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Abstract

Background: Immune checkpoint inhibitors are associated with unique immune-related adverse events (irAEs). As most of the
immune checkpoint inhibitors are new to the market, it is important to conduct studies using real-world data sources to investigate
their safety profiles.

Objective: The aim of the study was to develop a framework for signal detection and filtration of novel irAEs for 6 Food and
Drug Administration–approved immune checkpoint inhibitors.

Methods: In our framework, we first used the Food and Drug Administration’s Adverse Event Reporting System (FAERS)
standardized in an Observational Health Data Sciences and Informatics (OHDSI) common data model (CDM) to collect immune
checkpoint inhibitor-related event data and conducted irAE signal detection. OHDSI CDM is a standard-driven data model that
focuses on transforming different databases into a common format and standardizing medical terms to a common representation.
We then filtered those already known irAEs from drug labels and literature by using a customized text-mining pipeline based on
clinical text analysis and knowledge extraction system with Medical Dictionary for Regulatory Activities (MedDRA) as a
dictionary. Finally, we classified the irAE detection results into three different categories to discover potentially new irAE signals.

Results: By our text-mining pipeline, 490 irAE terms were identified from drug labels, and 918 terms were identified from the
literature. In addition, of the 94 positive signals detected using CDM-based FAERS, 53 signals (56%) were labeled signals, 10
(11%) were unlabeled published signals, and 31 (33%) were potentially new signals.

Conclusions: We demonstrated that our approach is effective for irAE signal detection and filtration. Moreover, our CDM-based
framework could facilitate adverse drug events detection and filtration toward the goal of next-generation pharmacovigilance
that seamlessly integrates electronic health record data for improved signal detection.

(JMIR Med Inform 2020;8(6):e17353) doi: 10.2196/17353
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Introduction

Background
Immunotherapy activates a patient’s immune system for
therapeutic benefit against cancer [1]. One type of
immunotherapy, immune checkpoint inhibition, has recently
been found to be promising for the treatment of certain types
of cancer. Immune checkpoint inhibitors can block negative
regulators (checkpoints) of T-cell function that exist on both
immune and tumor cells. This blockage could enhance antitumor
immunity by allowing T cells to kill cancer cells [2]. Notably,
the Nobel Prize in Physiology or Medicine in 2018 was awarded
to James Allison and Tasuku Honjo for their work on immune
checkpoint inhibitors [3]. From 2011 to 2017, the US Food and
Drug Administration (FDA) has approved a total of 6 immune
checkpoint–directed antibodies for the treatment of specific
tumors. By increasing the activity of the immune system,
immune checkpoint inhibitors can have inflammatory side
effects, which are often termed as immune-related adverse
events (irAEs) [4]. The most recognized irAEs include
dermatitis, colitis, hepatitis, pancreatitis, pneumonitis, and
hypophysitis [5]. IrAEs are mostly of mild to moderate severity,
but at times, these can be serious, irreversible, or even fatal.
Nevertheless, several studies have indicated that immune
checkpoint inhibitors have a better safety profile than many
traditional chemotherapies [6-8]. As these immune checkpoint
inhibitor agents are new to the market, investigation of their
safety profiles in real-world practice is critical [4]. Traditionally,
one of the most important ways to detect postmarketing safety
profiles of drugs is to conduct pharmacovigilance studies using
a spontaneous reporting system (SRS) database [9]. SRS is a
system whereby case reports of adverse drug events (ADEs)
are voluntarily submitted by health professionals and
pharmaceutical companies to the national pharmacovigilance
center [10]. Several studies have focused on the irAEs post
marketing pharmacovigilance through the analysis of an SRS
database such as the US Food and Drug Administration’s
Adverse Event Reporting System (FAERS) or World Health
Organization (WHO)’s VigeBase [11-15].

Although there have been some previous studies that utilized
SRS to detect irAEs, it is still essential to investigate new irAE
signals to help the research community recognize a
comprehensive drug safety profile for these immune checkpoint
antibodies. However, it is now also recognized that traditional
SRS-based ADE detection methods only focus on detecting
statistically significant drug-event pairs from the SRS database,
and these methods often face challenges in identifying those
new pharmacovigilance signals automatically. Hauben and
Aronson [16] proposed a widely used definition of a drug safety
surveillance signal. This definition is also issued by the Council
for International Organizations of Medical Sciences [17], an
international organization established jointly by WHO and the
United Nations Educational, Scientific and Cultural
Organization, which is famous for establishing guidelines for
international pharmacovigilance. According to this definition,
a pharmacovigilance signal “represents an association that is
new and important, or a new aspect of a known association, and
has not been previously investigated and refuted.” We can note

