based on common subwords (syndrome is
another confusing subword). Our reliance on terms from an
upstream process means that misspellings are not an issue in
this context. The unsupervised option means that Fasttext is
finding semantic relations among the terms. The word window
of 10 terms limits the probability model to overlapping
sequences of 10 terms. The lack of sequence information on
terms within a day means that the method needs more data to
obtain a more accurate probability model of the text relations.
Fasttext returns 11,061 terms due to its own filtering.

Once the study has the vector mapping of each term from
Fasttext, the terms can be clustered into similar groups using
the Euclidean distance of the terms as the similarity measure
[23]. This is performed with the hclust function in R v3.5.1 [24].
As the goal of this clustering is to create features for the
predictive model, we chose a large number of clusters, 1106 or
10% of the terms. A manual inspection of the clusters indicated
that a much larger number of clusters (2212 or 5%) may split
important sets of terms, and fewer clusters would merge groups
that are less related to the outcome. Multimedia Appendix 1
shows the clusters for terms with individual memory and
cognition terms. For example, the terms memory_loss,
memory_issues, forgetful, memory, mild_cognitive_impairment,
mci, recalling_issues, lewy_body_dementia, pseudodementia,
memory_dysfunction, frontotemporal_dementia, and
short_term_memory_loss all group together with a few more
terms in 1 cluster. No manual editing of the clusters was
performed. Note that the use of the embedding on training terms
across all years, and the clustering of only those terms
effectively omits novel terms present in the test data. However,
because terms are the result of the upstream NLP over all years,
the introduction of new terms in testing is rare. In production,
new terms can be mapped into clusters if necessary.

The models use all the same medical features as the structured
models and add 2 sets of features for the terms. One set of
features counts the unique days with a specific term attributed
to an individual or 1 of the 3 family types. The other set of
features counts unique days at the clustered term level; thus,
every term may appear twice, once specifically and once in its
cluster.

Machine Learning
After computing these features, the same feature filtering method
proposed by Nori et al [12] is applied. These filters remove
features without sufficient support in the data as well as features
whose ratio of matched to unmatched odds ratios are too extreme

(see Multimedia Appendix 1). The filter based on the ratio of
matched to unmatched odds avoids the inclusion of terms that
are primarily associated with age and not with the outcome.
Age-related terms can have a high unmatched odds ratio but a
low matched odds ratio; thus, the ratio of these 2 values can
filter these outliers. The ratio thresholds of 0.5 and 4 are used
to remove features that are too skewed to age. For example,
screening mammography has a very low unmatched odds ratio
because it skews highly to younger women; the ratio of its
unmatched to matched odds would be less than 0.5, and it would
be removed from the model.

The models are fit with LightGBM [25], an algorithm that fits
a gradient boosting machine to the 0 or 1 outcome variable using
a series of decision trees. After solving the first model with a
tree, another model is fit with a new outcome initialized to the
residuals of the prior tree’s fit. The series of residual fits
optimize the loss function of the original model [26,27].
LightGBM also uses advanced methods such as sampling the
feature space and pooling features into importance sets for
improved performance. This study varied the parameters of
LightGBM using a grid search; the model quality is assessed
on the validation data, and the best model is selected. The study
searched the feature fractions (.25, .2, .15), learning rates (.015,
.01, .02), minimum data in leaf (1000, 800, 500), number of
trees (300), and size of trees (127, 63). Each model was allowed
to search independently for the parameter set that maximized
its quality, as measured by the validation set’s positive predictive
value (PPV).

Results

This study reports 3 summary measures of model quality. The
area under the curve (AUC) score is the probability that a
random case score is higher than a random control. A drawback
of AUC is that it is a global measure of discrimination, and it
does not reflect the decision boundary to take action on a score
from the model. With this in mind, we report 2 other measures,
the PPV and lift.

PPV is the percentage of true positives in the at-risk population.
To compute the PPV across this population, where the
prevalence varies widely by age, we apply a threshold per age
group where the number of patients at risk in each age group
matches the age-based prevalence of cases.

Lift is the ratio of PPV to prevalence. Its values range from 0
to infinity. The lift reflects the improvement in the model over
a random choice. For a rare disease, PPV may be low because
the outcome is hard to detect and dividing by the prevalence
provides a standardized way to correct for the prevalence.

