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Abstract

Background: Risk-based breast cancer screening is a cost-effective intervention for controlling breast cancer in China, but the
successful implementation of such intervention requires an accurate breast cancer prediction model for Chinese women.

Objective: This study aimed to evaluate and compare the performance of four machine learning algorithms on predicting breast
cancer among Chinese women using 10 breast cancer risk factors.

Methods: A dataset consisting of 7127 breast cancer cases and 7127 matched healthy controls was used for model training and
testing. We used repeated 5-fold cross-validation and calculated AUC, sensitivity, specificity, and accuracy as the measures of
the model performance.

Results: The three novel machine-learning algorithms (XGBoost, Random Forest and Deep Neural Network) all achieved
significantly higher area under the receiver operating characteristic curves (AUCs), sensitivity, and accuracy than logistic
regression. Among the three novel machine learning algorithms, XGBoost (AUC 0.742) outperformed deep neural network (AUC
0.728) and random forest (AUC 0.728). Main residence, number of live births, menopause status, age, and age at first birth were
considered as top-ranked variables in the three novel machine learning algorithms.

Conclusions: The novel machine learning algorithms, especially XGBoost, can be used to develop breast cancer prediction
models to help identify women at high risk for breast cancer in developing countries.

(JMIR Med Inform 2020;8(6):e17364) doi: 10.2196/17364
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Introduction

In China, female breast cancer is the most prevalent malignant
tumor affecting women, and its incidence is still increasing.
According to the National Central Cancer Registry of China,
more than 279,000 women were diagnosed with breast cancer
in 2014, with a corresponding age-adjusted incidence rate of

28.77 per 100,000 [1]. The large number of breast cancer cases
in China has resulted in a tremendous disease burden. In 2016,
there were over 2 million disability-adjusted life years (DALYs)
and 70,000 deaths due to breast cancer in China, accounting for
approximately 15% of global DALYs and 13% of global deaths
due to breast cancer [2]. Therefore, breast cancer is a major
public health issue in China.
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Breast cancer screening has proven to be an effective approach
for breast cancer control. Several randomized controlled trials
have shown that breast cancer screening can help detect breast
cancer at an early stage and improve disease outcomes [3,4]. In
many developed countries, population-based breast cancer
screening programs have been implemented for several decades
and brought positive results [5]. Nevertheless, due to the
relatively low incidence rate, large population, and limited
medical resources, population-based breast cancer screening is
not feasible in China [6]. Therefore, some researchers have
proposed risk-based breast cancer screening, considered to be
cost-effective and more suitable for low- and middle-income
countries like China [7].

Successful implementation of risk-based breast cancer screening
largely relies on a breast cancer prediction model to accurately
identify high-risk people before screening, but there is currently
no suitable breast cancer prediction model for Chinese women.
Some well known and commonly used breast cancer prediction
models like the Gail and Tyrer-Cuzick models were developed
based on women living in western countries, and their
performance in Chinese women is unsatisfactory [8]. Hence,
there is an urgent need to develop a breast cancer prediction
model specifically for Chinese women.

Despite conventional statistical methods and some traditional
machine learning algorithms (eg, logistic regression [LR]),
modern machine learning has become an alternative approach
for developing prediction models. Different from traditional
prediction models where relationships between dependent and
independent variables are predefined using prior knowledge,
modern machine learning can automatically learn the underlying
patterns of the data without any implicit assumptions [9]. This
is especially the case for tree-based machine learning algorithms
such as decision trees. These algorithms only make weak
assumptions about the form of the mapping function and are
therefore free to learn any functions underlying the training data
and can deal with nonlinear relationships and higher order
interactions between variables [10], both of which are common
challenges in the health care field. In contrast, as a form of
parametric machine learning algorithm, an artificial neural
network (ANN) also makes strong assumptions about the
functional form but it can still be used for modeling nonlinear
relationships and high-order interactions. This is mainly due to
the use of nonlinear activation functions in ANN and the
sufficient complexity (depth and number of neurons) of the
networks [11].

