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Abstract

Background: Heparin is one of the most commonly used medications in intensive care units. In clinical practice, the use of a
weight-based heparin dosing nomogram is standard practice for the treatment of thrombosis. Recently, machine learning techniques
have dramatically improved the ability of computers to provide clinical decision support and have allowed for the possibility of
computer generated, algorithm-based heparin dosing recommendations.

Objective: The objective of this study was to predict the effects of heparin treatment using machine learning methods to optimize
heparin dosing in intensive care units based on the predictions. Patient state predictions were based upon activated partial
thromboplastin time in 3 different ranges: subtherapeutic, normal therapeutic, and supratherapeutic, respectively.

Methods: Retrospective data from 2 intensive care unit research databases (Multiparameter Intelligent Monitoring in Intensive
Care III, MIMIC-III; e–Intensive Care Unit Collaborative Research Database, eICU) were used for the analysis. Candidate
machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow
neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic,
normal therapeutic, and supratherapeutic patient states. The model results were evaluated using precision, recall, F1 score, and
accuracy.

Results: Data from the MIMIC-III database (n=2789 patients) and from the eICU database (n=575 patients) were used. In
3-class classification, the shallow neural network algorithm performed the best (F1 scores of 87.26%, 85.98%, and 87.55% for
data set 1, 2, and 3, respectively). The shallow neural network algorithm achieved the highest F1 scores within the patient
therapeutic state groups: subtherapeutic (data set 1: 79.35%; data set 2: 83.67%; data set 3: 83.33%), normal therapeutic (data
set 1: 93.15%; data set 2: 87.76%; data set 3: 84.62%), and supratherapeutic (data set 1: 88.00%; data set 2: 86.54%; data set 3:
95.45%) therapeutic ranges, respectively.

Conclusions: The most appropriate model for predicting the effects of heparin treatment was found by comparing multiple
machine learning models and can be used to further guide optimal heparin dosing. Using multicenter intensive care unit data, our
study demonstrates the feasibility of predicting the outcomes of heparin treatment using data-driven methods, and thus, how
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machine learning–based models can be used to optimize and personalize heparin dosing to improve patient safety. Manual analysis
and validation suggested that the model outperformed standard practice heparin treatment dosing.

(JMIR Med Inform 2020;8(6):e17648) doi: 10.2196/17648

KEYWORDS

heparin; dosing; machine learning; optimization; intensive care unit

Introduction

In hospitals, intensive care units are unique in that vast amounts
of information are collected and displayed by computerized
systems, and that the diagnostic and treatment accuracy can
profoundly affect quality of care and patient outcomes [1].
Data-driven clinical decision support systems have the potential
to help clinicians optimize treatment and medication in an
intensive care unit to maximize the medical effect for each
individual patient [2].

Heparin is one of the most commonly used medications in
intensive care units, and intravenous unfractionated heparin is
a fundamental method of anticoagulant therapy. In most clinical
practice guidelines, heparin dosing is based only on the patient’s
weight; the use of a weight-based heparin dosing nomogram is
the standard practice for the treatment of thrombosis [3,4]. For
patients who are obese who may not receive the appropriate
heparin dose if it is determined based solely on body weight,
some suggestions such as reducing the initial infusion rate [5-7]
or using an adjusted body weight [8] have been reported. In
clinical practice, activated partial thromboplastin time typically
reflects blood coagulation level. A high activated partial
thromboplastin time means that blood is clotting slowly, whereas
a low activated partial thromboplastin time means that blood is
clotting quickly. Typically, blood samples are drawn every 4
to 6 hours to monitor activated partial thromboplastin time, and
the anticoagulation therapy outcome is measured by whether
the activated partial thromboplastin time reaches the therapeutic
window in a timely manner; however, the weight-based method
easily leads to improper doses which demonstrate subtherapeutic
or supratherapeutic activated partial thromboplastin time. In
addition, the risk factors that result from inappropriate doses of
unfractionated heparin are unclear. Only high initial rates of
infusion, advanced age, and being female have been reported
to be associated with supratherapeutic activated partial
thromboplastin time [9,10]. Heparin administration guidelines
regarding initial loading dose, maintenance dose and rate, and
the activated partial thromboplastin time measurement intervals
vary widely among institutions. Additionally, clinicians choose
different heparin administration routes such as intravenous push
or intravenous drip due based on the immediate circumstances
and requirements of the patient.