Table 3 and Figure 2 show the model quality statistics for the
baseline models without the clinical notes features and after
adding the notes’ terms and term clusters. In general, the models
with clinical notes always have a higher AUC score, and the
PPV and lift scores are higher in all but 1 year. Averaged over
all models, the PPV was 5 points higher and the AUC was 4
points higher when terms and term clusters were included. Year
0 baseline values were reported by Nori et al [12].
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Table 3. Quality of model fit on the test data.

LiftArea under the curveSpecificitySensitivityYear

Clinical
notes

BaselineClinical
notes

BaselineClinical
notes

BaselineClinical
notes

Baseline

16.3913.920.940.840.990.980.680.450

4.624.120.700.670.950.950.300.273

4.033.800.690.660.950.940.290.274

3.603.230.680.610.940.940.280.255

2.842.910.630.620.930.930.240.256

2.522.390.680.620.920.910.260.247

2.432.340.580.590.910.910.260.258

Figure 2. Model quality measures. AUC: area under the curve; PPV: positive predictive value.
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Table 4 shows the most important features in the onset year.
The variable naming convention is cls, which is the prefix for
cluster variables; idv for individual terms; OFam for other
family; IFam for immediate family; ETG for episode treatment
groups; RXG for medication therapeutic groups; ICD for
International Classification of Disease version 9 (ICD-9); and
CPT for Current Procedures and Terminology version 4.

Tree-based machine learning algorithms rank variables by
gain—how much the fit improves after that feature is used in a
tree node. The gain is a dimensionless value, so we report the
percentage of total gain attributed to each feature for all features
up to 80% of the total gain. We refer to variables that meet this
threshold as important variables. Important variables for the
other years are shown in Multimedia Appendix 1.
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Table 4. Important variables at onset (year 0) Total Gain (N) is 22,040,569.

Cumulative
percent gain

Percent gainGain, nVariable nameVariable type

15.015.03,298,549Dementia and Alzheimer dementiacls

27.812.92,833,536Memory loss and memory issuescls

37.69.82,162,843Dementiaidv

44.66.91,525,697memory_issuesidv

51.46.81,498,113memory_lossidv

53.42.1459,131mild_cognitive_impairmentidv

55.31.9419,780Forgetfulidv

57.11.7382,811Alzheimer disease and other family memory issuescls

58.81.7378,955Neurological diseases signs and symptomsETG

60.41.6346,991cognitive_impairmentidv

61.91.5337,701Memoryidv

63.21.3275,533Altered mental statusICD

64.31.2256,076memory_lapsesidv

65.51.1252,683short_term_memory_lossidv

66.61.1245,279Neuropsychological testing (eg, Halstead-Reitan neuropsychological battery,
Wechsler memory scales, and Wisconsin card sorting test), per hour of the psychol-
ogist’s or physician’s time, both face-to-face time administering tests to the patient
and time interpreting these test results and preparing the report

CPT

67.61.1232,700Cognitive impairment and hearing impairmentcls

68.61.0221,324Alzheimers_diseaseidv

69.61.0214,553Cognitive issues and cognitive disordercls

70.61.0214,171Mood disorder, depressedETG

71.51.0213,180Magnetic resonance (eg, proton) imaging, brain (including brain stem); without
contrast material

CPT

72.30.8174,643Unspecified persistent mental disorders due to conditions classified elsewhereICD

73.10.7163,176Memory lapses and concentratingcls

73.80.7159,014getting_lostidv

74.50.7150,658Computed tomography, head or brain; without contrast materialCPT

75.10.6125,350Family dementia and memory disturbancecls

75.60.6121,595Psychotic and schizophrenic disordersETG

76.10.5118,598Agedem

76.70.5115,677Atypical antipsychoticsRXG

77.20.5114,621Mental disorders, organic and drug-inducedETG

77.70.5106,109Pain and tendernesscls

78.10.5100,425Neuropsychological testing (eg, Halstead-Reitan neuropsychological battery,
Wechsler memory scales, and Wisconsin card sorting test), with qualified health
care professional interpretation and report, administered by technician, per hour of
technician time, face-to-face