The objectives of this study are to evaluate and compare the
performance of four different machine learning algorithms on
predicting breast cancer among Chinese women and choose the
best machine learning algorithm to develop a breast cancer
prediction model. We used three novel machine learning
algorithms in this study: extreme gradient boosting (XGBoost),
random forest (RF), and deep neural network (DNN), with
traditional LR as a baseline comparison.

Methods

Dataset and Study Population
In this study, we used a balanced dataset for training and testing
the four machine learning algorithms. The dataset comprises
7127 breast cancer cases and 7127 matched healthy controls.
Breast cancer cases were derived from the Breast Cancer
Information Management System (BCIMS) at the West China
Hospital of Sichuan University. The BCIMS contains 14,938
breast cancer patient records dating back to 1989 and includes
information like patient characteristics, medical history, and
breast cancer diagnosis [12]. West China Hospital of Sichuan
University is a government-owned hospital and has the highest
reputation in terms of cancer treatment in Sichuan province;
the cases derived from the BCIMS are representative of breast
cancer cases in Sichuan [12].

Han Chinese women living in Sichuan province who were first
diagnosed with primary breast cancer between 2000 and 2017
were included (12,175 cases were included and 2763 cases were
excluded). We excluded cases of patients with mental disorder
and aged younger than 30 years or older than 70 years (11,916
cases were included and 259 cases were excluded). For the
remaining cases, those containing missing values (4,771 cases)
or contradictory data (18 cases; eg, age at first birth < age of
menarche) were also excluded. Finally, a total of 7127 cases
were eligible and included in the study. For each eligible breast
cancer case, a main residence (urban or rural area) matched
healthy control was selected from women who participated in
the Breast Cancer Screening Cohort in Sichuan from 2009 to
2017. The screening project was launched at Chengdu Women’s
and Children’s Central Hospital and Shuangliu Maternal and
Child Health Hospital with the purpose of providing free
screening for breast cancer, cervical cancer, and reproductive
tract infections to women aged between 30 and 70 years.

A total of 13,607 women living in Chengdu and 15,704 women
living in Shuangliu county were recruited in the cohort,
representing Han Chinese women living in the developed and
less developed regions of Sichuan province, respectively.
Eligibility criteria for controls were Han Chinese, living in
Sichuan province, confirmed to have no breast cancer, and
without mental disorder and other malignant tumors. If a woman
had more than one screening record, the most recent record was
used.

Variable Selection
For the controls, a standard questionnaire was used to collect
demographic and risk factor information, whereas for the cases,
the corresponding data were directly extracted from the BCIMS.
Independent variables that were included in the machine learning
models were selected based on the following criteria: (1) they
must be potential or known breast cancer risk factors and (2)
they must be collected using the same measurement methods
and have the same definitions in the cases and controls. A total
of 10 variables, including 3 demographic factors, 6 reproductive
history factors, and family history of breast cancer, met the
above criteria and were selected for classification. Table 1 shows
the details of the 10 independent variables selected along with
the outcome variable.
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Table 1. Descriptions and details of the variables included in the machine learning algorithms.

DescriptionTypes of variableVariable

Urban area (0), rural area (1)Categorical variableaMain residence

Premenopause (0), postmenopause (1)Categorical variableMenopausal status

Age at breast cancer diagnosis or screeningDiscrete variableAge in years

BMI at breast cancer diagnosis or screeningContinuous variableBMI (kg/m2)

Age at first menstruationDiscrete variableAge of menarche

Premenopausal women: current age – age of menarche; postmenopausal
women: menopause age – age of menarche

Discrete variableDuration of reproductive life span

No (0), yes (1)Categorical variablePregnancy history

Live births is defined as births of children who showed any sign of lifeDiscrete variableNumber of live births

Age of women at birth of first child (for women with no live birth, this
value equals 99)

Discrete variableAge at first birth

First-degree or second-degree female relatives had breast cancer: no (0),
yes (1)

Categorical variableFamily history of breast cancer

Control (0), case (1)Categorical variableCase-control status (outcome variable)

aCategorical variables were converted into one-hot encoding before being provided to machine learning algorithms.

