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Abstract

Background: Breast cancer has a major disease burden in the female population, and it is a highly genome-associated human
disease. However, in genetic studies of complex diseases, modern geneticists face challenges in detecting interactions among
loci.

Objective: This study aimed to investigate whether variations of single-nucleotide polymorphisms (SNPs) are associated with
histopathological tumor characteristics in breast cancer patients.

Methods: A hybrid Taguchi-genetic algorithm (HTGA) was proposed to identify the high-order SNP barcodes in a breast cancer
case-control study. A Taguchi method was used to enhance a genetic algorithm (GA) for identifying high-order SNP barcodes.
The Taguchi method was integrated into the GA after the crossover operations in order to optimize the generated offspring
systematically for enhancing the GA search ability.

Results: The proposed HTGA effectively converged to a promising region within the problem space and provided excellent
SNP barcode identification. Regression analysis was used to validate the association between breast cancer and the identified
high-order SNP barcodes. The maximum OR was less than 1 (range 0.870-0.755) for two- to seven-order SNP barcodes.

Conclusions: We systematically evaluated the interaction effects of 26 SNPs within growth factor–related genes for breast
carcinogenesis pathways. The HTGA could successfully identify relevant high-order SNP barcodes by evaluating the differences
between cases and controls. The validation results showed that the HTGA can provide better fitness values as compared with
other methods for the identification of high-order SNP barcodes using breast cancer case-control data sets.

(JMIR Med Inform 2020;8(6):e16886) doi: 10.2196/16886
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Introduction

Breast cancer has a major disease burden in the female
population, with a growing incidence recently [1,2]. Previously,
several interpretations of associations between breast cancer

and tumor characteristics [3-5], single-nucleotide
polymorphisms (SNPs) [6-8], clinicopathological factors [9],
and biomarkers [10] revealed relevant association effects
between these factors and the risk of cancer. Previous studies
also indicated that genomic variation could contribute to the
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tumorigenicity process in breast cancer [11-14]. Thus, effective
approaches for breast cancer estimation are required.

SNPs are crucial genetic variants in genomic association
analyses involving leukemia [15], cancers [16], and other
diseases [17-19]. Numerous SNPs cannot be excluded from
analyses as no relevant differences between cases and controls
can be found through conventional methods. Some SNPs may
have relevant associations with other SNPs, and these
associations are referred to as SNP barcodes. Consequently, the
detection of SNP barcodes is vital for association analyses of
diseases and cancers [20-23].

An SNP barcode consists of SNPs, and each SNP includes three
genotypes. The large space of suitable SNP barcode
combinations complicates the statistical evaluation and
identification of relevant SNP barcodes. Evolutionary algorithms
have been proposed to facilitate statistical identification of SNP
barcodes, and a genetic algorithm (GA) is one of the most
frequently used algorithms in genomic studies [24,25]. A GA
is an effective approach in the identification of relevant genetic
associations for various diseases through the use of more
efficient search abilities to enhance population diversity [26].
The crossover and local search operations in a GA can reduce
the probability of the same vector being identified between two
selected SNPs, and hence, they can improve the search ability
of this algorithm.

Breast cancer is a major health issue, and machine learning
algorithms are frequently employed to detect the complex
genomic associations in breast cancer studies. Although previous
machine learning approaches could effectively identify SNP
associations in genomic studies, the detection rate of SNP
barcodes remains challenging for high-order SNP barcodes.
Thus, we proposed a hybrid Taguchi-genetic algorithm (HTGA)
for high-order SNP barcode identification in a breast cancer
case-control study.

Methods

Genetic Algorithm
A GA is a machine learning algorithm inspired by biological
evolutionary processes [27]. The first GA operation is population
initialization, in which solutions are produced over the solution
space; these initial solutions are designated as parents. In the
population, two parents are strategically selected according to
some fitness values for crossover operators. Crossover operators
generate offspring by combining the chromosomal matter from

the two parents. Mutation operations can increase population
diversity through localized change, eliminating inferior
chromosomes from the population and retaining good offspring.
Thus, the good factors within the population can be passed on
to the next generation. The aforementioned operations and
population replacement are repeated until the stopping criterion
is satisfied.

Taguchi Method
The methods proposed by Taguchi et al [28] are based on a
statistical experimental design to improve the evaluation and
performance of products, process conditions, and parameter
settings. Taguchi methods primarily rely on orthogonal arrays
(OAs) and the signal-to-noise ratio (SNR). An OA is a fractional
factorial matrix that provides a comprehensive analysis of
interactions among all design factors. This matrix ensures a
proportionate comparison of levels for all factors. A two-level

OA can be defined as Ln (2n−1), where n=2k is the number of
experimental runs, k (1) is a positive integer, base 2 represents
two levels for each design parameter, and n−1 is the number of
columns in the OA. “L” represents “Latin,” because the OA
experimental design concept is associated with the Latin square.
An example of an OA is shown in Table 1.

