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Abstract

Background: Artificial intelligence–based assistive diagnostic systems imitate the deductive reasoning process of a human
physician in biomedical disease diagnosis and treatment decision making. While impressive progress in this area has been reported,
most of the reported successes are applications of artificial intelligence in Western medicine. The application of artificial intelligence
in traditional Chinese medicine has lagged mainly because traditional Chinese medicine practitioners need to perform syndrome
differentiation as well as biomedical disease diagnosis before a treatment decision can be made. Syndrome, a concept unique to
traditional Chinese medicine, is an abstraction of a variety of signs and symptoms. The fact that the relationship between diseases
and syndromes is not one-to-one but rather many-to-many makes it very challenging for a machine to perform syndrome predictions.
So far, only a handful of artificial intelligence–based assistive traditional Chinese medicine diagnostic models have been reported,
and they are limited in application to a single disease-type.

Objective: The objective was to develop an artificial intelligence–based assistive diagnostic system capable of diagnosing
multiple types of diseases that are common in traditional Chinese medicine, given a patient’s electronic health record notes. The
system was designed to simultaneously diagnose the disease and produce a list of corresponding syndromes.

Methods: Unstructured freestyle electronic health record notes were processed by natural language processing techniques to
extract clinical information such as signs and symptoms which were represented by named entities. Natural language processing
used a recurrent neural network model called bidirectional long short-term memory network–conditional random forest. A
convolutional neural network was then used to predict the disease-type out of 187 diseases in traditional Chinese medicine. A
novel traditional Chinese medicine syndrome prediction method—an integrated learning model—was used to produce a
corresponding list of probable syndromes. By following a majority-rule voting method, the integrated learning model for syndrome
prediction can take advantage of four existing prediction methods (back propagation, random forest, extreme gradient boosting,
and support vector classifier) while avoiding their respective weaknesses which resulted in a consistently high prediction accuracy.

Results: A data set consisting of 22,984 electronic health records from Guanganmen Hospital of the China Academy of Chinese
Medical Sciences that were collected between January 1, 2017 and September 7, 2018 was used. The data set contained a total
of 187 diseases that are commonly diagnosed in traditional Chinese medicine. The diagnostic system was designed to be able to
detect any one of the 187 disease-types. The data set was partitioned into a training set, a validation set, and a testing set in a ratio
of 8:1:1. Test results suggested that the proposed system had a good diagnostic accuracy and a strong capability for generalization.
The disease-type prediction accuracies of the top one, top three, and top five were 80.5%, 91.6%, and 94.2%, respectively.
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Conclusions: The main contributions of the artificial intelligence–based traditional Chinese medicine assistive diagnostic system
proposed in this paper are that 187 commonly known traditional Chinese medicine diseases can be diagnosed and a novel prediction
method called an integrated learning model is demonstrated. This new prediction method outperformed all four existing methods
in our preliminary experimental results. With further improvement of the algorithms and the availability of additional electronic
health record data, it is expected that a wider range of traditional Chinese medicine disease-types could be diagnosed and that
better diagnostic accuracies could be achieved.

(JMIR Med Inform 2020;8(6):e17608) doi: 10.2196/17608
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Introduction

The field of machine learning has experienced unprecedented
and rapid development in recent years; this growth can be
attributed to three factors—advanced artificial neural network
architecture and algorithms, enhanced computing power, and
the availability of vast amounts of training data. Machine
learning has been successfully applied to many fields including
medical health systems. Applications of machine learning in
medical health systems can be roughly classified into two
categories—image-based such as radio imaging analysis and
text-based such as electronic health record analysis using natural
language processing. Numerous reports have shown strong
performance of image-based machine learning applications
[1-6] while the successful development of text-based medical
applications [7,8] remains a challenge because of its unstructured
and diverse form of input data. In this age of digital medicine
(and its associated deluge of digital information), it has become
a daunting task for medical experts to fully utilize medical
history and the test result data in a timely fashion; therefore, it
is not only possible but necessary that machine learning is used
to assist medical professionals in diagnostic and treatment
decision making. Systems that can be used to assist medical
professionals in this decision making are often called assistive
diagnostic systems.