Machine Learning Algorithms
In this study, three novel machine learning algorithms
(XGBoost, RF, and DNN) along with a baseline comparison
(LR) were evaluated and compared.

XGBoost and RF both belongs to ensemble learning, which can
be used for solving classification and regression problems.
Different from ordinary machine learning approaches where
only one learner is trained using a single learning algorithm,
ensemble learning consists of many base learners. The predictive
performance of a single base learner is merely slightly better
than random guess, but ensemble learning can boost them to
strong learners with high prediction accuracy by combination
[13]. There are two methods to combine base learners: bagging
and boosting. The former is the base of RF while the latter is
the base of XGBoost. In RF, decision trees are used as base
learners and bootstrap aggregating, or bagging, is used to
combine them [14]. XGBoost is based on the gradient boosted
decision tree (GBDT), which uses decision trees as base learners
and gradient boosting as combination method. Compared with
GBDT, XGBoost is more efficient and has better prediction
accuracy due to its optimization in tree construction and tree
searching [15].

DNN is an ANN with many hidden layers [16]. A standard
ANN is made up of an input layer, several hidden layers, and
an output layer, and each layer contains multiple neurons.
Neurons in the input layer receive values from the input data,
neurons in other layers receive weighted values from the
previous layers and apply nonlinearity to the aggregation of the
values [16]. The learning process is to optimize the weights
using a backpropagation method to minimize the differences
between predicted outcomes and true outcomes. In contrast to
shallow ANN, DNN can learn more complex nonlinear
relationships and is intrinsically more powerful [17].

Hyperparameters Tuning, Model Development, and
Algorithm Comparison
A general overview of the model development and algorithm
comparison process is illustrated in Figure 1. The first step was
hyperparameters tuning, with the purpose of choosing the most
optimal configuration of hyperparameters for each machine
learning algorithm. In DNN and XGBoost, we introduced
dropout and regularization techniques, respectively, to avoid
overfitting, whereas in RF, we tried to reduce overfitting by
tuning the hyperparameter min_samples_leaf. We conducted a
grid search and 10-fold cross-validation on the whole dataset
for hyperparameters tuning. The results of the hyperparameters
tuning along with the optimal configuration of hyperparameters
for each machine learning algorithm is shown in Multimedia
Appendix 1.

Based on the optimal configuration of hyperparameters, the
next step was model development and assessment. In this step,
we used repeated 5-fold cross-validation. This method can avoid
overfitting and increase robustness of the results. In each 5-fold
cross-validation, the dataset was randomly divided into 5 folds
with approximately equal sample size, where 4 folds were
chosen as training set to develop the machine learning models
while the remaining 1 fold was used as the validation set to
calculate the model performance metrics (including area under
the receiver operating characteristic curve [AUC], sensitivity,
specificity, and accuracy). After 5 iterations, each fold (as well
as each subject) was used as validation set exactly once. We
repeated the whole 5-fold cross-validation process 10 times,
and in each repetition, the division of the dataset was different.

The final step was algorithm comparison. For each machine
learning algorithm, we summarized their predictive performance
metrics generated from the second step using means and
standard deviations and conducted pair-wise comparison using
statistical tests. AUC was chosen as the primary measure of the
predictive performance in our study.
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RF and LR algorithms were implemented in Python 3.6 (Python
Software Foundation) using scikit-learn (version 0.20.0).
XGBoost and DNN algorithms were implemented in Python

3.6 using xgboost (version 0.80) and TensorFlow (version
1.10.0), respectively. Source code is shown in Multimedia
Appendix 2.