SNR (η) is used as the selection quality characteristic in the
field of communications engineering; it can be used to optimize
the parameters for a target. Taguchi methods can classify the
parameter design problem into several categories according the
problem. Both smaller-the-better and larger-the-better SNR
types are used. Considering the set of characteristics y1, y2, …,
yn, in the smaller-the-better case, the SNR can be determined
using the following equation:

In the larger-the-better case, the SNR can be determined using
the following equation:

The SNR evaluates the robustness of the levels of each design
parameter. A high-quality result can be achieved for a particular
target by controlling the parameters at a particular level with a
high SNR value.
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Table 1. A L8(27) orthogonal array.

FactorsExperiment number

GFEDCBA

11111111

22221112

22112213

11222214

21212125

12122126

12211227

21121228

Hybrid Taguchi-Genetic Algorithm
In the HTGA, a Taguchi method is added into GA crossover
and mutation operations. Figure 1 depicts a flowchart of the
HTGA approach, which includes the below-mentioned 17 steps.
The pseudocode of the HTGA is shown in Textbox 1.

HTGA Procedure
The procedure involves the following 17 steps: (1) Population
initialization, execute the algorithm and generate an initial
population; (2) Fitness value evaluations, evaluate the
population’s fitness values; (3) Selection operation, select
candidates using the tournament approach; (4) Crossover
operation, the probability of crossover is determined by the
crossover rate pc; (5) Select a suitable two-level orthogonal

array for the experiment; (6) Randomly choose two
chromosomes at a time to execute a matrix experiment; (7)
Calculate the function values and SNRs of n experiments in the

orthogonal array Ln (2n−1); (8) Calculate the effects of different
factors and in the experiment; (9) An optimal chromosome is
generated; (10) Repeat steps 5 through 8 until the expected
number (1/2) × M × pc is reached; (11) New chromosomes are
generated through the Taguchi method; (12) Mutation operation,
mutation probability is determined by the mutation rate pm; (13)
Add chromosomes from a pool into the population; (14) Sort
the population by fitness; (15) Select the fittest chromosomes
as the new population for the next generation; (16) If the
stopping criterion is met, execute step 17; if not, go back to step
2; (17) The chromosome with the highest fitness value is the
HTGA solution.
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Figure 1. Hybrid Taguchi-genetic algorithm flowchart. SNR: signal-to-noise ratio.
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Textbox 1. Pseudocode of the hybrid Taguchi-genetic algorithm.

Input: maximum iteration as T (termination criterion)

     population size M

     crossover rate Pc

     mutation rate Pm

Output: optimal chromosome (the optimal solution)

begin

# Initialization

/* Initialize M chromosomes as population */

foriteration ← 1 to Tdo

     # Selection operation

     fori ← 1 to Mdo

         /* Randomly select two chromosomes from population as chromosome1 and

         chromosome2 */

         iffitness1 ≥ fitness2do

             winner ← chromosome1

         end if

         else do

             winner ← chromosome2

         end if

             /* put winner into mating pool */

     end for

     # Crossover operation

     fori ← 1 to (M / 2) do

         /* Sequentially select two chromosomes from mating pool as chromosome1

         and chromosome2 */

         if random() < Pcdo

             crossover(chromosome1, chromosome2)

             /* generate two offspring */

         end if

         /* put two offspring into offspring pool */

     end for

     # Taguchi operation

     fori ← 1 to (0.5 × M × Pc) do

         /* Randomly select two chromosomes from offspring pool as chromosome1

         and chromosome2 */

         Taguchi(chromosome1, chromosome2)

         /* generate one offspring */

         /* put one offspring into offspring pool */

      end for

     # Mutation operation

     fori ← 1 to size of offspring pooldo
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         forj ← 1 to dimensions of chromosome do

             if random() < Pmdo

                 mutation(chromosome[j])

             end if

         end for

         /* generate one offspring */

         /* put one offspring into offspring pool */

      end for

     # Replacement operation

     /* Reserve best M chromosomes as new population from population and offspring

     pool */

end for

/* Obtain optimal chromosome */

End

Encoding Schemes and Population Initialization
In the proposed GA, a suitable solution to a problem is denoted
as chromosome C = {c1, c2, …, cn}, and the encoding scheme
aims to design suitable elements in a chromosome. In the SNP
barcode problem, the elements in a chromosome include (1) the
indexes of the selected SNPs in the data set and (2) the
genotypes of these selected SNPs. Thus, a chromosome Ci is
expressed as shown in equation 3.