Assistive diagnostic systems have become an intense research
focus for both medical practitioners and scientists in the past
decade. A typical assistive diagnostic system consists of a
functionality that extracts critical clinical information such as
symptoms from electronic health record, and another
functionality that performs deductive reasoning to predict or
diagnose biomedical diseases based upon the extracted clinical
information. Liang et al [9] reported an artificial
intelligence–based pediatric disease diagnostic system that
demonstrated high diagnostic accuracies in diagnosing common
childhood diseases across multiple organ systems which was
comparable to that of experienced physicians. This was
accomplished by using a natural language processing technique
to extract relevant symptom information from electronic health
record notes, and by using logistic regression classifiers to
predict the disease based upon the symptoms.

In comparison to treatment decision making in Western
medicine, treatment decision making in traditional Chinese
medicine is more challenging. In traditional Chinese medicine,

physicians need to perform syndrome differentiation [10] as
well as disease diagnosis before a decision concerning treatment
can be made. A syndrome is a concept unique to traditional
Chinese medicine and is an abstraction of a variety of symptoms
and signs—it is a pathological summarization of a specific stage
of a disease. A syndrome covers disease location, etiology, and
the struggle between the disease’s pathogenic factors and the
body’s resistance. In traditional Chinese medicine, the
relationship between disease and syndrome is not one-to-one.
Instead, disease to syndrome mapping may be considered
many-to-many; therefore, the application of machine learning
to decision-making processes in traditional Chinese medicine
is challenging. Numerous attempts have been made to apply
machine learning to traditional Chinese medicine to assist
physicians in their treatment decisions [10-13]. Zhou et al [12]
proposed a traditional Chinese medicine diagnostic model with
multilabel classification. The model takes symptoms as input
and predicts medicine disease-type and corresponding
syndromes and was able to show good diagnostic accuracy. Liu
et al [13] used a deep learning technique and one-versus-the-rest
strategy for multilabel classification in diagnostic modeling for
syndrome differentiation of traditional Chinese medicine chronic
gastritis diseases and also achieved good results.

Despite these encouraging preliminary results, existing artificial
intelligence–based traditional Chinese medicine systems have
been limited in what their diagnostic model can diagnose
(typically only one type of traditional Chinese medicine disease).
In practice, it is highly desirable for an assistive diagnostic
system to be capable of diagnosing or differentiating between
multiple diseases and syndromes.

In this paper, we present an artificial intelligence–based
traditional Chinese medicine diagnostic system which can
diagnose 187 diseases common in traditional Chinese medicine
and predict their associated syndromes from unstructured
freestyle electronic health records. In the system, notes from
freestyle electronic health record are first processed using a
bidirectional long short-term memory network with conditional
random forest [14-17] to form structured data, then features are
extracted from the structured data and further vectorized. A
convolutional neural network for processing text [18,19] was
used to predict which traditional Chinese medicine disease was
diagnosed from the vectorized data, and an integrated learning
model was used to predict the disease’s corresponding
syndromes.
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Methods

Overview
A high-level block diagram of the diagnostic system is shown
in Figure 1. The system consists of four subsystems—natural
language processing, feature extraction, disease diagnosis, and
the syndrome prediction. The natural language processing
subsystem takes notes from freestyle electronic health record
as input, extracts named entities, and produces structured data
from the recognized named entities and the relationships among
the named entities. The feature extraction subsystem extracts

clinical information useful in disease diagnosis and syndrome
differentiation from the structured data and produces additional
vectorized data as output. The vectorized data are fed into a
disease diagnosis network to predict the disease and are then
given to the syndrome prediction subsystem to produce a list
of syndromes. The syndrome prediction subsystem consists of
187 models, each of which corresponds to a disease in traditional
Chinese medicine. The output of the disease diagnosis subsystem
is used as input for the syndrome prediction subsystem in order
for the syndrome prediction subsystem to select the appropriate
model to use.