Figure 1. Process of model development and algorithm comparison. Step 1: hyperparameters tuning; step 2: model development and assessment; step
3: algorithm comparison. Performance metrics include area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy.

Variable Ranking
To have a deeper understanding of the three novel machine
learning algorithms, we ranked all the variables based on their
impact on AUCs. To do so, we repeated step 1 and 2 illustrated
above, but in each iteration of the repeated 5-fold
cross-validation, we successively permuted the values of the
10 variables in the testing set and calculated the corresponding
decrease in the AUC (in percentage). Then the results were
summarized and used for ranking each variable in the four
machine learning algorithms. Detailed process is illustrated in
Multimedia Appendix 3.

Statistical Analysis
Characteristics of the cases and controls were described using
medians (IQRs) for continuous or discrete variables and number
(%) for categorical variables. For the comparison of
characteristics between cases and controls, we used a
Mann-Whitney U test for continuous or discrete variables and
Pearson chi-square test for categorical variables, with a
significance level of .05. As for the pair-wise comparison of
the predictive performance of the machine learning algorithms,
we used the pair-wise corrected resampled t test [18]. To
counteract the issue of multiple comparisons, the significance
level was adjusted to .008 using Bonferroni correction. All

statistical analyses were conducted using SciPy (version 1.1.0),
pandas (version 0.23.0), and NumPy (version 1.14.3) in Python
3.6.

Results

As shown in Table 2, a total of 7127 breast cancer cases along
with 7127 matched healthy controls were included in the dataset.
Among the cases, 61.27% (4367/7127) were premenopausal
women and 38.73% (2760/7127) were postmenopausal women,
while among the controls, 63.80% (4547/7127) were
premenopausal women and 36.20% (2580/7127) were
postmenopausal women. Except for BMI, menarche age, main
residence, and family history of breast cancer, all other features
were significantly different between the cases and controls.

The predictive performance of the four machine learning
algorithms is shown in Figure 2 and Table 3, and the results of
the pair-wise corrected resampled t test are shown in Multimedia
Appendix 4. The three novel machine learning algorithms all
achieved significantly higher AUCs than the linear LR algorithm
(P<.001). To be more specific, XGBoost had a mean score of
0.742 in terms of AUC, followed by DNN (0.728), RF (0.728),
and LR (0.631). XGBoost had significantly higher AUC than
both DNN and RF (P<.001), whereas no statistically significant

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e17364 | p. 4http://medinform.jmir.org/2020/6/e17364/
(page number not for citation purposes)

Hou et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


difference was found between the mean AUCs of DNN and RF
(P=.98). Similarly, the mean sensitivity of LR (49.6%) was
significantly lower compared with that of XGBoost (65.6%),
DNN (64.2%), or RF (65.0%; P<.001). However, for XGBoost,
DNN, and RF, their mean sensitivities were not significantly
different from each other.

As for specificity, the four machine learning algorithms achieved
similar results (LR: 66.1%; DNN: 67.9%; XGBoost: 68.6%;
RF: 67.7%) and no statistically significant differences were
found between them. Since we used a balanced dataset to train
the models, we have also reported accuracy. Compared with
XGBoost (67.1%), DNN (66.1%), and RF (66.3%), LR had the
lowest accuracy (57.8%). Although XGBoost had the highest
mean accuracy, there was no significant difference between the
mean accuracy of XGBoost and RF (P=.34). The difference

between the mean accuracy of DNN and RF was also
statistically insignificant (P=.01).

Figure 3 presents the variable rankings according to the mean
decrease in AUCs in different machine learning algorithms.
XGBoost, RF, and DNN were very similar in variable rankings,
although some discrepancies did exist. In all the three novel
machine learning algorithms, main residence, number of live
births, menopause status, age, and age at first birth were
considered as top-ranked variables. Since the cases and controls
were matched by main residence, linear LR prioritized all other
variables over main residence. Moreover, pregnancy history,
which was not present in top-ranked variables for the three novel
machine learning algorithms, was prioritized over age and age
at first birth in LR.