Ci = (SNPi,s, Genotypei,g) (3)

where i = 1, 2, …, m, and is the population size. SNPi,s, where
s = 1, 2, …, n/2, is a selected SNP dimension in which all SNPs
are unrepeatable, and n is the SNP barcode order. Genotypei,g

represents the three possible genotypes of the selected SNPi,s,
where g = n/2 + 1, n/2 + 2, …, n is the selected genotype
dimension. In the population initialization, all chromosomes
are stochastically generated according to the encoding schemes.

Fitness Function Evaluation
The aim of SNP barcode identification is to detect relevant
differences between cases and controls. To optimize the
protective effect of the SNP combination, a fitness function is
required for comparing cases and controls. A high difference
between cases and controls indicates a high probability of
detecting relevant SNP barcodes. In the proposed GA, a

chromosome is measured by the fitness function shown in
equation 4.

F(Ci) = number (control∩Ci) − number (case∩Ci) (4)

where number is the total number of elements in a set, control
denotes the controls, case denotes the cases, and Ci is the ith
chromosome. Thus, the number of intersections between the
ith chromosome and the controls is calculated by number
(control∩Ci), and the number of intersections between the ith
chromosome and the cases is calculated by number (case∩Ci).
Thereafter, we calculate the difference between number
(control∩Ci) and number (case∩Ci) as the fitness value at Ci.

Selection Operation
In the selection operation, a random tournament selection
scheme is used to pick each pair of parents from the population
[29]. In tournament selection, two chromosomes are randomly
selected to compare their individual fitness values. The
chromosomes with better fitness values are inserted into the
mating pool. According to the mechanism of tournament
selection, the probability that the average fitness value of
solutions in the mating pool is better than the average fitness
value of the parent population is high. Chromosomes in the
mating pool are selected for the crossover operation and used
to produce offspring. Textbox 2 provides the pseudocode of
tournament selection. The selection operation is repeatedly
executed until the maximum mating pool size is achieved.
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Textbox 2. Tournament selection procedure.

Input:population, the list of chromosomes to select from

Input:chromosome1, the first randomly selected chromosome from population

Input:chromosome2, the second randomly selected chromosome from population

Input:fitness1, the fitness value of the first chromosome

Input:fitness2, the fitness value of the second chromosome

Output:winner: the chromosome with better fitness value in tournament

Output:mating pool: reserve the list of chromosomes to execute crossover operation

# Tournament selection

begin

fori ← 1 to size of mating pool do

     Randomly select two chromosomes from population

     iffitness1 ≥ fitness2do

         winner ← chromosome1

     end if

     else do

         winner ← chromosome2

      end else

     put winner into mating pool

end for

Crossover Operation
After the selection operation, the crossover operation is
implemented to create high-performing individuals. Two
chromosomes are sequentially selected from the mating pool
as a pair of parents, and then, the crossover operation is executed
on them. The crossover operation uses a uniform crossover.
Each bit in a chromosome is randomly generated as 0 or 1, and
for 1, points are swapped between parent organisms; otherwise,
points are not swapped. The encoding schemes establish a single
point as an SNP locus with a corresponding genotype locus at
the j 2 + 1 position, where j = 1, 2, …, n/2 is the index in the
chromosome and n is the SNP barcode order. Therefore, n/2
bits are randomly generated, and both the j 2 + 1 genotype locus
and jth bit representing an SNP are swapped in the parent
organisms.

Taguchi Operation
An orthogonal array exhibits Q design factors. Each factor has

two levels. An orthogonal array Ln (2n−1) exhibits n−1 columns
and n individual experiments corresponding to n rows, where

n = 2k and Q ≤ n−1; k is a positive integer, defined as an integer
>1, and it is used for adjusting the number of experimental runs.

The SNR (η) is the mean square deviation of the fitness function.

Let two values of η be ηi = (yi)
2 and ηi = −(yi)

2 (where is
negative) in the case of a fitness function that is maximized
(larger-the-better). Let yi be the function evaluation value of
experiment i = 1, 2, 3, …, n, where n is the number of
experiments. The effect of factor f is defined as follows:

Efl = sum of ηi for factor f at level l (5)

where i is the experiment number, f is the factor name, and l is
the level number.

Mutation Operation
The mutation operation aims to prevent the population from
falling into local optima. In all suitable solutions, each offspring
element has a chance to undergo a mutation operation. Each
mutation position with a probability of mutation pm generates
a random number in (0, 1). If the number is less than pm at the
ith element in an offspring specimen, the ith element will be
mutated by a randomly generated possible value.