that a detected drug-event association that is not fully recognized
by the previous investigation could be seen as a signal in this
definition. These new signals can be considered to be valuable
starting points for further investigation and validation. However,
for a current large-scale FAERS-based pharmacovigilance study,
most of the detected drug-event associations are already
recognized by the existing knowledge. Some of these signals
have been discovered by clinical trials before approval or by
the postmarketing pharmacovigilance study [18]. To filter the
known drug-event associations, health care professionals often
have to manually review a substantial number of drug
safety-related texts, such as drug labels or biomedical literature,
to determine whether these novel ADE signals are worthy of
further validation [19-21]. It is typically laborious and imprecise
to manually review these ADE signals, despite the promising
results achieved by existing studies, such as those by Xu et al
[22,23] and Yeleswarapu et al [24]. However, these studies have
focused on ranking and finding the most significant detection
results and did not consider identification of novel ADE signals,
which are worth further investigation. Text-mining methods
allow for a more efficient way to filter the drug-event
associations that are already known by existing knowledge, by
extracting known ADEs from drug labels and literature. By
automatically filtering out existing signals, this effort can not
only discover novel irAE signals detected by the FAERS but
may also reduce the labor involved in human intervention.

Objectives
The objective of this study was to develop a framework for
novel signal detection and filtration of irAEs. First, we
normalized the FAERS using the Observational Health Data
Sciences and Informatics (OHDSI) CDM to improve data
standardization and quality to facilitate data collection and
analysis. To detect irAEs, we selected all the 6 immune
checkpoint inhibitors approved by the FDA before 2018 as our
research object. We collected all standardized adverse event
data regarding the 6 immune checkpoint inhibitors. Then, the
reporting odds ratio (ROR) is utilized to detect the irAEs signal.
To filter out those already known irAEs, a customized
text-mining pipeline is implemented using clinical text analysis
and knowledge extraction system (cTAKES) with MedDRA as
a dictionary. Finally, we classified the irAE detection results
into three different categories, including potentially new irAE
signals.

Methods

Materials

Food and Drug Administration’s Adverse Event
Reporting System
The FAERS [25] is a database that contains information on
adverse event and medication error reports submitted to FDA.
FAERS is designed to support postmarketing safety surveillance.
All voluntary adverse event reports in FAERS could be
submitted by health care professionals (such as physicians,
pharmacists, nurses, and others), consumers (such as patients,
family members, lawyers, and others), and manufacturers. There
are 7 tables in the FAERS database, which includes patient
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demographic table, drug table, adverse reaction table, patient
outcome table, report source table, drug therapy table, and
indication table. FAERS will update quarterly and can be
downloaded from the FDA website. The adverse event name
in FAERS is standardized by MedDRA, a rich and highly
specific standardized medical terminology. However, the drug
name in FAERS is not standard, which may be a drug ingredient
name, a brand name, a clinical drug component, or even a
spelling error. Some other information such as drug unit and
drug dosage are also nonstandard. Therefore, it is important to
conduct the data preprocessing to normalize the data in FAERS
before the implementation of adverse event signal detection. In
this study, we used the FAERS data covering the period from
September 2012 to March 2017.

Observational Health Data Sciences and Informatics
Common Data Model
The OHDSI common data model (CDM) [26], also known as
Observational Medical Outcomes Partnership CDM, is a data
model designed for the systematic analysis of disparate
observational databases. OHDSI CDM focuses on transforming
different observational databases into a common format (data
model) and a common representation (terminologies,
vocabularies, coding schemes). As of February 23, 2108, version
V5.3 of the CDM was released, containing 37 tables in 6
categories: standardized clinical data, standardized health system
data, standardized health economics, standardized metadata,
standardized vocabularies, and standardized derived elements.
In fact, terminology normalization enabled by standard
vocabularies with a focus on systematized nomenclature of
medicine-clinical terms (SNOMED CT), logical observation
identifiers names and codes, and RxNorm is a strong
characteristic of the OHDSI CDM. One of the advantages of
using a CDM-based database to conduct a pharmacovigilance
study is that we could build a standard query as the same
standard terminologies are utilized to represent the medical

concepts across the different observational databases. This
allows for collaborative pharmacovigilance research across
different institutions.

Food and Drug Administration Drug Label
We searched the DailyMed website to collect the drug labels
of 6 FDA-approved immune checkpoint inhibitors [27].
DailyMed, developed and maintained by the National Library
of Medicine, is the official provider of FDA drug label
information. We downloaded the drug labels of the 6 immune
checkpoint inhibitors in January 2018. These drug labels were
downloaded in the structured product labeling (SPL) format,
which is a document markup standard approved by Health Level
Seven (HL7) and adopted by the FDA as a mechanism for
exchanging product and facility information. We extracted the
text under the section WARNINGS AND PRECAUTIONS and
the section ADVERSE REACTIONS from the SPL files of 6
labels as the dataset of drug label text mining.

Immune-Related Adverse Events–Related PubMed
Literature
We retrieved literature from PubMed [28] and built an
irAE-related literature text-mining dataset. The query
“immune-related [All Fields] AND adverse [All Fields] AND
events [All Fields]” (retrieve date: January 2018) was used to
retrieve literature from PubMed. A total of 679 irAEs-related
literature was obtained. Then, we downloaded the abstract of
679 papers and the full text of 20 review articles as the
irAE-related literature text-mining dataset.