Recently, machine learning techniques have dramatically
improved the ability of computers to provide clinical decision
support, resulting in the possibility of computer generated,
algorithm-based heparin dosing recommendations. Multivariate
logistic regression [11] and multinomial logistic regression [12]
have been used to estimate heparin dosing with an accuracy of
approximately 60%. Algorithms have also been used in studies
[13,14] for other anticoagulants such as warfarin dose

adjustments, but it was found that high intrapatient variability
weakened the prediction accuracy.

For these reasons, a reliable method that can help doctors
quickly predict and optimize heparin doses is urgently needed.
It is necessary that modeling and prediction of the therapeutic
window of activated partial thromboplastin time take into
account multiple factors during patient treatment in order to
provide appropriate decision support suggestions which can
help guide clinicians in determining and preparing subsequent
heparin doses or adjusting dose rate.

Methods

Data Set
Data were extracted from the Multiparameter Intelligent
Monitoring In Intensive Care III database (MIMIC-III) [15] and
e–Intensive Care Unit Collaborative Research database (eICU)
[16] with the goal of comparing multiple predictive models and
evaluating the results in different groups of patients. A
cross-database evaluation was conducted. The MIMIC-III
database and eICU database are free and open data sets
containing medical data. The MIMIC-III database contains data
from the intensive care unit at the Beth Israel Deaconess Medical
Center and is published by the Laboratory for Computational
Physiology at Massachusetts Institute of Technology. The eICU
database, published by the Philips e–Intensive Care Unit
Research Institute, is populated with data from a combination
of many critical care units throughout the continental United
States. Data were extracted from the databases for 14,806 adult
patients who received heparin therapy during their stay in the
intensive care unit. Only patient data with activated partial
thromboplastin time measurements taken 4 to 6 hours after their
initial heparin dose administration were used which reduced
the cohort size to 3835. We chose 4 to 6 hours based on past
experience and previous research [11]; it is the period within
which the first activated partial thromboplastin time
measurement typically occurred for the greatest proportion of
patients. In clinical practice, there are different administration
routes to deliver medication. Both intravenous push and
intravenous drip are commonly used to deliver heparin, and in
practice, are chosen based on patient condition and doctor
preference; therefore, patient data were further classified by
administration route—intravenous push (data set 1) and
intravenous drip (data sets 2 and 3).

Feature Selection
The outcome of interest was activated partial thromboplastin
time 4 to 6 hours after initial heparin infusion. Since the data
were from the Beth Israel Deaconess Medical Center, we applied
the definition of therapeutic time used at Beth Israel Deaconess
Medical Center for the definition of therapeutic time of activated
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partial thromboplastin time in this study to ensure consistency.
Normal therapeutic was defined as activated partial
thromboplastin times from 60 seconds to 100 seconds,
supratherapeutic was defined as activated partial thromboplastin
times greater than 100 seconds, and subtherapeutic was defined
as activated partial thromboplastin times less than 60 seconds
[11]. Clinical features of interest were selected to optimize the
prediction of the therapeutic activated partial thromboplastin
time—age, ethnicity, gender, initial heparin dose, interval
between initial heparin injection and first measurement of
activated partial thromboplastin time, creatinine concentration,
type of admission, and the aspartate aminotransferase to alanine
aminotransferase ratio (AST/ALT ratio). These features
contribute as a whole to patient outcomes, for example,
creatinine in the blood is almost entirely filtered into the urine
via glomerular filtration, and its concentration is stable under
normal circumstances; therefore, creatinine concentration in the
blood can be used as an indicator of renal function because it
reflects the filtration function of glomeruli. Aspartate
aminotransferase and alanine aminotransferase concentration
levels in the blood are sensitive to hepatocellular damage, and
their ratio is an important indicator of liver function. These
features have been reported and discussed in another study [11],
and many of the features exhibited statistically significant
relationships with the first measurement of activated partial
thromboplastin time after initial heparin dose.

Data Preprocessing
Patient data were preprocessed, and the features of interest were
coded and normalized as variables. Missing values for some
features were filled using the k–nearest neighbors algorithm
which uses Euclidean distance to fill in missing values based
on the values of its nearest neighbors in k dimensions.