Replacement Operation
The replacement operation uses an individual to replace the
weakest individual in the population. After the completion of
the aforementioned operations, the offspring are added to the
population, and then, all the parents and offspring are ranked
based on their fitness values. Subsequently, top p chromosomes
in the population size are selected as the new population for the
next generation, where p is the population size.

Termination Condition
The HTGA operation is repeated in successive iterations until
the stopping criterion is met. In this study, a maximum number
of iterations was used to terminate HTGA operations.

Parameter Setting
This study compared the search effectiveness of the HTGA with
that of standard GA, particle swarm optimization (PSO) [30],
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and chaotic PSO (CPSO) [31] methods. PSO is a swarm
intelligence algorithm that simulates the social behavior of
organisms. In PSO, each individual represents a particle and
considers a potential solution in the swarm population. In CPSO,
chaotic theory is incorporated into PSO to increase the search
space and enhance PSO performance. PSO and CPSO
parameters include population size, iteration size, minimum
and maximum inertial weights, and learning factors. In each
method, the number of iterations was set to 1000, and the
population size was 50 for the test data set. In PSO and CPSO,
the minimum and maximum inertial weights were 0.4 and 0.9,
respectively. Both weights of learning factors c1 and c2 were
set to 2. In the tested GA and the proposed HTGA, the
probability of crossover (pc) with an exchange probability was
0.3 and the probability of mutation (pm) with an exchange
probability was 0.05.

Statistical Analysis
The OR was used to evaluate the risk of an SNP barcode [32],
and it was defined as follows:

OR = (TP × TN) / (FP × FN) (6)

where TP represents the number of true positives, TN represents
the number of true negatives, FN represents the number of false
negatives, and FP represents the number of false positives.

Results

Data Sets
A set of 26 SNPs related to growth factor genes was selected
to simulate a data set. Several growth factor–related breast

cancer genes (EGF, IGF1, IGF1R, IGF2, IGFBP3, IL10,
TGFB1, and VEGF), including 26 SNPs, were used as
simulation data to evaluate existing algorithms and the proposed
HTGA. The data set only provided the genotype frequencies of
each SNP without the original raw data of genotypes. Table 2
presents the SNPs and genotype distributions. The simulated
frequencies of SNPs were acquired from the literature [33].
SNPs used in the original data comprised different numbers of
individuals; therefore, the number of every SNP must be
normalized to the same number. The new data were randomly
generated according to the frequency of the original data. All
SNP data from the data source were adjusted to 5000 samples
for all genotype distributions. For example, for SNP1 (gene,
EGF; dBSNP ref. rs2237054), the total number of three
genotypes (ie, TT, TA, and AA) in the control was 2273 (2008
+ 259 + 6). The percentage for each genotype in SNP1 was
calculated as “original data*/sum (%)” (ie, 2008/2273, 88.3%
for TT; 259/2273, 11.4% for TA; and 6/2273, 0.3% for AA),
where the symbol “*” indicates that the original data were
derived from the SNP data set before normalization. On the
basis of this percentage, the modified data for SNP1 were
calculated by multiplying the percentage with the sum of the
complete data set (SNP number adjusted to 5000) (ie, 88.3% ×
5000 [n=4418] for AA; 11.4% × 5000 [n=569] for Aa, and 0.3%
× 5000 [n=13] for aa). Therefore, the modified data for SNP1
were adjusted to a total of 5000 (4418 + 569 + 13 = 5000). Thus,
5000 simulation samples of SNP genotypes were randomly
generated by following fixed distribution.
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Table 2. Estimated effect from individual single-nucleotide polymorphisms of 26 growth factor–related genes for the occurrence of breast cancer.

P value95% CIORCase number/normal numberSNP typeSNPa (gene)

N/AN/AN/Ab4408/44181-TT1. rs2237054 (EGF)

.970.89-1.141570/5692-TA1. rs2237054 (EGF)

.180.85-3.371.722/133-AA1. rs2237054 (EGF)

N/AN/AN/A2797/28661-CC2. rs5742678 (IGF1)

.520.95-1.121.031844/18372-CG2. rs5742678 (IGF1)

.011.05-1.461.24359/2973-GG2. rs5742678 (IGF1)

N/AN/AN/A2924/29701-CC3. rs1549593 (IGF1)

.920.93-1.091.011753/17712-CA3. rs1549593 (IGF1)

.0081.07-1.501.27323/2593-AA3. rs1549593 (IGF1)