Methods
Using FAERS standardized in the OHDSI CDM, we developed
a framework for signal detection and filtration of irAEs, as
shown in Figure 1. The framework mainly contains 4 modules
as follows (data standardization module, signal detection
module, text-mining module, and signal filtration module).

Figure 1. System architecture of our standards-driven framework. ADE: adverse drug events; CDM: common data model; cTAKES: clinical text
analysis and knowledge extraction system; FAERS, Food and Drug Administration’s adverse event reporting system; IrAEs: immune-related adverse
events; MedDRA: medical dictionary for regulatory activities; OHDSI: observational health data sciences and informatics; ROR: reporting odds ratio.
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Data Standardization Module
In FAERS, some data are nonstandard. For example, a drug
name in FAERS might be a drug ingredient name, a brand name,
a clinical drug component, or even a spelling error. This data
standardization problem would cause inconvenience in data
collection and integration and introduce bias in data analysis.
In this study, we developed a next-generation pharmacovigilance
signal detection platform, ADEpedia-on-OHDSI [29], to
standardize FAERS and integrate it with electronic health record
(EHR) data by OHDSI CDM. Specifically, we used and
extended adverse event open learning through universal
standardization (AEOLUS)—an integration process developed
by Banda et al [30] to develop an extract, transform, and load
(ETL) process to transform FAERS data into OHDSI CDM.
AEOLUS focuses on building a standard process for FAERS
data deduplication and tooling for mapping drug names to
RxNorm concepts and outcomes to SNOMED CT concepts.

We further developed an ETL tool to convert FAERS into
OHDSI CDM by data structure mapping, medical concept
mapping, and data imputation. The 3-step ETL process of the
ADEpedia-on-OHDSI platform is shown in Figure 2. (1) Data
cleaning and drug name mapping: we used AEOLUS to conduct
data deduplication and drug name mapping. (2) Structure
mappings between FAERS schema and OHDSI CDM schema:
we created structure mappings by choosing appropriate tables
or fields between the OHDSI CDM and FAERS. (3) Data ETL
implementation: we designed different ETL strategies and then
loaded the raw FAERS data into the OHDSI CDM. More details
about the ETL process of the ADEpedia-on-OHDSI platform
can be found in our published paper [29]. After the ETL process,
all the standardized FAERS data were stored in the relational
database in the OHDSI CDM format. In this study, we utilized
pgAdmin 4 (The pgAdmin Development Team) to operate and
maintain our ADEpedia-on-OHDSI platform.

Figure 2. Extract, transform, and load process of converting Food and Drug Administration’s Adverse Events Reporting System into Observational
Health Data Sciences and Informatics common data model. AEOLUS, adverse event open learning through universal standardization; CDM, common
data model; ETL: extract, transform, and load; FAERS, Food and Drug Administration’s adverse event reporting system; OHDSI, observational health
data sciences and informatics.

Signal Detection Module
In this research, we define the adverse drug event (ADE) signal
as the significant drug-adverse event associations detected by
the detection algorithm using FAERS data. We implemented
signal detection algorithms to detect potential irAE signals
related to the 6 immune checkpoint inhibitor drugs approved

by the FDA (ie, ipilimumab, pembrolizumab, nivolumab,
atezolizumab, durvalumab, and avelumab). The active ingredient
drug name, brand name, and the corresponding standard concept
of those drugs are shown in Table 1. In addition, to facilitate
the collection of irAE reports from our CDM-based FAERS,
we built a standard query by checking all the synonyms of the
6 standard drug concepts in OHDSI ATHENA standardized
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vocabularies [31]. OHDSI concept_id related to all the
ingredient/brand names is used to build SQL queries to retrieve
the drug-event reports in our ADEpedia-on-OHDSI platform.
The standardized SQL query for the retrieval of irAE reports is
described in Multimedia Appendix 1. In addition, to validate
our retrieval query, we also implemented a search by using drug
ingredient/brand name verbatim texts and compared the results
by different retrieval queries.

For ADE signal detection, the ROR [32] was implemented.
ROR is one of the most commonly used disproportionality
statistical analysis for signal detection in SRSs such as FAERS
[33]. Figure 3 illustrates the contingency table and the equation
of the ROR. The ROR value and its 95% CIs were calculated
to detect irAE signals. When the case report number was ≥3
and the lower limit of 95% CI of ROR was >1, the signal was
considered as a positive irAE signal.

Table 1. The basic information of 6 immune checkpoint inhibitors.

RxNorm concept unique identifier (ingre-
dient/brand name)

The Observational Health Data Sciences and
Informatics concept_id (ingredient/brand name)

Food and Drug Administra-
tion–approved year

Brand
name

Immune check-
point inhibitor

1094833/109483740238188/402380702011Yer-
voy

Ipilimumab

1547545/154755045775965/457759692014Keytru-
da

Pembrolizumab

1597876/159788145892628/458926322014Opdi-
vo

Nivolumab

1792776/179278142629079/426290832016Tecen-
triq

Atezolizumab

1919503/19195081594034/15940392017ImfinziDurvalumab

1875534/18755431593273/15932782017Baven-
cio

Avelumab

Figure 3. The contingency table and equation for the implementation of the reporting odds ratio.