Table 2. Characteristics of case and control participants.

P valueaCaseControlVariable

<.00147 (42-54)47 (41-53)Age in years, median (IQR)

.1622.89 (20.94-24.97)22.83 (20.96-24.77)BMI (kg/m2), median (IQR)

.2314 (13-15)14 (13-15)Age of menarche, median (IQR)

<.00132 (27-35)31 (27-34)Duration of reproductive lifespan, median (IQR)

<.0011 (1-2)1 (1-1)Number of live births, median (IQR)

<.00124 (23-26)24 (22-26)Age at first birthb, median (IQR)

>.99Main residence, n (%)

3994 (56.04)3994 (56.04)Urban area

3133 (43.96)3133 (43.96)Rural area

<.001Pregnancy history, n (%)

14 (0.20)201 (2.82)No

7113 (99.80)6926 (97.18)Yes

.17Family history of breast cancer, n (%)

6988 (98.05)7010 (98.36)No

139 (1.95)117 (1.64)Yes

<.01Menopausal status, n (%)

4547 (63.80)4367 (61.27)Premenopause

2580 (36.20)2760 (38.73)Postmenopause

aP values are derived from Mann-Whitney U test or Pearson chi-square test.
bOnly women with at least one birth are summarized.
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Figure 2. Mean receiver operating characteristic curves for the four machine learning algorithms.

Table 3. Performance of the four machine learning algorithms on predicting breast cancer risk.

Accuracyb, mean (SD)Specificityb, mean (SD)Sensitivityb, mean (SD)AUCa, mean (SD)Algorithm

0.671 (0.009)0.686 (0.012)0.656 (0.017)0.742 (0.009)Extreme gradient boosting

0.663 (0.010)0.677 (0.015)0.650 (0.016)0.728 (0.009)Random forest

0.661 (0.010)0.679 (0.033)0.642 (0.037)0.728 (0.010)Deep neural network

0.578 (0.008)0.661 (0.021)0.496 (0.020)0.631 (0.008)Logistic regression

aAUC: area under the receiver operating characteristic curve.
bSensitivity, specificity, and accuracy were calculated using the default cutoff value (0.5).
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Figure 3. Variable rankings according to the mean area under the receiver operating characteristic curve decrease in percentage in the four machine
learning algorithms.

Discussion

Principal Findings
In this study, we used four machine learning algorithms to
develop breast cancer prediction models to identify Chinese
women at high risk of breast cancer, based on 10 breast cancer
risk factors. Their predictive performances were evaluated and
compared, and the results indicated that compared with
traditional LR, all three novel machine learning algorithms
achieved better performance and improved the AUC by 0.11 at
most. Among the three novel machine learning algorithms,
XGBoost outperformed RF and DNN, with mean AUC and
accuracy of 0.74 and 67.1%, respectively.

Among the three novel machine learning algorithms used in
this study, XGBoost is the most up to date. Recently, XGBoost
has dominated many data mining competitions for structured
datasets and gained much attention in the machine learning
field. Some previous studies have shown that XGBoost has
better performance on low-dimensional data than
high-dimensional data [19,20]. RF, on the other hand, is more
suitable for high-dimensional data due to its implicit feature
selection characteristic [21]. As for DNN, it is more commonly
used for prediction with unstructured data and data with complex
structure [22]. Therefore, the results of this study were expected,
since the structure of our dataset agrees with the XGBoost
algorithm most.