N/AN/AN/A2643/26981-AA4. rs6220 (IGF1)

.800.93-1.101.011933/19512-AG4. rs6220 (IGF1)

.0071.06-1.441.23424/3513-GG4. rs6220 (IGF1)

N/AN/AN/A2295/23361-CC5. rs2946834 (IGF1)

.530.95-1.121.032171/21502-CT5. rs2946834 (IGF1)

.430.93-1.211.06534/5143-TT5. rs2946834 (IGF1)

N/AN/AN/A2914/29551-AA6. rs1568502 (IGF1R)

.460.95-1.121.031840/18072-AG6. rs1568502 (IGF1R)

.650.87-1.261.05246/2383-GG6. rs1568502 (IGF1R)

N/AN/AN/A3169/32011-AA7. IGF1R-10 (IGF1R)

.770.91-1.080.991545/15822-Aa7. IGF1R-10 (IGF1R)

.0031.11-1.601.33286/2173-aa7. IGF1R-10 (IGF1R)

N/AN/AN/A1523/14291-GG8. rs2229765 (IGF1R)

.330.87-1.050.962533/24892-GA8. rs2229765 (IGF1R)

.0010.73-0.92c0.82944/10823-AA8. rs2229765 (IGF1R)

N/AN/AN/A2737/27451-CC9. rs8030950 (IGF1R)

.920.92-1.0811902/19172-CA9. rs8030950 (IGF1R)

.410.92-1.251.07361/3383-AA9. rs8030950 (IGF1R)

N/AN/AN/A2538/24511-GG10. rs680 (IGF2)

.040.85-1.000.922074/21832-GA10. rs680 (IGF2)

.790.88-1.191.02388/3663-AA10. rs680 (IGF2)

N/AN/AN/A1936/19711-TT11. rs3741211 (IGF2)

.170.98-1.161.062367/22692-TC11. rs3741211 (IGF2)

.280.83-1.050.93697/7603-CC11. rs3741211 (IGF2)

N/AN/AN/A2651/26941-AA12. IGF2-05 (IGF2)

.690.94-1.111.021955/19522-Aa12. IGF2-05 (IGF2)

.120.97-1.321.13394/3543-aa12. IGF2-05 (IGF2)

N/AN/AN/A2160/21621-AA13. IGF2-06 (IGF2)

.660.90-1.070.982237/22842-Aa13. IGF2-06 (IGF2)

.210.96-1.241.09603/5543-aa13. IGF2-06 (IGF2)

N/AN/AN/A2415/24071-GG14. rs2132571 (IGFBP3)

.990.92-1.0912163/21572-GA14. rs2132571 (IGFBP3)
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P value95% CIORCase number/normal numberSNP typeSNPa (gene)

.650.83-1.120.97422/4363-AA14. rs2132571 (IGFBP3)

N/AN/AN/A3225/32841-GG15. rs2471551 (IGFBP3)

.130.98-1.171.071591/15152-GC15. rs2471551 (IGFBP3)

.540.76-1.150.93184/2013-CC15. rs2471551 (IGFBP3)

N/AN/AN/A1538/14691-AA16. rs2854744 (IGFBP3)

.390.88-1.050.962487/24752-AC16. rs2854744 (IGFBP3)

.030.79-0.990.88975/10563-CC16. rs2854744 (IGFBP3)

N/AN/AN/A2908/30271-GG17. rs2132572 (IGFBP3)

.0511.00-1.181.091805/17282-GA17. rs2132572 (IGFBP3)

.031.02-1.461.22287/2453-AA17. rs2132572 (IGFBP3)

N/AN/AN/A1218/12351-TT18. rs3024496 (IL10)

.900.92-1.111.012533/25492-TC18. rs3024496 (IL10)

.490.93-1.171.041249/12163-CC18. rs3024496 (IL10)

N/AN/AN/A3059/30171-CC19. rs1800872 (IL10)

.250.87-1.030.951660/17222-CA19. rs1800872 (IL10)

.530.89-1.271.06281/2613-AA19. rs1800872 (IL10)

N/AN/AN/A1703/17011-TT20. rs1800890 (IL10)

.630.90-1.070.982455/25082-TA20. rs1800890 (IL10)

.320.95-1.201.06842/7913-AA20. rs1800890 (IL10)

N/AN/AN/A3400/34461-CC21. rs1554286 (IL10)

.540.94-1.121.031431/14102-CT21. rs1554286 (IL10)

.150.95-1.491.19169/1443-TT21. rs1554286 (IL10)

N/AN/AN/A1850/19141-TT22. rs1800470 (TGFB1)