Figure 1. Block diagram of the proposed assistive diagnostic system. EHR: electronic health record; NLP: natural language processing; TCM: traditional
Chinese medicine.

Natural Language Processing Subsystem
The natural language processing subsystem is responsible for
generating structured data from unstructured electronic health
record notes. Its internal block diagram is shown in Figure 2.
There are three functional blocks in this subsystem. The first
block preprocesses electronic health record notes, the second

block annotates and corrects, and the third, which is a
bidirectional long short-term memory network with conditional
random forest, is responsible for named entity recognition. The
second block exists only during the training phase of the system;
during the testing and application phase, notes do not need to
be annotated, thus the second block is bypassed.

Figure 2. Natural language processing subsystem block diagram. Dashed-lines indicate that the component’s existence is conditional based upon
whether the system is in the training phase. BiLSTM-CRF: bidirectional long short-term memory network with conditional random forest; EHR:
electronic health record; NLP: natural language processing.

Electronic Health Record Notes Preprocessing
Electronic health record notes were preprocessed by removing
unnecessary or unusable components of the electronic health
record such as pictures. Notes were transformed into a standard
format (half-angle encoding was used); notes were written in
Chinese, and since Chinese characters can be encoded in either
full-angle or half-angle format, a standard format was required.
Freestyle notes were sorted and divided according to predefined
sections such as chief complaint, family medical history, etc.

Electronic Health Record Notes Annotation
In the training data set, all electronic health record notes were
annotated to be used for supervised training of the bidirectional
long short-term memory network with conditional random
forest, the convolutional neural network for processing text,

and the integrated learning model network. Notes were annotated
with named entities and the relationships among entities. Figure
3 shows sample annotation of the electronic patient record of a
patient with a coughing history of 40 years who experienced
severe coughing in the 15 days prior to visiting the physician.
The electronic health record indicates that the patient entered
the hospital in a wheelchair and was observed as being pale,
weak, and in good spirit. Observations based upon physical
examination of the tongue were recorded in the notes; tongue
quality was observed as being pale red, furred, with white and
greasy coating. Through annotation, the notes were marked with
named entities such as cough, tongue quality, and pulse
observation. Clinical information contained in the electronic
health record notes was first processed by computer to form the
initial training data. Subsequently, medical experts manually
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examined and corrected the preliminary results to form the final training data set.

Figure 3. Example of electronic health record notes annotation.

Bidirectional Long Short-Term Memory Network With
Conditional Random Forest Network for Named Entity
Recognition
The bidirectional long short-term memory network with
conditional random forest was responsible for generating
structured data from the preprocessed electronic health record
notes. This was accomplished by employing a recurrent neural
network as shown in Figure 4. Numerous studies have shown
that a bidirectional long short-term memory network with
conditional random forest is best suited for processing sequential

data such as speech and text [14-16].The open-source
implementation [17] of the model presented by Lample et al
[16] was adopted for the construction of our bidirectional long
short-term memory network with conditional random forest
system.

With this network, named entities in the electronic health record
notes can be extracted and properly placed in predefined data
structures according to the relationships among the named
entities. Figure 5 shows an example of the mapping between
the electronic health record notes and the structured text with
predefined sections.
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Figure 4. Bidirectional long short-term memory network with conditional random forest block diagram. CRF: conditional random forest; LSTM: long
short-term memory; NN: noun, singular speech tag; PRP: personal pronoun speech tag; VBO: verb speech tag; VBP: verb, singular present speech tag.