Extreme values in data affect both the training and prediction
processes. Normalization is needed when preprocessing
continuous features; however, extreme values, though they may
be few, negatively affect the output of normalization.
Continuous features (age, heparin dose, creatinine value, and
AST/ALT ratio) were manually verified to have z scores within
the range of –3 to +3. According to the statistical definition of
outliers [17], the normal range should be from z=−3 to z=+3;
therefore, z scores outside of this range should be removed prior
to normalization. Age data were found to be within the normal
range; however, outliers were removed from initial heparin
dose, creatinine concentration, and AST/ALT ratio data.

Model Training and Performance Tuning
The activated partial thromboplastin time value measured 4 to
6 hours after the initial heparin dose was classified using ternary
classification into sub, normal, and supratherapeutic. The
support vector machine, random forest, adaptive boosting,
extreme gradient boosting, and shallow neural network
algorithms were implemented and tested in this study.

A support vector machine is based on maximization of the
margin (ie, the minimum distance from the separating
hyperplane to the nearest data point) between 2 classes of data.
A Gaussian kernel guarantees that classification is nonlinear.
Adaptive boosting, extreme gradient boosting, and random

forest methods are based upon the use of boosting as the method
of learning. Boosting methods select features that are known to
improve model predictive power, and thus simultaneously, to
reduce dimensionality. Where typically sample features are the
outputs of a weak classifier that has been applied to each sample,
adaptive boosting trains different weak classifiers by changing
the weight of the samples, and the weak class is combined into
a weighted sum that represents the final output of the boosted
classifier. Extreme gradient boosting is based on gradient
boosting, a process in which the algorithm learns an ensemble
of boosted trees and makes a careful tradeoff between the
classification error and model complexity. Extreme gradient
boosting has recently become dominant in the field of applied
machine learning (for example, in Kaggle competitions for
structured or tabular data) [18]. The random forest method grows
multiple decision trees, each of which provides a classification.
The forest chooses the final output by the classification that has
the majority. Artificial neural networks are built of multiple
layers of neurons; each neuron receives a number of input
variables and passes on the results to neurons in the next layer.
An artificial neural network can learn complex functions relating
input to output variables and is able to deal with complex
relationships between variables and functions. Our shallow
neural network was built using TensorFlow (version 1.13.1).

Samples from subtherapeutic, normal therapeutic, and
supratherapeutic data groups were included at a 1:1:1 ratio for
training and validation of the ternary classification model. Each
data set was divided into 80% training and cross-validation and
20% testing.

The best parameters for the support vector machine, random
forest, adaptive boosting, and extreme gradient boosting
algorithms were searched (GridSearch; scikitlearn package) and
used to train the models. In the shallow neural network model,
2 hidden layers were used, and the number of neurons was set
at 36/24 to reduce model complexity. To avoid overfitting, early
stopping and regularization were needed. Dropout was also used
since it is an effective method to avoiding overfitting and to
improve robustness. The rectified linear unit activation function
was chosen to increase nonlinearity [16,17,19]. The Adam
optimizer was used in model training with an initial learning
rate of 0.0015. We trained the model for 1500 epochs with the
dropout rate set at 0.75. To validate the predictive performance
of our models, 5-fold cross-validation was used on each.

Model Evaluation
The following measures, precision = true positive/(true positive
× false positive), recall = true positive/(true positive + false
negative), F1 score = 2 × (precision × recall)/(precision +
recall), and accuracy = (true positive + true negative)/( true
positive + true negative + false positive + false negative), were
used to evaluate the capability of our 3-class classification model
[20]. For samples at a ratio of 1:1:1, the microaveraged
precision, recall, and F1 score are all equal to the accuracy;
therefore, we only compared the average accuracy and
macroaveraged precision, recall, and F1 score to gauge the
classification performances of these models.
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Results

Activated Partial Thromboplastin Time Distribution
in the Study Population
After removing outliers, we extracted data on intravenous push
patients (data set 1, n=1758) and intravenous drip patients (data
set 2, n=1031) who met our inclusion criteria from the
MIMIC-III database and data on intravenous drip patients (data
set 3, n=575) from the eICU database, respectively. In data set
1, 25.3% (445/1758) of patients had measured values of
activated partial thromboplastin time within the normal

therapeutic range, 51.3% (901/1758) had measured values of
activated partial thromboplastin time within the subtherapeutic
range, and 23.4% (412/1758) had measured values of activated
partial thromboplastin time within the supratherapeutic range.
In data set 2, 27.0% (279/1031), 48.1% (496/1031), and 24.9%
(256/1031) of patients had measured values of activated partial
thromboplastin time within the normal, subtherapeutic, and
supratherapeutic ranges, respectively, as shown in Figure 1. In
data set 3, 27.6% (158/575), 59.0% (339/575), and 13.6%
(78/575) of patients had measured values of activated partial
thromboplastin time within the normal, subtherapeutic, and
supratherapeutic ranges, respectively.
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Figure 1. Patient distribution of aPPT value after initial heparin dosing.