Text-Mining Module
We developed a customized text-mining pipeline to identify
irAEs from the text of drug labels and irAEs-related literature
using cTAKES v4.0. cTAKES is a widely used clinical
information extraction tool that can discover clinically named
entities and clinical events using a dictionary lookup algorithm
[34]. Moreover, we implemented cTAKES using MedDRA as
the dictionary to conduct text mining, so that the adverse events
extracted could be standardized by MedDRA-preferred terms
(PTs). Note that the result of data mining is signal because they
have statistical significance, whereas the results extracted by
text-mining pipeline are called irAE terms.

For drug label text mining, we collected the drug labels of the
6 FDA-approved immune checkpoint inhibitors from the
DailyMed website [27]. These drug labels were downloaded in
the SPL format, which is a document markup standard approved
by HL7 and adopted by the FDA as a mechanism for exchanging
product and facility information. Multimedia Appendix 2 shows
the drug label links in DailyMed. Then, we extracted the text
under the section WARNINGS AND PRECAUTIONS and the

section ADVERSE REACTIONS from the SPL files of 6 labels
as the dataset of drug label text mining. In addition, to evaluate
the performance of cTAKES in our irAE text-mining pipeline,
2 authors (KR and GJ) manually reviewed the text under those
2 sections of the 6 drug labels and identified the irAE terms out
of the drug label text, and they reached consensus via
discussions. Both KR and GJ have medical backgrounds, and
KR is a medical oncologist with both clinical and research
expertise in treatment toxicities. The irAE terms identified from
the manual review were used as a gold standard to assess the
baseline performance of our text-mining pipeline, and standard
measures (precision, recall, and F-measure) were calculated for
the performance evaluation.

To identify irAEs from related literature, we searched the
PubMed using the query “immune-related[All Fields] AND
adverse[All Fields] AND events[All Fields].” A total of 679
irAE-related studies were found, and the abstracts were
downloaded for all search results (as of January 2018). We also
extracted the text from the full text of 20 review papers from
the search results for text mining. The distribution of
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irAE-related literature by year is illustrated in Table 2, showing
a trend that the number of studies on irAEs has increased
significantly in recent years. We then implemented the

text-mining pipeline with MedDRA as a dictionary to extract
the irAE terms from both the abstracts and the full review papers
of the irAE-related literature.

Table 2. The distribution of literature on immune-related adverse events by year (PubMed retrieve date: January 24, 2018).

Publication numberPublication year

12006

12007

52008

72009

72010

112011

112012

372013

472014

742015

1502016

2602017

682018

Signal Filtration Module
We reviewed all irAE signals that were identified from the signal
detection and classified them into 3 categories: labeled signals
(ie, those signals that could be validated by drug labels),
unlabeled published signals (ie, signals that could not be found
in drug labels, but in published literature), and new signals (ie,
signals that could not be found either in drug labels or published
literature). Then, 2 oncologists (KR and AM) manually reviewed
the new signals category and gave their comments about whether
an irAE signal in that category could be seen as a potentially
new signal. Note that those oncologists only reviewed the
detection results, and they did not have access to any other
clinical data to help them ascertain what might be due to the
cancer or the treatment.

Results

Data Standardization Results
After the ETL process, raw FAERS data were loaded into 8
OHDSI CDM tables. A total of 4,619,362 adverse event case

reports were transferred into the OHDSI CDM. Among these
patients, 2,577,989 (55.81%) were female, 1,603,982 (34.72%)
were male, and the sex of 437,391 (9.47%) was unknown/not
specified.

Table 3 shows the total numbers of irAE reports in the raw
FAERS and CDM-based FAERS. It should be noted that one
patient may receive more than one immune checkpoint inhibitor.
We found that more irAE reports were collected after the ETL
process. In CDM-based FAERS, a total of 24,595 immune
checkpoint inhibitor-related AE reports were collected,
compared with 24,500 in the raw FAERS before the ETL
process. Of the 6 immune checkpoint inhibitors, nivolumab
(Opdivo) had the most AE reports (n=12,557 before ETL and
n=12,569 after ETL), followed by ipilimumab (Yervoy; n=8264
before ETL and n=8268 after ETL).
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Table 3. Total report numbers of 6 immune checkpoint inhibitors.

Adverse drug event report number (after extract, transform, and load)Adverse drug event report
number (before extract,
transform, and load)

Brand
name

Immune checkpoint inhibitor

82688264YervoyIpilimumab

50995020KeytrudaPembrolizumab

12,56912,557OpdivoNivolumab

893891TecentriqAtezolizumab

2727ImfinziDurvalumab

55BavencioAvelumab

24,59524,500N/AaTotal reports

aN/A: not applicable.

Immune-Related Adverse Events Signal Detection
Results
To provide a comprehensive perspective for irAEs, we
conducted irAE signal detection at 2 different MedDRA adverse
event levels: the system organ class (SOC) level and the PT
level. SOC level is the highest level of MedDRA, which contains
27 groupings by etiology (eg, SOC infections and infestations),
manifestation site (eg, SOC gastrointestinal disorders), and
purpose (eg, SOC surgical and medical procedures). A PT term
is a distinct descriptor (single medical concept) that is linked
to at least one SOC. Table 4 shows the 7 positive signals
detected in the SOC level.