Figure 5. An example of named entity extraction from electronic health record notes. EHR: electronic health record; TCM: traditional Chinese medicine.
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Feature Extraction Subsystem
The feature extraction subsystem was responsible for extracting
useful information from the structured text data. The internal
blocks of this subsystem are shown in Figure 6. The structured
text contained many redundant and nonrelevant entries since
the data structure was defined for a generalized purpose. During
the feature extraction process data were cleaned, descriptions
of symptoms and physical conditions were standardized (given
that different physicians may have used different wording) using
a predefined dictionary, a process called split-and-join was
performed. Since the same named entity could be found in
different sections of the structured text, for example, in the
medical history as well as in the chief complaint, this step split
the sections into parts and joined the relevant parts based upon
their features.

During feature selection, entities corresponding to the same
symptom were correspondingly ordered. For example, a chief
complaint of “coughing for 3 days accompanied coughing
phlegm for 2 days” contained two symptom
entities—“coughing” and “coughing phlegm”—and two time
entities—“3 days” and “2 days.” In this example, a total of four
symptoms were obtained— “coughing”, “coughing for 3 days”,
“coughing phlegm,” and “coughing phlegm for 2 days”— from
which a weighted sum was calculated. An entity’s weight was
calculated based upon the time distance from the current time
as weight(n+1) = weight(n) + increment, where n=0, 1, 2, …N,
increment= 1/N, weight(0)=0 and N was the total number of
time units. This formula gives a larger weight value to an entity
that is nearer in time to the current time, and a smaller weight
value to an entity that is further in the past. The weighted sum
was used to decide which features were extracted and the
extracted features were output as vectorized data.

Figure 6. Block diagram of the feature extraction subsystem.

Convolutional Neural Network for Processing Text
Disease Diagnosis Subsystem
Convolutional neural networks are composed of alternating
convolution and pooling layers and a fully connected layer. Due
to the characteristics of convolution kernel, the features
represented by adjacent elements in a 2-dimensional space can
be mined. Similarly, in the field of natural language processing
field, 1-dimensional convolution kernels can be used to mine
correlations among different words in a sentence. A network
that uses convolutional neural networks for natural language
text processing is called a convolutional neural network for
processing text network. After word segmentation of a Chinese
sequence, word embedding represented each word with a
high-dimensional vector denoted by floating-point numbers to
convert a sentence into a 2-dimensional matrix. Convolution
operations are performed on the 2-dimensional matrix with
multiple convolution kernels whose widths were equal to the
dimension of the word vector dimension but which were of
different heights. Pooling operations were then performed to
classify and to predict Chinese text [19].

The structure of the convolutional neural network model used
in this study is shown in Figure 7. The inputs were the named
entities and their relationships that were extracted from the
database of the structured medical record information. To ensure
that the input length was consistent, the maximum number of
words in the sample was set to L and zero-padding was used.
From the word embedding layer, a word matrix with a size of

149,076×100 was obtained. The word vector model used in this
experiment was trained by the public open-source Gensim
module, whose corpus is composed of Chinese electronic health
record data from multiple hospitals. The dictionary contained
149,076 words, each word represented by a 100-dimensional
word vector. A 2-dimensional convolution was used in this
convolutional neural network. When selecting the model
structure and parameters, various factors such as sample size,
hardware equipment performance, model complexity,
characteristics of the electronic health records, and past
experimental experience were considered. The grid search
method was used to set multiple values in descending order,
and to select the best parameter value from different ranges and
magnitudes of the same parameter. By comparing the accuracy
of the trained model with that of the test set, we set 256
convolution kernels with dimensions of (L-1)*100, (L-2)*100,
and (L-3)*100 (as filters), from which 256 2×1, 3×1, and 4×1
feature surfaces were obtained. A maximum pooling layer was
added to perform dimension reduction on the features of the
filter layer. Finally, the pooled vectors were stitched through
the fully connection layer as the input of the softmax
(normalized exponential) layer to predict the disease from 187
possible classes. Due to the complexity of the multiclass
classification problem and because the input electronic health
record data may not be ideal, the prediction accuracy of the
model in the first class cannot reach accuracy of 100%. The top
five classes can be predicted accurately and also have practical
significance; therefore, the top five are used in the model
prediction as the final output.
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Figure 7. Illustration of the text convolutional neural network.