Summary Statistics of Selected Features
A descriptive summary of patient data in data set 1, 2, and 3
according to the therapeutic range of the first measurement of

activated partial thromboplastin time after the initial heparin
injection is shown in Table 1.
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Table 1. Summary statistics of selected features.

Therapeutic rangePatient groups and features

SupraNormalSub   

412445901Data set 1: MIMIC-IIIa intravenous push (N=1756), n

69.3 (14.2)68.1 (15.1)65.4 (14.6)Age (years), mean (SD) 

1303.5 (908.4)1224.2 (1097.5)907.0 (818.8)Initial heparin dose (units/hour), mean (SD) 

4.9 (0.6)4.9 (0.6)4.9 (0.6)aPTTb (hours), mean (SD) 

Ethnicity, n (%) 

291 (70.6)311 (69.9)639 (70.9)White  

7 (1.7)5 (1.1)11 (1.2)Asian  

46 (11.2)27 (6.1)40 (4.4)Black  

14 (3.4)11 (2.5)13 (1.4)Hispanic/Latino  

54 (13.1)91 (20.4)198 (22.0)Others

   Gender, n (%) 

217 (52.7)256 (57.5)550 (61.0)Male  

195 (48.3)189 (42.5)351 (39.0)Female  

Admission type, n (%)

15 (3.6)26 (5.8)111 (12.3)Elective

388 (94.2)398(89.4)768 (79.8)Emergency

9 (2.2)21 (4.7)32 (3.6)Urgent

256279496Data set 2: MIMIC-III intravenous drip (N=1031), n

70.1 (14.8)68.6 (15.2)64.9 (15.4)Age (years), mean (SD) 

1229.8 (495.3)1148.7 (395.8)969.4 (398.3)Initial heparin dose (units/hour), mean (SD) 

5.0 (0.6)4.9 (0.5)5.0 (0.6)aPTT (hours), mean (SD) 

Ethnicity, n (%) 

179 (70.0)208 (74.6)353 (71.2)White  

10 (3.9)9 (3.2)9 (1.8)Asian  

42 (16.4)29 (10.4)46 (9.3)Black  

9 (3.5)7 (2.5)12 (2.4)Hispanic/Latino

15 (6.2)26 (9.3)76 (15.3)Others  

   Gender, n (%) 

132 (51.6)163 (58.4)312 (62.9)Male  

124 (48.4)116 (41.6)184 (37.1)Female  

Admission type, n (%)

8 (3.1)25 (9.0)59 (11.9)Elective

245 (95.7)250 (89.6)436 (87.9)Emergency

3 (1.2)4 (1.4)1 (0.2)Urgent

78158339Data set 3: eICUd intravenous drip (N=575), n

73.1 (12.3)69.0 (14.4)64.8 (13.9)Age (years), mean (SD) 

950.4 (539.4)973.5 (519.3)1005.7 (892.6)Initial heparin dose (units/hour), mean (SD) 

5.2 (0.6)5.2 (0.6)5.2 (0.6)aPTT (hours), mean (SD) 

Ethnicity, n (%) 

46 (59.0)106 (67.1)244 (72.0)White 
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Therapeutic rangePatient groups and features

SupraNormalSub   

2 (2.6)2 (1.3)4 (1.2)Asian

9 (11.5)20 (12.7)30 (8.8)Black  

12 (15.4)19 (12.0)22 (6.5)Hispanic/Latino

9 (11.5)11 (7.0)39 (11.5)Others  

   Gender, n (%) 

37 (47.4)99 (62.7)217 (64.3)Male  

41 (52.6)59 (37.3)122 (35.7)Female  

2.0 (1.5)2.0 (2.1)1.7 (1.7)Creatinine (mg/dL), mean (SD) 

1.5(1.1)1.7 (1.3)1.5 (1.2)AST/ALTc, mean (SD) 

aMultiparameter Intelligent Monitoring In Intensive Care III database.
bFirst measurement of activated partial thromboplastin time.
cAST/ALT: aspartate aminotransferase ratio/alanine aminotransferase.
deICU: e–Intensive Care Unit database.