Moreover, 94 positive signals in the PT level were detected in
patients who used 1 of the 6 immune checkpoint inhibitor drugs.
Among all the positive irAE signals, hypophysitis had the
highest ROR value (ROR 5398.8; 95% CI 3105.1-9386.9),
followed by hypopituitarism (ROR 135.1; 95% CI 106.7-171.1),
blood corticotrophin decreased (ROR 59.5; 95% CI

3105.1-9386.9), adrenal insufficiency (ROR 36.1; 95% CI
31.5-41.3), and colitis (ROR 32.7; 95% CI 30.5-35.0), which
means these irAEs were possibly suffered most often by the
patients who were immune checkpoint inhibitors.

We also classified the irAE signals using the MedDRA SOCs
to obtain a high-level understanding of the distribution of the
irAE signals (shown in Table 5). Note that 1 PT might be linked
to more than 1 SOC, so the total signal number in Table 5 was
more than 94. All the signals we detected at the PT level could
be classified into 19 SOCs. Moreover, 14 PT-level signals were
categorized in Respiratory, thoracic and mediastinal disorders,
which is the SOC with the most signals, followed by
Gastrointestinal disorders, Cardiac disorders, Infections and
infestations, and Nervous system disorders, of which SOCs also
had more than 10 PT level signals. In addition, there was at
least one PT-level signal in each of the 7 SOCs we previously
detected as a positive SOC-level signal, which also validated
our detection results at the SOC level. The detailed information
of the 94 irAE signals is illustrated in Multimedia Appendix 3.

Table 4. The signal detection results at the system organ class level.

Reporting odds ratio
(95% CI)

System organ classMedical Dictionary for Regulatory Activities code

2.98 (2.84-3.12)Endocrine disorders10014698

2.53 (2.39-2.68)Hepatobiliary disorders10019805

1.76 (1.69-1.83)Metabolism and nutrition disorders10027433

1.56 (1.48-1.64)Blood and lymphatic system disorders10005329

1.38 (1.30-1.46)Neoplasms benign, malignant, and unspecified (including
cysts and polyps)

10029104

1.27 (1.23-1.31)Respiratory, thoracic, and mediastinal disorders10038738

1.16 (1.12-1.19)Gastrointestinal disorders10017947
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Table 5. System organ class distribution of preferred term–level signals.

Signal numberSystem organ class

14Respiratory, thoracic, and mediastinal disordersa

13Gastrointestinal disordersa

10Cardiac disorders

10Infections and infestations

10Nervous system disorders

9General disorders and administration site conditions

9Investigations

8Immune system disorders

5Endocrine disordersa

5Hepatobiliary disordersa

5Injury, poisoning, and procedural complications

5Metabolism and nutrition disordersa

5Skin and subcutaneous tissue disorders

4Blood and lymphatic system disordersa

4Eye disorders

4Musculoskeletal and connective tissue disorders

4Vascular disorders

3Renal and urinary disorders

1Neoplasms benign, malignant, and unspecified (including cysts and

polyps)a

aRepresents the system organ class that was detected as a positive signal in the system organ class level.

Text-Mining Results
As mentioned previously, we utilized cTAKES with MedDRA
as a dictionary to identify the irAE terms from the drug label
of 6 immune checkpoint inhibitors. A total of 421 and 918 irAE
terms were found by text mining of drug labels and
irAEs-related literature, respectively.

Regarding drug label text mining, we found that most of the
irAE terms identified by cTAKES were in the PT level of
MedDRA. However, some of the irAE terms were defined as
lowest-level terms (LLTs) in MedDRA. An LLT is a synonym,
lexical variant, quasi-synonym, subelement, or an identical to
its related PT and could be linked to only one PT. To unify the
irAE terms to standard concepts at the same level, we mapped
all the LLTs into PTs based on the recommendations of
MedDRA and FDA. As a result, 490 irAE terms were extracted
from the texts of all the 6 drug labels, comprising 474 PTs, 15
SOC, and 1 high-level term (HLT, a superordinate descriptor
for the PTs linked to it). More details of the irAE terms
identified from drug labels by our text-mining pipeline are
provided in Multimedia Appendix 4.

For the text-mining evaluation, as mentioned in the Methods
section, the irAE terms manually identified by 2 experts (KR
and GJ) from drug labels were seen as the gold standard. Then,
irAE terms extracted by the text-mining pipeline were compared

with the gold standard to acquire the text-mining performance.
As the text-mining pipeline, we also linked all the LLT-level
irAE terms to the PT level. Using the expert-based manual
review process, we identified a total of 421 distinct irAE terms
from drug labels of the 6 immune checkpoint inhibitors,
comprising 401 PTs, 10 SOCs, 1 HLT, and 9 terms that could
not be mapped with MedDRA concepts. Multimedia Appendix
5 provides the details of the manually identified irAE terms.
Table 6 shows the distribution of the irAE terms in different
drug labels and the performance of our text-mining pipeline.
As illustrated in the table, the overall precision, recall, and
F-measure of our text-mining pipeline are 79.39%, 92.40%,
and 85.40%, respectively, which indicates that our pipeline
could provide satisfactory text-mining results and achieved the
requirement of our irAE identification task.