.620.94-1.111.022372/23992-TC22. rs1800470 (TGFB1)

.011.04-1.321.17778/6873-CC22. rs1800470 (TGFB1)

N/AN/AN/A1236/12731-CC23. rs699947 (VEGF)

.330.95-1.161.052511/24632-CA23. rs699947 (VEGF)

.730.91-1.141.021253/12643-AA23. rs699947 (VEGF)

N/AN/AN/A2278/23411-GG24. rs1570360 (VEGF)

.130.98-1.161.072214/21322-GA24. rs1570360 (VEGF)

.920.87-1.130.99508/5273-AA24. rs1570360 (VEGF)

N/AN/AN/A2354/22791-GG25. rs2010963 (VEGF)

.310.88-1.040.962133/21572-GC25. rs2010963 (VEGF)

.070.77-1.010.88513/5643-CC25. rs2010963 (VEGF)

N/AN/AN/A3744/37411-CC26. rs3025039 (VEGF)

.810.90-1.080.991160/11742-CT26. rs3025039 (VEGF)

.470.84-1.521.1396/853-TT26. rs3025039 (VEGF)

aSNP: single-nucleotide polymorphism.
bN/A: not applicable.

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e16886 | p. 10https://medinform.jmir.org/2020/6/e16886
(page number not for citation purposes)

Chuang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Comparison of Cases and Controls in Terms of the
Effect of a Single SNP
Table 2 compares patients and normal subjects in terms of effect
(OR and 95% CI) at a single SNP for growth factor–related
genes. Two SNPs within two genes (rs2229765-AA [IGF1R]
and rs2854744-CC [IGFBP3]) showed significant protection
associations (rs2229765-AA: OR 0.82, P=.001; rs2854744-CC:
OR 0.88, P=.03) for breast cancer. The minimum and maximum
protection associations exhibited ORs of 0.82 and 0.88,
respectively, and the other SNPs showed nonsignificant
protection associations for breast cancer.

Comparison Between the Proposed HTGA and Existing
Algorithms
We compared PSO [34], CPSO [35], and the GA [24] with the
HTGA for 2-SNP to 7-SNP barcodes with protection
associations (Table 3). ORs (<1) indicate the impact of the
protection association of SNP barcodes for the occurrence of
breast cancer. A high difference between cases and controls in
the SNP barcodes represents informative protection associations,
and P<.05 indicates a significant difference for the SNP barcode
between cases and controls. The identified 3-SNP to 7-SNP
barcodes showed that the HTGA provided values with a greater
degree of difference as compared with PSO, CPSO, and the
GA, indicating that the HTGA identified relevant SNP barcodes
with protection associations more effectively (Table 3).
HTGA-identified SNP barcodes showed ORs ranging from

0.755 to 0.870 (P=.003) for protection associations with breast
cancer. The 2-SNP and 3-SNP barcodes in PSO, CPSO, and
the GA showed significant differences between cases and
controls (2-SNP: P=.003, P=.001, and P=.03, respectively;
3-SNP: P=.04, P=.04, and P=.002, respectively). The 4-SNP
barcodes in CPSO and the GA showed significant differences
(P=.04 and P=004, respectively), and the 5-SNP barcode in the
GA also showed a significant difference (P=.03). Although
CPSO and the GA provided better ORs as compared with the
HTGA in all SNP barcodes, the degrees of difference indicated
that the SNP barcodes identified by the HTGA were superior
to those identified by other methods, and P values >.05 indicated
that these differences revealed by the models were not
significant.

Optimization algorithms have been widely applied to detect
relevant high-order SNP barcodes in disease and cancer studies
[24,25,34]. Differences between cases and controls are often
applied to evaluate the values of SNP barcodes in terms of their
fitness function design. As indicated in Table 3, the HTGA
effectively identified the relevant protection associations of
SNP barcodes for breast cancer. The logistic regression analysis
results were strongly validated by the outstanding performance
of the HTGA in breast cancer SNP barcode identification. The
SNP barcodes detected by the proposed HTGA are simply
associations between a barcode and disease, and this type of
analysis does not support the inference of causality.
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Table 3. Estimation of the best protection single-nucleotide polymorphism barcodes for the occurrence of breast cancer as determined by particle
swarm optimization, chaotic particle swarm optimization, the genetic algorithm, and the hybrid Taguchi-genetic algorithm.