Integrated Model for Syndrome Prediction Subsystem
Syndrome differentiation is an integral part of treatment in
traditional Chinese medicine. The syndrome prediction
subsystem produces a list of the most probable syndromes based
upon the structured vector data. In theory, many machine
learning algorithms could be used for syndrome prediction;
however, in practice, not all are suited to the task due to the
characteristics of the relationships between disease and its
associated syndromes in traditional Chinese medicine. For
example, text processing convolutional networks were ruled
out since they cannot perform well in a situation where the
number of syndromes associated with a disease is small. Back
propagation [20] neural networks have strong nonlinear mapping
capabilities because they can approach arbitrarily close to any
continuous curve. Furthermore, back propagation possesses
flexibility in terms of the number of network layers, the number
of neurons in a layer, and the learning rate coefficients. Thus,
back propagation networks have been favored in traditional
Chinese medicine modeling [20]. The support vector classifier
[21] has a strong mathematical basis and has shown excellent
performance in situations where the number of samples is small,
the dimension is high, and there is strong nonlinearity which is
why support vector classifiers have previously been used for
syndrome prediction. Random forest [22] models have also
been used for syndrome prediction. Random forests employ
bootstrap aggregation ensemble methods which combine the
predictions from multiple independent decision trees. Extreme
gradient boosting [23] has recently become popular and has
proven to be effective in syndrome prediction.

A closer examination of these four algorithms for syndrome
predictions demonstrated that, individually, they are prone to
either underfitting or overfitting in applications of syndrome
prediction. In our system, they were collectively employed to
form an integrated learning model for a given disease-type. In
this integrated learning model, the bootstrap aggregation
(random forest) ensemble method was used to combine the
predictions from different methods such as back propagation
and support vector classifier. The extreme gradient boosting
was used to combine weak classifiers into a strong classifier.
Figure 8 illustrates the 187 integrated models, each of which
can produce a list of syndromes for a given disease.

Each of the models consists of four individual algorithms—back
propagation, support vector classifier, random forest, and
extreme gradient boosting. As shown in Figure 9, the integrated
model selects the final output from the outputs of the four
algorithms by majority-rule. In majority-rule, the selection
decision is based upon the highest number of votes for the
outputs from each of the four algorithms. This approach not
only overcomes the drawbacks of underfitting and overfitting,
but also takes advantage of the strength of individual algorithms
in predicting syndromes for some but not other types of diseases.

The integrated learning model approach has a better capability
for generalization compared to the capabilities of existing
approaches. This allows our artificial intelligence–based
assistive diagnostic system to handle 187 classes of disease
while existing systems may only be capable of handling one or
two.
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Figure 8. Illustration of the 187 integrated models.

Figure 9. Block diagram of the Integrated learning model. BP: back propagation; RF: random forest; SVC: support vector classifier; XGBoost: extreme
gradient boosting.

Results

Data Source
The data set used in this research was obtained from
Guanganmen traditional Chinese medicine Hospital in Beijing,
China. A total of 22,984 electronic health record notes that were
generated between January 1, 2017 and September 7, 2019 were
used for the training, validation, and testing of this system. This

data set contained 187 first-category diseases and a total of 466
first-category syndromes. Furthermore, these 187 traditional
Chinese medicine diseases are among the 236 most common
diseases in traditional Chinese medicine [24]. These diseases
cover internal medicine, gynecology, pediatric, orthopedics and
traumatology, otolaryngology, dermatology, and surgery.

Originally, there were 23,719 electronic health record notes. A
quality control process was applied to exclude notes with
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incomplete records such as missing admission page or discharge
page, or notes with inconsistent information such as conflicting
information between admission page and discharge page. In
addition, notes that did not contain standard descriptions of
complaint were discarded to eliminate biased or incorrect
opinions from different physicians. From this process, 735 notes
were discarded resulting in a total of 22,984 notes that were
included.