For irAE-related literature text mining, by using our text-mining
pipeline, a total of 918 unique irAE terms (in PT or higher level)
were identified from 679 irAE-related abstracts and 20
irAE-related review papers, in which 306 (33.33%) terms were
covered by the irAE terms that were extracted in drug labels,
and the remaining 612 (66.67%) terms were not covered by the
labeled irAE terms. This indicates that some unlabeled terms
can be identified from our text-mining pipeline. Multimedia
Appendix 6 provides the results of irAE-related literature text
mining.
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Table 6. Performance of text-mining pipeline for the identification of immune-related adverse events from drug labels of 6 immune checkpoint inhibitors.

F-measure
(2PR/[P+R]),
%

Recall
(TP/[TP+FN]),
%

Precision
(TP/[TP+FP]),
%

False negativeFalse positiveTrue positiveClinical Text
Analysis and
Knowledge Ex-
traction Sys-
tem–identified
immune-related
adverse events
terms

Manually
identified
immune-re-
lated adverse
events terms

Immune check-
point inhibitor

79.284.474.61935103138122Ipilimumab

85.293.278.51349179228192Pembrolizumab

84.793.977.11360202262215Nivolumab

86.390.982.21328129157142Atezolizumab

86.287.285.32327156183179Durvalumab

80.889.073.91646130176146Avelumab

85.492.479.432101389490421Total

Signal Filtration Results
To filter the irAE signals we detected, we compared all 94 irAE
signals with the text-mining results and then classified all the
signals into 3 categories as per our definition in the Methods
section. Figure 4 shows the overlap of the irAEs terms identified
in 3 different mining tasks. In total, 1135 unique irAE terms
were identified by CDM-based FAERS data mining, drug label
manual review, and irAE-related literature text mining. Out of
94 positive signals in the PT level detected using CDM-based
FAERS, 53 signals (56%) were the labeled signals we identified
from drug labels, 10 signals (11%) were the unlabeled published

signals identified from the literature, and 31 signals (33%) were
potentially new signals that were not covered by drug labels
and literature (as shown in Table 7). Multimedia Appendix 7
demonstrates the details of labeled signals, unlabeled published
signals, and new signals. For a further manual review, 2
oncologists separately marked 15 and 8 signals that were
possibly new, after reviewing a total of 31 irAE signals in the
new signal category. The kappa coefficient value of the review
is 0.48, which showed a moderate agreement between the 2
oncologists [35]. Moreover, 7 irAE signals were identified as
potentially new signals by both the oncologists (as shown in
Table 7).

Figure 4. Venn diagram illustrating the immune-related adverse events terms detected from different sources. CDM, common data model; FAERS,
Food and Drug Administration’s adverse event reporting system.
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Table 7. A list of 31 potentially new signals not identified in drug labels or literature (ranked by reporting odds ratio).

Reporting odds ratio (95% CI)System organ classPreferred termMedical Dictionary for Regu-
latory Activities code

59.49 (34.44-102.74)InvestigationsBlood corticotrophin decreased10005452

19.51 (6.96-54.67)Respiratory, thoracic, and mediastinal
disorders

Bronchopleural fistulaa10053481

19.01 (6.79-53.20)Respiratory, thoracic, and mediastinal
disorders

Bronchial fistulaa10006437

10.62 (5.78-19.51)Vascular disorders/ neoplasms benign,
malignant, and unspecified (including
cysts and polyps)

Superior vena cava syndrome10042569

9.51 (3.48-25.97)Nervous system disordersFacial nerve disordera10061457

7.83 (2.47-24.87)Respiratory, thoracic, and mediastinal
disorders/ injury, poisoning, and procedu-
ral complications

Tracheal obstructiona10044291

7.64 (3.77-15.51)Gastrointestinal disorders/infections and
infestations

Enterocolitis infectious10058838

7.13 (2.25-22.59)General disorders and administration site
conditions/infections and infestations

Mucosal infection10065764

6.50 (2.88-14.68)Gastrointestinal disordersDuodenal perforation10013832

6.34 (3.13-12.82)Respiratory, thoracic, and mediastinal
disorders

Bronchial obstructiona10006440

5.73 (1.82-18.09)Eye disordersEyelid function disordera10061145

5.62 (2.78-11.35)General disorders and administration site
conditions/vascular disorders

Capillary leak syndromea10007196

4.92 (2.19-11.07)Cardiac disordersConduction disorder10010276

4.90 (2.82-8.50)Gastrointestinal disordersProctitis10036774

4.09 (1.30-12.84)Gastrointestinal disordersIleal perforation10021305

3.81 (1.21-11.95)Gastrointestinal disordersColonic fistula10009995

3.51 (2.30-5.36)Injury, poisoning, and procedural compli-
cations/general disorders and administra-
tion site conditions