P value95% CIORDifferenceCase

number

Control

number

SNP genotypesCombined SNPaOrder and method

2-SNP

.0010.76-0.930.8411258169411-31,8PSOb

N/AN/AN/AN/A41844059OtherN/AcPSO

.0010.76-0.930.8411258169411-31,8CPSOd

N/AN/AN/AN/A41844059OtherN/ACPSO

.030.85-0.990.916103182319261-21,10GAe

N/AN/AN/AN/A31773074OtherN/AGA

.0030.79-0.950.870130g117913092-110,17HTGAf

N/AN/AN/AN/A38213691OtherN/AHTGA

3-SNP

.0430.69-0.990.829442252693-1-28,9,22PSO

N/AN/AN/AN/A47754731OtherN/APSO

.040.73-0.990.850523193711-3-13,8,9CPSO

N/AN/AN/AN/A46814629OtherN/ACPSO

.0020.73-0.940.826975276241-3-11,8,15GA

N/AN/AN/AN/A44734376OtherN/AGA

.0030.79-0.950.866123g103511581-2-11,10,17HTGA

N/AN/AN/AN/A39653842OtherN/AHTGA

4-SNP

.080.57-1.030.7642376992-3-1-24,8,14,22PSO

N/AN/AN/AN/A49244901OtherN/APSO

.040.69-0.990.824452232682-1-1-110,17,21,23CPSO

N/AN/AN/AN/A47774732OtherN/ACPSO

.0040.76-0.950.850103g6927951-2-1-11,10,17,21GA

N/AN/AN/AN/A43084205OtherN/AGA

.0040.76-0.950.850103g6927951-2-1-11,10,17,21HTGA

N/AN/AN/AN/A43084205OtherN/AHTGA

5-SNP

.210.60-1.120.8211675911-1-3-2-15,6,8,9,26PSO

N/AN/AN/AN/A49254909OtherN/APSO

.170.46-1.150.7261232441-2-3-1-22,4,8,11,18CPSO

N/AN/AN/AN/A49684956OtherN/ACPSO

.030.78-0.990.876725856571-1-1-1-11,4,15,17,21GA

N/AN/AN/AN/A44154343OtherN/AGA

.0090.75-0.960.84683g5206031-2-1-1-11,10,17,21,26HTGA

N/AN/AN/AN/A44804397OtherN/AHTGA

6-SNP

.340.04-3.200.3332021-3-2-2-1-34,8,15,19,22,24PSO

N/AN/AN/AN/A50004998OtherN/APSO
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P value95% CIORDifferenceCase

number

Control

number

SNP genotypesCombined SNPaOrder and method

.320.43-1.320.749721281-1-1-2-2-33,4,12,16,20,24CPSO

N/AN/AN/AN/A49794972OtherN/ACPSO

.190.75-1.060.900292472761-1-1-1-1-21,2,4,6,15,18GA

N/AN/AN/AN/A47534724OtherN/AGA

.010.70-0.950.81867g3273941-2-1-1-1-11,10,15,17,21,26HTGA

N/AN/AN/AN/A46734606OtherN/AHTGA

7-SNP

.330.13-2.000.5003361-1-3-1-1-2-15,8,11,13,14,24,25PSO

N/AN/AN/AN/A49974994OtherN/APSO

.310.41-1.320.740720272-2-2-1-2-2-110,12,16,17,19,22,26CPSO

N/AN/AN/AN/A49804973OtherN/ACPSO

.100.40-1.090.6561325381-1-1-3-2-1-11,2,6,7,10,14,15GA

N/AN/AN/AN/A49754962OtherN/AGA

.010.60-0.940.75544g1411851-2-2-1-1-1-11,10,13,15,17,21,26HTGA

N/AN/AN/AN/A48594815OtherN/AHTGA

aSNP: single-nucleotide polymorphism.
bPSO: particle swarm optimization.
cN/A: not applicable.
dCPSO: chaotic particle swarm optimization.
eGA: genetic algorithm.
fHTGA: hybrid Taguchi-genetic algorithm.
gThe best results in the n-SNP barcodes.

Discussion

Principal Findings
Many breast cancer studies have identified the associations
among the effects of important related genes [36-42], including
genes related to DNA repair [43,44] and estrogen-response
genes [45]. In this study, we introduced a HTGA to identify the
SNP barcodes among 26 breast cancer–related SNPs. The
HTGA-generated SNP barcodes were examined to determine
their protective effects against breast cancer. The results suggest
that nonrelevant SNPs might cumulatively reduce the risk of
breast cancer, as indicated by the HTGA-generated preventive
SNP barcodes. A search space consisting of SNP barcode
combinations can generate numerous local optima in multiple
regions. These local optima raise challenges for optimization
algorithm search operations, because the heuristic and stochastic
properties of such optimization algorithms can easily cause
searches to become trapped in local optima. A GA population
can be updated by referring to other chromosomes to determine
the next position in the search space. However, GA operations
can result in stagnation if the chromosomes are similar; points
of stagnation in a search space are referred to as local optima.
The computational processes and comparisons are shown in
Figure 2. A Taguchi system is a nonlinear system with
deterministic dynamic behavior owing to its ergodic and
stochastic properties. Taguchi methods are used to enhance GA
crossover operations, and these methods can be remarkably