The distribution of the number of electronic health record notes
for different diseases and syndromes was 2180, 1913, 109, and
584 notes for cluster disease, diabetes, asthma, and spleen
disease, respectively. Since this distribution imbalance would
lead to bias that favors those with a large number of training
samples and would reduce the system’s generalization
capability, to mitigate this issue, upsampling and downsampling
were used to preprocess the original data set in order to make
sample distribution approximately even. Upsampling with the
synthetic minority oversampling technique was used to increase
the number of electronic health record notes for asthma and
spleen disease to 1000 each, while the number of electronic
health record notes for cluster disease and diabetes were each
trimmed to 1000 through downsampling.

The processed data set was then partitioned into the training
set, the validation set, and the testing set in a typical ratio of
8:1:1. The training set was used to train the coefficients of the
models, the validation set was used for adjusting the model
parameters, and the test set was used for measuring the
performance of the system. During the partition of the data set,
a k-fold+bootstrap resampling technique was employed to
process the training set and the validation set. Generalization
capability was improved by searching the best superparameters
on different partitions during the training and integration of
multiple models.

Validation
One-tenth of the total number (2298/22,984) of electronic health
record in the data set was used for validation. The purpose of
validation was to fine tune the neural network parameters.

Disease Diagnosis Results
The convolutional neural network for processing text disease
diagnostic system was trained with a data set that contains 187

types of traditional Chinese medicine diseases. The test data set
contained 2298 copies of electronic health record notes. The
test results on the trained convolutional neural network for
processing text model were 83.9% for the top 1 score, 92.4%
for the top 3 score, and 95.7% for the top 5 score. As indicated
by the test results, disease diagnosis generated relatively high
diagnostic accuracies for the top 1, top 3, and top 5 score. The
top 1 score, the top 3 score, and the top 5 score were calculated
as follows. First, the list of predicted diseases was sorted into
descending order based upon associated probabilities. If the
number one predicted disease matched the target disease, then
the test was considered a success for the top 1 score. If one of
the first three predicted diseases matched the target disease,
then the test was considered a success for the top 3 score. If one
of the first five predicted diseases matched the target disease,
then the test was considered a success for the top 5 score.

Based on the above definitions for the top 1 score, the top 3
score, and the top 5 score, naturally, it is always valid that the
top 5 score > the top 3 score > the top 1 score. The results also
suggest that even for only the top 1 score, prediction accuracy
is high.

Syndrome Prediction Results
For each traditional Chinese medicine disease, a syndrome
prediction model of that disease was trained. Under the same
experimental conditions and data set, a 5-fold cross-validation
method was used to evaluate the prediction results of each of
the four algorithms and that of the integrated learning model.
The calculated prediction accuracies of all 187 traditional
Chinese medicine diseases were calculated. For the sake of
brevity, only the results of 12 disease were included in Table 1
along with the average accuracies over all 187 diseases.

As shown in Table 1, extreme gradient boosting generally
outperformed back propagation, support vector classifier, and
random forest methods. Furthermore, the integration learning
model reached an average prediction accuracy of 0.91, better
than any of the four known models. The reason for the
outstanding performance of the integration model lies in the
fact that it employed a majority-rule selection method for the
final prediction result.
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Table 1. Syndrome prediction results.

Model AccuracySyndrome

IntegrationExtreme gradient boostingRandom ForestSupport Vector ClassifierBack Propagation

Medical condition

0.9420.8900.8860.8680.872Bloody Stool

0.8770.8800.8220.8000.808Abdominal Pain

0.9350.8960.8940.8720.832Cough

0.9120.9030.8920.8520.823Stroke

0.9840.9500.9860.9250.841Insomnia

0.9720.9190.9320.7990.802Hemoptysis

0.8030.8460.7900.7790.784Blindness

0.8260.8200.8190.8170.809Depression

0.9540.9500.9510.8790.953Asthma

0.8930.9010.8790.8610.908Anorectal Disease

0.8920.8870.8700.8650.832Pepey Disease

0.9130.8860.8680.8720.822Mean accuracy (of all 187)

Assistive Traditional Chinese Medicine Diagnostic
System
Existing assistive traditional Chinese medicine diagnostic
systems that have been reported can handle only one type of
disease or a few syndrome predictions. Our system can diagnose
187 traditional Chinese medicine diseases and the associated
syndromes. So far, we have not found systems similar to ours.