Meanwhile, XGBoost was also faster than DNN and RF. The
average times of training XGBoost, DNN, and RF using the
current dataset were 0.20 seconds, 21.38 seconds, and 0.61
seconds, respectively (CPU: Intel i7-4790; GPU: GeForce GTX
970). Given the above, XGBoost is no doubt the optimal choice
for developing a breast cancer prediction model using traditional
breast cancer risk factors. Nevertheless, DNN and RF are also
powerful machine learning algorithms and could be considered
for developing a breast cancer prediction model in other
circumstances. For example, if the dataset contains
high-dimensional genetic data, RF is very likely to be the best
choice. As for DNN, it can be used to predict breast cancer
based on breast ultrasound or mammogram images when
integrated with a convolutional neural network (CNN).

Although the predictive accuracy of the novel machine learning
algorithms is still imperfect, some remarkable improvements
have been made compared with previous breast cancer risk
prediction models. The Gail model is the most well-known
breast cancer risk assessment tool. It uses six breast cancer risk

factors to estimate a women’s risk of developing breast cancer,
including patient demographics, reproductive history, personal
medical history, and family history of breast cancer [23]. Among
these risk factors, four risk factors (age, age of menarche, age
at first birth, and family history of breast cancer) are also present
in this study. A recent meta-analysis of 26 studies reported a
pooled AUC of 0.59 (95% CI 0.57 to 0.61) for the Gail model,
which is significantly lower than the AUCs of XGBoost, RF,
and DNN algorithms in our study. The authors also conducted
subgroup analyses by geographic region, and the results revealed
that the pooled AUC for the Gail model in Asian women was
even lower (0.55, 95% CI 0.52 to 0.58).

Another famous breast cancer risk prediction model is the
Rosner-Colditz model. This model is more complex than the
Gail model and includes some key risk factors omitted from the
Gail model such as type of menopause, BMI, and duration and
type of postmenopausal hormone therapy used [24]. A validation
study conducted by Rosner et al [25] using the dataset from the
California Teachers Study revealed that the Rosner-Colditz
model achieved an overall AUC of 0.59, higher than the AUC
of the Gail model when applied in the same dataset. Different
from the machine learning models in this study, classical breast
cancer risk prediction models like the Gail and Rosner-Colditz
models put more of an emphasis on estimating the probability
of having breast cancer in a defined age interval instead of
identifying breast cancer cases from noncases. In addition, all
these models are based on an implicit assumption that each risk
factor has a linear relationship with breast cancer and therefore
largely ignore complex nonlinear relationships between risk
factors and breast cancer and interactions between risk factors.

Many studies have been conducted to evaluate the performance
of machine learning algorithms for breast cancer prediction.
However, the majority of these studies used medical imaging
data to develop the models, and only few focused on prediction
with breast cancer risk factors. Shieh et al [26] conducted a
nested case-control study in the United States to investigate the
predictive performance of combining the Breast Cancer
Surveillance Consortium (BCSC) risk model with an 83-single
nucleotide polymorphism (SNP)–based polygenic risk score
(PRS) in an LR model. They reported that compared with using
the BCSC model alone, the LR model combining BCSC risk
factors and PRS increased the AUC from 0.62 to 0.65. Dite et
al [27] also evaluated the performance of an LR model that
combined several breast cancer prediction models with a risk
score based on 77 SNPs. They reported that the LR model using
the absolute risk from the Breast and Ovarian Analysis of
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Disease Incidence and Carrier Estimation Algorithm model and
the SNP-based score achieved the best performance (AUC:
0.70). Anothaisintawee et al [28] developed an LR model for
predicting breast cancer risk among Thai women using the
dataset from a cross-sectional study. The variables used in
building the model included age, menopausal status, BMI, and
use of oral contraceptives. The LR model achieved AUCs of
0.65 (95% CI 0.64 to 0.65) and 0.61 (95% CI 0.51 to 0.71) on
the internal validation and external validation datasets,
respectively. Zheng et al [29] also developed an LR model for
predicting breast cancer. They derived the dataset from a
case-control study in China and used 12 SNPs along with age
at menarche, age at first live birth, waist-to-hip ratio, family
history of breast cancer, and a previous diagnosis of benign
breast disease for model building. The final LR model had an
AUC of 0.63, which the authors believe is inadequate for cancer
diagnosis and screening. Zhao et al [30] conducted the only
study that evaluated the performance of a machine learning
algorithm other than LR. They built an ANN model with one
hidden layer for Chinese women using a cross-sectional dataset.
In the test set, the ANN model achieved an AUC of 0.71 (95%
CI 0.66 to 0.76). Compared with the previous machine learning
models, our novel machine learning model achieved higher
AUCs. More importantly, our model only requires 10 breast
cancer risk factors, which can be easily collected in a
cost-effective manner.