Data Preprocessing Results
Outliers were removed for 3 features: heparin dose, creatinine
value, and AST/ALT ratio. The statistical outliers are shown in
Multimedia Appendix 1. Not all patients had a complete set of
clinical data, for example, 154 patients were missing AST/ALT
ratios, accounting for 8.76% of intravenous push patients
(Multimedia Appendix 2). An algorithm (k nearest neighbors)
was used to fill in the missing values. Since filled values
accounting for up to 40% have been reported to be appropriate
[21], we considered the effect of filled features on the activated
partial thromboplastin time as reasonable.

Model Performance Results
To eliminate category imbalances, we randomly selected 400
samples for each therapeutic state in data set 1, 250 samples for
each therapeutic state in data set 2, and 120 samples for each
therapeutic state in data set 3. For subtherapeutic and normal
therapeutic classes, general downsampling was used to reduce
the number of samples, while for the supratherapeutic class we
used upsampling to increase the number of samples to 120;

therefore, experiments used 1200 samples from data set 1, 750
samples from data set 2, and 360 samples from data set 3. Model
performance results are shown in Table 2.

The F1 score provides a comprehensive evaluation of the model.
As listed in Multimedia Appendix 3, extreme gradient boosting
achieved the second best F1 scores (77.58%, 73.94%, and
78.85% for data set 1, 2, and 3, respectively), second only to
those of the shallow neural network (87.26%, 85.98% and
87.55% for data set 1, 2, and 3, respectively). The adaptive
boosting model also performed very well in all 3 data sets
(72.80%, 81.67%, and 77.65% for data set 1, 2, and 3,
respectively), with scores close to those of extreme gradient
boosting (77.58%, 73.94%, and 78.85% for data set 1, 2, and
3, respectively). The random forest performed slightly worse
(68.20%, 73.15%, and 65.59% for data set 1, 2, and 3,
respectively) than the other 4 models. The confusion matrices
of all 5 models are shown in Multimedia Appendix 4. In further
experiments, the random forest still performed better than other
models that were not discussed herein, such as the Naïve Bayes,
logistic regression, k nearest neighbors, and decision tree, as
shown in Multimedia Appendix 3.
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Table 2. Macroaveraged scores for the machine learning algorithms.

Accuracy, %F1 score, %Recall, %Precision, %Models

    Data set 1: MIMIC-IIIa (intravenous push patients)

68.7568.7068.7568.96Random forest 

72.9272.8072.9274.37Adaptive boosting 

73.3373.7973.3385.19Support vector machine 

76.2577.5876.2579.27Extreme gradient boosting 

86.6787.2686.6788.05Shallow neural network 

    Data set 2: MIMIC-III (intravenous drip patients)

65.3365.0665.3366.71Random forest 

77.3377.3077.3377.29Adaptive boosting 

71.3371.7171.3384.59Support vector machine 

77.3377.3877.3377.45Extreme gradient boosting 

86.0085.9886.0085.99Shallow neural network 

    Data set 3: eICUb (intravenous drip patients)

68.0665.5966.5666.77Random forest 

77.7877.6577.7878.03Adaptive boosting 

76.3976.1976.3984.74Support vector machine 

79.1778.8579.1779.16Extreme gradient boosting 

87.5087.5587.5087.80Shallow neural network 

aMultiparameter Intelligent Monitoring In Intensive Care III database.
beICU: e–Intensive Care Unit database.

In the subtherapeutic class, adaptive boosting achieved the
highest precision in data set 1 (84.48%) while the neural network
model achieved highest in the other data sets (data set 2:
83.67%; data set 3: 83.33%). The support vector machine
achieved the highest recall in all 3 data sets (data set 1: 100%;
data set 2: 100%; data set 3: 95.83%). In the normal therapeutic
class, the support vector machine with the Gaussian kernel
achieved 100% precision in all 3 data sets. The shallow neural
network achieved the highest recall (data set 1: 85.00%; data
set 2: 86.00%; data set 3: 91.67%). In the supratherapeutic class,
the support vector machine achieved the highest precision (data
set 1: 100%; data set 2: 100%; data set 3: 95.24%); however,

recall of the support vector machine was not very high (data set
1: 57.50%; data set 2: 58.00%; data set 3: 83.33%). The shallow
neural network achieved the best recall in all 3 data sets (data
set 1: 100%; data set 2: 100%; data set 3: 95.83%). Considering
the comprehensive performance which is best evaluated by F1
score, the shallow neural network achieved the best F1 score in
all 3 patient groups: subtherapeutic (data set 1: 79.35%; data
set 2: 83.67%; data set 3: 83.33%), normal therapeutic (data set
1: 93.15%; data set 2: 87.76%; data set 3: 84.62%), and
supratherapeutic (data set 1: 88.00%; data set 2: 86.54%; data
set 3: 95.45%) therapeutic ranges. Additional results are listed
in Table 3, Table 4, and Table 5.
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Table 3. Model performance for subtherapeutic.