Infusion site extravasation10064774

3.45 (1.42-8.35)Hepatobiliary disordersBile duct stenosis10051341

3.15 (1.41-7.06)Respiratory, thoracic, and mediastinal
disorders

Stridor10042241

3.12 (1.67-5.82)Respiratory, thoracic, and mediastinal
disorders

Pleuritic pain10035623

2.97 (2.29-3.85)InvestigationsLymphocyte count decreased10025256

2.83 (1.05-7.60)Renal and urinary disordersCystitis noninfective10063057

2.81 (2.10-3.76)InvestigationsBlood lactate dehydrogenase in-
creased

10005630

2.81 (1.66-4.76)Nervous system disordersSpinal cord compression10041549

2.59 (1.87-3.58)Hepatobiliary disordersCholecystitis10008612

2.46 (1.02-5.94)Gastrointestinal disordersSmall intestinal perforation10041103

2.45 (1.50-4.02)Cardiac disordersAtrial flutter10003662

2.43 (1.30-4.53)Vascular disorders/hepatobiliary disordersPortal vein thrombosisa10036206

2.37 (1.42-3.94)Renal and urinary disordersNephrotic syndrome10029164

1.85 (1.09-3.13)Cardiac disordersAtrioventricular block complete10003673
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Reporting odds ratio (95% CI)System organ classPreferred termMedical Dictionary for Regu-
latory Activities code

1.60 (1.02-2.51)Respiratory, thoracic, and mediastinal
disorders

Aspiration10003504

aIdentified as potentially new signals by both oncologist reviewers.

Discussion

Principal Findings
To the best of our knowledge, this is the first comprehensive,
novel signal detection and filtration study of irAEs utilizing
multiple drug safety data sources. We proposed a framework
to detect the irAE signals from a standardized FAERS database
and utilized a text-mining pipeline with drug labels and existing
literature to discover potentially new irAE signals. Our
framework could facilitate ADE detection and filtration toward
the goal of next-generation pharmacovigilance. This could
decrease the labor consumption in new irAE signal selection
and provide stronger hypotheses for further experimental
validation. In the future, the results of this work will be
potentially combined with the EHR data to leverage the
real-world discovery of treatment toxicities.

We utilized standard OHDSI CDM to represent the FAERS
data (ie, the ADEpedia-on-OHDSI platform) and created
standard queries for signal detection, which provides a solid
data infrastructure to make the queries portable and signal
detection results reproducible. More importantly, through the
comparison of data collection between the raw FAERS and
CDM-based FAERS, we found that the OHDSI CDM could
improve the precision of the data collection. For example, for
the drug pembrolizumab, we collected 5099 reports from the
CDM-based FAERS, 79 reports more than those we collected
from the raw FAERS. To illustrate the reason for the difference
in data collection using the OHDSI CDM-based FAERS, we
manually checked the data we collected from the raw FAERS
and CDM-based FAERS. For example, we discovered that when
we utilized the standard OHDSI concept id as a query to retrieve
CDM-based FAERS, we could collect more reports regarding
the drug name “MK-3475,” which was the original name of
pembrolizumab in its early development, in addition to those
reports we retrieved when we used the drug ingredient name
“Pembrolizumab” and brand name “Keytruda.” This meant that
we improved the true positive rate and precision for data
collection. Moreover, we could save time for collecting data
through a standard query. For example, for pembrolizumab, it
took 9.4 seconds to pull all data from CDM-based FAERS with
our standard query, in contrast to approximately 70 seconds for
the raw FAERS data collection through a fuzzy search query
with the drug/brand name terms.

We also leveraged text-mining technology to process
unstructured drug safety data. We implemented our text-mining
pipeline on the drug label and irAE literature with MedDRA as
a dictionary to identify the irAE terms. In addition, to evaluate
the performance of our text-mining pipeline, the irAEs in drug
labels were manually reviewed and extracted as a gold standard.
As a result, the overall precision, recall, and F-measure of all
6 drug labels were 79.39%, 92.40%, and 85.40%, respectively.

These results indicate that although there were some false
positive terms (about 20%) found in our text-mining results,
most irAE terms (92.40%) in the text could be extracted
correctly by our pipeline. Moreover, we checked the underlying
reasons behind the false positive terms. We found that most of
these terms are related to the laboratory test name, such as
Alanine aminotransferase, Blood alkaline phosphatase, and so
on. Actually, for laboratory tests, the appropriate terms matched
with irAEs should be the specific abnormal test result terms,
such as Alanine aminotransferase increased and Blood alkaline
phosphatase increased, which were also found in both gold
standard and text-mining results. Given this analysis, we plan
to improve the precision of our text-mining pipeline using a
rule-based approach in a future update.