CPT

78.60.494,671Number of encountersdem

79.00.493,374Selective serotonin reuptake inhibitorsRXG

79.40.492,567informantOFam

79.80.484,741relaxing_issuesidv

80.10.477,831Depressive disorder, not elsewhere classifiedICD
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Figures 3 and 4 extract terms that contain the phrases memory,
dementia, and root cognit to see how the terms’ prevalence
varies over time. The top 15 terms ordered by matched case
prevalence are displayed in 3 groups of 5 to allow scaling of
the y-axis in each group. The plots show the prevalence of the
unmatched validation data. The terms are present in each year
if they are part of the model features for that year, but the

filtering rules can omit them. For example,
mild_cognitive_impairment appears in model years 0 through
6 but not in years 7 and 8 due to filtering. The cluster containing
mild_cognitive_impairment is in all models and is important in
all but the year 8 model. Figure 4 shows the plot of these terms
in the control population, that is, a positive term for those
without an incident diagnosis.

Figure 3. Frequency of cognitive terms in cases.
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Figure 4. Frequency of cognitive terms in controls.

Discussion

Principal Findings
It is remarkable that even with all the diagnosis and prescription
codes as well as neurological testing and radiology procedures
available from the claims and structured EMR data, the clinical
notes terms account for the first 8 and 21 of the 36 top predictors
in the onset year model (Table 4). This indicates that the EHR
data collection process collects important terms and that the
NLP workflow is processing the clinical notes in a helpful
manner. The most important non-note features are mood
disorders, especially depression, psychoses, and prescription
treatments for those disorders. It also may indicate that the
clinical notes terms are a better indication of the prognostic
symptoms than the structured data.

In the longer-term predictions, there are 3 data factors involved
in decreasing accuracy. First, the cohorts rapidly decrease in
size; for example, the training data at year 8 is 1% the size of
the onset year (Table 1). This decrease in size is not just a
survivorship issue, but the clinical notes data collection process
was in its first year in year 8, so the diminishing size is a
reflection of data collection growth from year 8 to year 0.
Finally, there is commensurate growth in the features present
in the model from 3450 to 7391 from year 8 to year 0, including
all the medical coded features. As the scope of the data asset
grows, it is possible that the future version of this model could
perform better with little new modeling effort.

With ample evidence that ADRD is under coded [28-31], this
dataset shows the existence of clinical notes with positive
sentiment of many terms related to ADRD many years preceding
the onset date of the cohort. The existence and ability of the
model to extract terms such as memory loss, agitation, anxiety,
and depression in the year 6 model (see Multimedia Appendix
1) demonstrates that these concerns are being coded in the
clinical notes well before the ADRD diagnosis is recorded.

The family history terms are not as helpful as the individual
terms. The only family term that survives in the important
predictors is an immediate family history of Alzheimer disease
only in the models for years 3, 4, and 5, but never over 0.3%
of the total gain.

Figures 3 and 4 indicate that memory loss and other terms
involving cognition and dementia are present at higher rates
than one may expect. Memory loss is present in more than
13.52% (3522/26,054) of cases throughout the model years.
Clearly, one wonders if the cases with these terms have a
delayed diagnosis in the structural data. Furthermore, Figure 4
shows that the controls had at least 7.07% (7364/104,216)
prevalence of memory loss in all model years. Although not all
memory loss is an indication of ADRD, these prevalences are
in a population whose mean age is in the low 60’s (Table 1)
and could be an indication of under coding ADRD in the
controls. However, the crux of the issue is that these memory
terms in clinical notes may not reflect the underlying
physiological changes of dementia or under coding.
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Comparison With Previous Work
The structured models fit by Nori et al [12] found evidence of
increased mental health, neurological testing, and anticholinergic
risk factors found in other studies, as well as cardiovascular
risk, which has been associated with vascular dementia [31-33].
The structured models in Nori et al’s study [12] did not confirm
diabetes mellitus as a risk factor, as found in Haan’s study [33].
However, this study does find diagnoses of diabetes mellitus
as important in the 3-, 4-, 5-, and 8-year models both as a coded
diagnosis as well as in the notes. In addition, the clinical notes
as far back as 6 years do identify metabolic syndrome and a
cluster of terms related to insulin resistance as important (see
Multimedia Appendix 1). This is important because there is an
ICD code for metabolic syndrome, but that code does not surface
in the structured data models. This provides some evidence in
support of Haan’s study [33], which is not present in the
structured model.