F1 score, %Recall, %Precision, %Models

   Data set 1: MIMIC-IIIa (intravenous push patients)

63.5860.0067.61Random forest 

71.0161.2584.48Adaptive boosting 

71.4310055.56Support vector machine 

71.4368.7574.32Extreme gradient boosting 

84.8991.2579.35Shallow neural network 

   Data set 2: MIMIC-III (intravenous drip patients)

67.8080.0058.82Random forest 

79.2180.0078.43Adaptive boosting 

69.9310053.76Support vector machine 

71.4368.7574.32Extreme gradient boosting 

82.8382.0083.67Shallow neural network 

   Data set 3: eICUb (intravenous drip patients)

62.2258.3366.67Random forest 

73.9170.8377.27Adaptive boosting 

73.0295.8358.97Support vector machine 

77.5579.1776.00Extreme gradient boosting 

83.3383.3383.33Shallow neural network 

aMultiparameter Intelligent Monitoring In Intensive Care III database.
beICU: e–Intensive Care Unit database.
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Table 4. Model performance for normal therapeutic.

F1 score, %Recall, %Precision, %Models

   Data set 1: MIMIC-IIIa (intravenous push patients)

72.4184.0063.64Random forest 

74.2577.5071.26Adaptive boosting 

76.9262.50100Support vector machine 

76.2974.0078.72Extreme gradient boosting 

88.8985.0093.15Shallow neural network 

 Data set 2: MIMIC-III (intravenous drip patients)

67.3962.0073.81Random forest 

79.2180.0078.43Adaptive boosting 

71.7956.00100Support vector machine 

73.2774.0072.55Extreme gradient boosting 

86.8786.0087.76Shallow neural network 

 Data set 3: eICUb (intravenous drip patients)

61.9065.0070.00Random forest 

78.2653.8581.82Adaptive boosting 

66.6750.00100Support vector machine 

72.7366.6780.00Extreme gradient boosting 

87.5091.6784.62Shallow neural network 

aMultiparameter Intelligent Monitoring In Intensive Care III database.
beICU: e–Intensive Care Unit database.
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Table 5. Model performance for supratherapeutic.

F1 score, %Recall, %Precision, %Models

   Data set 1: MIMIC-IIIa (intravenous push patients)

75.4775.0075.95Random forest 

73.1480.0067.37Adaptive boosting 

73.0257.50100Support vector machine 

79.7578.7580.77Extreme gradient boosting 

85.1682.5088.00Shallow neural network 

 Data set 2: MIMIC-III (intravenous drip patients)

60.0054.0067.50Random forest 

73.4772.0075.00Adaptive boosting 

73.4258.00100Support vector machine 

77.2378.0076.47Extreme gradient boosting 

88.2490.0086.54Shallow neural network 

 Data set 3: eICUb (intravenous drip patients)

73.6887.5063.64Random forest 

80.7787.5075.00Adaptive boosting 

88.8983.3395.24Support vector machine 

86.2791.6781.48Extreme gradient boosting 

91.3087.5095.45Shallow neural network 

aMultiparameter Intelligent Monitoring In Intensive Care III database.
beICU: e–Intensive Care Unit database.