One of the major disadvantages of machine learning algorithms
is that they are hard to interpret, especially for DNN. In our
study, we tried to investigate the independent effects of each
variable on breast cancer prediction. XGBoost, DNN, and RF
all identified main residence as the most important variable in
the models. This finding indicates significant interactions
between main residence and other risk factors, but we cannot
determine how main residence is interacting with other risk
factors. A possible explanation for the interactions is the
differences in lifestyle and environmental conditions in rural
and urban area. A previous cross-sectional survey conducted in
China also reported that there were some differences in the
breast cancer risk factors between urban and rural populations
[31]. Other top-ranked variables in the machine learning models
are also considered to be important breast cancer risk factors in
Chinese women [32,33].

It is also recognized that machine learning algorithms are
vulnerable to overfitting. To address this issue, we used repeated
k-fold cross-validation method to evaluate the performance of
the models. Meanwhile, we also tried to reduce overfitting by
choosing appropriate hyperparameters and using regularization
techniques. Another limitation of using machine learning
algorithms for breast cancer prediction is that absolute risk of
having breast cancer cannot be estimated. However, it is not

necessarily the case that machine learning models are less useful
than traditional absolute breast cancer prediction models. In
some circumstances (eg, risk-based breast cancer screening),
the primary objective is to identify women with high risk from
those with lower risk rather than informing personalized absolute
risk. Therefore, in that case machine learning models with higher
discriminatory accuracy would be more useful.

Strengths and Limitations
To the best of our knowledge, this is the first study applying
the novel machine learning algorithms to breast cancer
prediction. The strengths of our study include using a large
balanced dataset for model training and conducting repeated
k-fold cross-validation for model evaluation. Nevertheless, our
study still has several limitations. First, since an observational
study design was adopted to derive the dataset, the influence of
selection bias cannot be omitted. A better choice would be
deriving the dataset from a large cohort study with sufficient
breast cancer cases. However, considering the incidence of
breast cancer, using such dataset would raise the issue of
imbalanced classes that require statistical techniques to deal
with. Second, due to the limitations of the dataset, only 10 breast
cancer risk factors were chosen to build the model and some
important risk factors like breastfeeding and history of other
breast diseases were excluded, which may have influenced the
performance of the models. In addition, our machine learning
models were trained on cases and noncases from Sichuan
province in southwest China and therefore may not be useful
for women living in other parts of China. Furthermore, although
we validated our models using the cross-validation method,
external validation using an independent dataset was not
performed in our study.

Currently, we have developed our final breast cancer prediction
model using XGBoost and implemented it in a mobile phone
app. Our next step is to validate this prediction model in a
real-world setting and upgrade the model by including more
risk factors and potentially medical imaging data. After external
validation, we also plan to conduct a large observational study
to evaluate the cost-effectiveness of applying this model in
risk-based breast cancer screening among Chinese women.

Conclusion
Our study has shown that all three novel machine learning
algorithms achieved better discriminatory accuracy on
identifying women at high risk of breast cancer than LR, and
XGBoost is the best choice for developing a breast cancer
prediction model using breast cancer risk factors. We have
successfully developed and validated a breast cancer prediction
model for Chinese women using XGBoost, but external
validation is needed before implementation.
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