Limitations and Future Work
Our framework provides an automatic process to detect novel
irAE signals that are more valuable for implementing further
experimental validation. It also profoundly saves the experts’
time in reviewing drug labels and the literature to filter the
known ADEs. In total, we detected 94 irAE signals from
FAERS. After the filtering, 31 irAEs were classified into the
new irAE signals category. In addition, 7 out of 31 signals in
the new signal category were identified as potentially new irAE
signals by both the oncologists, which indicated that some of
the new signals detected by these algorithms might be false
positive. According to the oncologists’ review, some of the
signals were marked as not new. We consider that one of the
main reasons for the false positive signal was that sometimes
the description of irAEs by the MedDRA PTs was not so
accurate. For example, some detected new signals might be a
hyponym of a known irAE, that is, they are more specific than
a general irAE. For example, Conduction disorder and
Atrioventricular block complete were detected as new irAE
signals by our pipeline. However, the oncologist reviewers
judged that these are not new because they are types of
arrhythmias, which belong to cardiotoxicity and are known to
be associated with the immune checkpoint blockade [36].
Moreover, 2 of the potentially new signals, bronchopleural
fistula/bronchial fistula and tracheal obstruction/bronchial
obstruction, are almost the same medical concept. Thus, there
is a need to develop a harmonized terminology to report and
describe irAEs to interpret safety data more accurately in
monitoring missions. One of our previous studies discussed the
possibility of leveraging the Common Terminology Criteria for
Adverse Events (CTCAE) for irAE standardization. We found
that the CTCAE needs an extension to meet the irAE
standardization task [37]. Similarly, other studies have also
demonstrated how to build a terminology to standardize irAEs
[38,39]. In future work, we will improve the text-mining process
to facilitate the development of ADE terminology. First, to
create a harmonized irAE terminology and make it more suitable
for detecting irAE signals from other data sources such as EHR,

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e17353 | p. 11http://medinform.jmir.org/2020/6/e17353/
(page number not for citation purposes)

Yu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


we will extend the text-mining dictionary to SNOMED CT.
Second, we will further improve the performance and
automation of our text-mining pipeline to make the terminology
easier to update and maintain. Third, we will further evaluate
the text-mining pipeline to investigate its feasibility of
developing specific terminology sets for other ADE categories.

For those irAE signals in the new signal category, some of them
were marked as possibly new by 2 oncologists because these
adverse events may be induced by or associated with cancer,
the complication of surgery or radiation, other drugs
administered in the cancer treatment regimen, or drug- drug
interactions. For example, Bronchopleural fistula, bronchial
obstruction, and bronchial fistula all can occur due to a
pulmonary cancer or as a complication of pulmonary surgery
or radiation [40]. However, FAERS does not provide
information such as timeline details about the drug
administration/diagnosis/event, which is an obstacle to
confirming whether a signal is caused by the treatment or other
conditions. Therefore, expert reviews from oncologists are
important for our detection pipeline to control false positive
signal results. Moreover, as mentioned in the Methods section,
oncologists also need more clinical data to further validate the
relationship between these irAE signals and immunotherapy
drugs. Longitudinal observational databases such as EHRs have
increasingly been used for further evaluation of adverse event
signals. Compared with FAERS data, EHRs not only contain

information about patients who suffer ADEs but also provide
a more complete medical history of the patients, including
treatments, conditions, and potential risk factors. Accordingly,
EHRs could be an additional data source for irAE signal
detection [41]. We are actively working on integrating EHR
data with our ADEpedia-on-OHDSI platform, which can scale
to support more advanced signal detection [42]. Our
standard-driven platform integrates FAERS data and EHR data
together by using the same data standards that could facilitate
pharmacovigilance research based on real-world data. Our
platform can not only improve data quality but can also facilitate
the data collection for comprehensive ADE detection or
cross-validation. In the future, we will try to conduct more
comprehensive ADE detection studies based on real-world data
to overcome the false positive issue. Furthermore, we will also
consider utilizing semantic web technology to develop more
ADE mining methods.

Conclusions
In this study, we developed and evaluated a novel
standards-based framework for signal detection and filtration
of irAEs using both the OHDSI CDM and text-mining
technologies. We demonstrated that our approach is effective
for novel irAE signal detection and filtration; meanwhile, the
CDM-based platform provides an infrastructure that would
enable the seamless integration of EHR data for improving
signal detection in the future.
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Abbreviations
ADE: adverse drug event
AEOLUS: adverse event open learning through universal standardization
CDM: common data model
cTAKES: clinical text analysis and knowledge extraction system
CTCAE: common Terminology Criteria for Adverse Events
EHR: electronic health record
ETL: extract, transform, and load
FAERS: Food and Drug Administration’s Adverse Event Reporting System
FDA: Food and Drug Administration
HL7: Health Level Seven
HLT: high-level term
irAEs: immune-related adverse events
LLTs: lowest-level terms
MedDRA: Medical Dictionary for Regulatory Activities
OHDSI: Observational Health Data Sciences and Informatics
PT: preferred term
ROR: reporting odds ratio
SNOMED CT: systematized nomenclature of medicine-clinical terms
SOC: system organ class
SPL: structured product labeling
SQL: Structured Query Language
SRS: spontaneous reporting system
WHO: World Health Organization
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