Discussion

Principal Results
In our experiments, the neural network achieved the highest
scores for all evaluation metrics. The neural network model
uses multiple layers to progressively extract higher level features
from the raw data which might be the reason that the neural
network is able to learn some unknown features that help to
provide a better classification of normal therapeutic activated
partial thromboplastin time. Since different features may be
correlated (such as the creatinine value and aspartate
aminotransferase), linear classification models are not
appropriate. Random forest, adaptive boosting, and extreme
gradient boosting are ensemble learning methods. By integrating
weak classifiers, classification performance was greatly
improved. The support vector machine with Gaussian kernel is
a widely used and powerful classifier. Gaussian kernels ensure
that the classifier is nonlinear, which suited the characteristics
of our data, and the method was able to demonstrate high
performance; however, the neural network model was able to
take into account complex relationships between the variables
with complex functions. Among the methods tested, the shallow
neural network performed the best. The shallow neural network
achieved performance approximately 10% higher than that of
the other algorithms for each metric (precision, recall, F1 score,
and accuracy) in intravenous push cases (data set 1) and
achieved performance approximately 9% higher than that of
the other algorithm metrics in intravenous drip cases (data set

2 and data set 3). Extreme gradient boosting, adaptive boosting,
and the support vector machine were the models that
subperformed to the shallow neural network although their
scores were, nevertheless, all above 70%. The random forest
model demonstrated the worst performance.

As a result of its relative high accuracy, this shallow neural
network model should be able to recommend doses better than
the heparin dosage guidelines which only take patient weight
into account.

In clinical practice, intravenous push and intravenous drip are
both common delivery routes for heparin. Intravenous push
heparin is always used to rescue critical patients who require
timely intervention to decrease coagulation, while intravenous
drip heparin is used a long-term medication to prevent
thrombosis or embolic disease. These 2 administration routes
have different clinical significance; therefore, we separated the
patient groups from the 2 databases into 3 data sets to verify
whether they would have different model predictions. The results
suggested that model prediction performance was comparable
among the 3 data sets, which gave us insight into the stability
and suggests the model is stable regardless of administration
routes or data source.

Strengths
Since the range of normal therapeutic activated partial
thromboplastin time varies in different institutions, our shallow
neural network model can be adapted to different heparin
administration guidelines by adjusting the parameters.
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Furthermore, the model can also be applied to other drug dosage
optimization problems after retraining. When treating a patient,
a dose of heparin can be recommended that maximizes the
normal therapeutic probability. The future application of the
model prediction has the potential to enhance patient safety,
minimize the risk of bleeding or a thromboembolic event, reduce
medical costs, and improve the efficiency of clinicians.

Limitations
One challenge of our study was to identify the features that
affect heparin doses. First, balancing both discrete features and
continuous features and their relative importance would have
enhanced model training performance and feature utilization
but was not performed in this study. Second, different features
may have been correlated, since they all contribute to the
comprehensive conditions of patients; therefore, determining
the intrinsic relationships would have further improved model
performance. Model optimization and verification using different
intensive care unit databases will be performed in future
research. Drug interactions with heparin and the accumulated
effects are usually not taken into account since the half-time of
heparin is too short to affect the 4 to 6–hour interval that was
monitored. A more precise neural network structure was not
used; the next step would be to explore the intrinsic relationships
between features and further validate the model results using
additional clinical data sets. Since this study was conducted in
a nonclinical setting, it will be further refined as it is used in
practice.

Comparison With Prior Work
It is difficult to obtain personalized rather than broad normative
data to determine drug dosage in intensive care units. Heparin

dose is commonly determined based solely upon body weight,
which is measured or estimated when patients arrive at the
intensive care unit. Here, we distinguished 2 drug delivery routes
to provide more detailed advice and choices for clinicians. The
overall prediction accuracies for the 3 data sets were 88.00%,
86.00%, and 87.50%. Both delivery routes in the MIMIC-III
retrospective data showed proportions of patients with activated
partial thromboplastin times that were 3-fold higher than those
with normal therapeutic activated partial thromboplastin times
(25.3% for intravenous push patients and 27.0% for intravenous
drip patients), and higher than those reported in previous studies
[11,12] for the multivariate logistic regression (volume under
the surface=0.48) and multinomial logistic regression
(accuracy=60%). Statistical results were consistent with those
from previous reports. Advanced age and gender (female) were
reported to be associated with supratherapeutic activated partial
thromboplastin time [9,10], as well as a high initial heparin
dose, a high AST/ALT ratio, and emergency admission-type.

Conclusions
The study aimed to provide support to predict heparin treatment
outcomes and recommend optimal heparin dosing to clinicians.
Data-driven machine learning methods were used to predict the
probabilities of subtherapeutic, normal therapeutic, and
supratherapeutic activated partial thromboplastin time. After
comparing different models, we recommend the adoption of a
support system comprising a shallow neural network with
parameter adjustability. The results of this study provide new
insights into personalized medication optimization and
demonstrate the feasibility of applying the model in different
medical institutions.
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