The overall system-level prediction accuracy was calculated by
dividing the total number of correct predictions by the number
of test cases. A correct prediction was defined by both disease
and syndrome having been correctly predicted, simultaneously.

The test results of system-level accuracy were 80.5% for the
top 1 score, 91.6% for the top 3 score, and 94.2% for the top 5
score. Our disease diagnosis model and syndrome prediction
model together yielded relatively high diagnostic accuracies for
the top 1 score, top 3 score, and top 5 score.

Discussion

Principal Results
Unlike most previous research projects which have typically
focused on traditional Chinese medicine syndrome prediction
for only one disease-type, we successfully used machine learning
to simulate hypothetical deductive reasoning similar to that of
human physicians in order to diagnose traditional Chinese
medicine disease and corresponding syndromes for 187 types
of diseases. The state-of-art syndrome prediction accuracy was
obtained by employing a new syndrome prediction model. The
prediction accuracy of this system is sufficient to assist
traditional Chinese medicine practitioners in their daily clinical
work.

Limitations
The data set, which only spanned two years in a single
traditional Chinese medicine hospital, was relatively small. Not

all common diseases and syndromes were contained in this data
set; therefore, additional clinical data are needed to further
improve the system.

Comparison With Prior Work
Prior work reported by other researchers mainly focused on one
particular type of traditional Chinese medicine disease [20-23].
Our work is centered around the capability of diagnosing all
the traditional Chinese medicine diseases and associated
syndromes. At present, the proposed system can diagnose 187
out of 236 common traditional Chinese medicine diseases.

Conclusions
Artificial intelligence in diagnosing patients is highly desirable
in today’s digital medical age. With an abundance of medical
information contained in freestyle medical health record notes,
machine learning–based assistive systems can mine the medical
data to extract useful and logical information and form
preliminary opinions on diseases and treatment plans. For
traditional Chinese medicine, syndrome prediction is also part
of the diagnostic process. Because traditional Chinese medicine
diseases can be linked to many syndromes, and syndromes can
be linked to many diseases, disease diagnosis and syndrome
prediction are more challenging in traditional Chinese medicine
than in Western medicine. An effective artificial
intelligence–based traditional Chinese medicine assistive
diagnostic system was developed in this research by employing
bidirectional long short-term memory network with conditional
random forest for named entity recognition, a convolutional
network for text processing for disease diagnosis, and an
integrated learning model for syndrome prediction. The main
contribution of this paper is a novel syndrome prediction scheme
and convolutional network that represents 187 traditional
Chinese medicine diseases. The system was trained, validated,
and tested by using the data set obtained from nearly 23,000
electronic health record notes from Guanganmen Hospital. The
proposed system distinguishes itself from existing assistive
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systems in that it can predict traditional Chinese medicine
disease-type and syndromes simultaneously, and it can diagnose
187 types of common traditional Chinese medicine diseases.
Furthermore, preliminary results suggest that the system
achieved higher prediction accuracy than all existing systems

[20-23]. Future work will include optimizing the convolutional
network for processing text to learn all 236 common traditional
Chinese medicine diseases, further improvement of the
integrated learning model for syndrome prediction, and the use
of additional electronic health record notes to train the system.
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BiLSTM-CRF: bidirectional long short-term memory network with conditional random forest
CRF: conditional random forest
EHR: electronic health record
LSTM: long short-term memory
NN: noun, singular speech tag
PRP: personal pronoun speech tag
VBO: verb speech tag
VBP: verb, singular present speech tag
NLP: natural language processing
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