Several previous studies have attempted to model the risk of
Alzheimer and related disorders. Most of these have been small
studies using detailed clinical data [3-9]. Recently, several
studies have used widely available claims data to predict the
onset of Alzheimer and related disorders [10-12]. These
claims-based models achieved similar results similar to those
of earlier studies (AUC ranging from 0.60 to 0.78). Our study
shows that incorporating EHR data into the analysis results in
significant additional improvements in the performance of
models predicting Alzheimer and related disorders.

Limitations
This analysis was conducted using administrative claims and
EHR data. The accuracy of diagnostic coding is a known issue
with claims data. In the case of dementia, diagnostic inaccuracy
is especially challenging in distinguishing between its different
forms. In related work, we are exploring methods that explicitly
address errors in the labeling of those who have dementia, and
this appears to be promising [12]. Nevertheless, it is interesting
to note that, despite the diagnostic coding issues, our models
perform on par (or better) than previously published models
using much deeper clinical information.

Conclusions
Our findings have important implications for the usefulness of
predictive models based on administrative claims and EMR
data to identify individuals at risk of dementia. Given the
widespread availability of claims data that are already routinely
used to identify individuals for interventions such as disease
management programs, it is clear that predictive models could
clearly be much more widely used to support individuals at risk
of dementia in the community to help delay or even prevent
institutionalization in nursing homes as well as aid in financial
planning and provide other support needed by families having
a member with dementia.

Similarly, the widespread availability of EHRs in clinical
settings would enable clinicians to make use of predictive
models to support their patients with dementia and their families.
In the rarer settings where both claims and EHR data are
available, our findings indicate that predictive models will be

even more effective at identifying patients with dementia who
could benefit from social support.

A second, very important, application of machine learning
models is to identify patients for recruitment into clinical trials.
Collecting the clinical data needed for screening dementia
patients for clinical trials is extremely expensive—in the case
of Alzheimer disease estimated to be over US $4000 to screen
patients with cognitive assessments and positron emission
tomography scans [34,35]. This cost is inflated by the need to
screen many individuals for every individual identified. Any
tool that reduces the number of patients needing to be screened
will reduce the cost of patient recruitment. As reported in Table
3, models using EHR data correctly identified 2.5 times the
number of patients with dementia relative to baseline prevalence
8 years to diagnosis and 16.4 times the baseline prevalence at
the time of diagnosis. Although model performance declines
further from diagnosis, these results suggest that predictive
models based on machine learning methods could also be helpful
in identifying patients earlier in their disease course. This is
important for both the provision of social support and clinical
trial recruitment. In the case of social support, it may well be
the case that intervening earlier will be more effective in
delaying nursing home institutionalization, and it would
certainly give families more time to prepare for such an
outcome. In the case of clinical trials, it is possible that recruiting
patients who are earlier in the disease course may improve the
effectiveness of pharmacologic interventions, which, to date,
have been of little clinical value.

Clinical notes data extracted into deidentified structured tables
can be useful in adding value to models built with structured
data. The accuracy of the onset year model is much higher than
that of other models in the literature (94% AUC vs in the 70%
range) [8,20-33]. This ability to discriminate with a PPV of
68% (51% higher than without notes) means that this model
can be an effective screening tool for patient and provider
follow-up. The rapid decline in model quality beyond diagnosis
limits the utility of the model for long-term prediction. It is
unclear if this decline can be easily remedied once more clinical
notes data are available or if this indicates a more important
issue of primary data collection and under coding with more
challenging remedies.

Clustering terms from the deidentified clinical notes helps to
overcome variation in how clinical notes are written across
diverse provider groups. The term clusters also boost the
strength of the group by combining similar concepts into a
coherent feature that improves prediction.

Future work should focus on semisupervised approaches that
expand the data available for training by learning to label data
in a consistent manner. Work on semisupervised methods can
also help enhance the reliability of case/control labeling for
ADRD, as started by Nori et al [12].

Recent work by Xie [36] shows promise for augmenting labeled
data with use cases outside the medical domain. It is not yet
clear if these methods can augment/perturb medical record data
in a way that can boost model performance.
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