helpful for avoiding population entrapment in local optima
because improved solutions can be found through
experimentation. Because the population learns from experience,
it can be said to exhibit population intelligence. The HTGA can
converge quickly to excellent fitness values for SNP barcodes,
whereas the GA is very slow to converge and the results are
worse than those of the HTGA (Figure 2), indicating that the
GA can very easily result in stagnation in regions that may not
include any global optima. However, the population is
effectively improved in the HTGA, and Figure 2 shows that the
fitness values of chromosomes clearly increase over time,
proving that the proposed Taguchi method can be used to
improve GA performance to identify SNP barcodes. Moreover,
our results prove the ability of this Taguchi-based GA to solve
SNP barcode identification problems. The optimal parameters
of the HTGA could be further analyzed for enhancing the
detection ability of SNP barcodes. Our HTGA includes the
probability of crossover and mutation. A further investigation
with more data sets is required to determine the optimal
parameters. Moreover, selection, crossover, mutation, and
replacement operations can be analyzed to determine the
superior operation strategy for enhancing the ability of our
HTGA to detect potential SNP barcodes. If the HTGA is applied
for clinical data, we suggest considering permutation testing to
examine the relevance of the results obtained. For each trial in
permutation testing, the case/control labels would be scrambled,
and the algorithm would then search for an optimal solution.
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After numerous trials, we would be able to determine the number
of times a solution at least as good as the one from the original

data is found and then determine if the algorithm is simply
fitting the data or identifying underlying associations.

Figure 2. Comparison of improvements to fitness values between the genetic algorithm (GA) and hybrid Taguchi-genetic algorithm (HTGA).The
images on the left compare GA and HTGA search results for 1000 iterations. The images on the right present the fitness values of an HTGA population
at specific iterations. SNP: single-nucleotide polymorphism.

Conclusions
An HTGA was proposed to effectively identify relevant SNP
barcodes among genes related to breast cancer. The study results
demonstrated that the HTGA could effectively detect SNP

barcodes for problems with numerous high-order SNP barcode
combinations. The proposed Taguchi method can improve the
GA via the identification of high-dimensional SNP barcodes,
and hence, it is integrated following GA crossover operations
to systematically optimize chromosomes and thus enhance their
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values. Moreover, the HTGA can effectively converge to a
promising region within the problem space and provide excellent
SNP barcode identification. In this study, large data sets were
used to evaluate and compare the performances of the GA, PSO,

CPSO, and the HTGA, and the results indicated that the HTGA
can effectively identify relevant high-order SNP barcodes in
breast cancer.

Acknowledgments
This work was supported by the National Science Council, Taiwan (108-2221-E-214-019-MY3 and 108-2221-E-992-031-MY3).

Conflicts of Interest
None declared.

References

1. Sharma R. Breast cancer incidence, mortality and mortality-to-incidence ratio (MIR) are associated with human development,
1990-2016: evidence from Global Burden of Disease Study 2016. Breast Cancer 2019 Jul;26(4):428-445. [doi:
10.1007/s12282-018-00941-4] [Medline: 30604398]

2. Liu F, Lin H, Kuo C, See L, Chiou M, Yu H. Epidemiology and survival outcome of breast cancer in a nationwide study.
Oncotarget 2017 Mar 07;8(10):16939-16950 [FREE Full text] [doi: 10.18632/oncotarget.15207] [Medline: 28199975]

3. Abubakar M, Sung H, Bcr D, Guida J, Tang TS, Pfeiffer RM, et al. Breast cancer risk factors, survival and recurrence, and
tumor molecular subtype: analysis of 3012 women from an indigenous Asian population. Breast Cancer Res 2018 Sep
18;20(1):114 [FREE Full text] [doi: 10.1186/s13058-018-1033-8] [Medline: 30227867]

4. Visser LL, Elshof LE, Schaapveld M, van de Vijver K, Groen EJ, Almekinders MM, et al. Clinicopathological Risk Factors
for an Invasive Breast Cancer Recurrence after Ductal Carcinoma —A Nested Case–Control Study. Clin Cancer Res 2018
Apr 23;24(15):3593-3601. [doi: 10.1158/1078-0432.ccr-18-0201]

5. Park S, Han W, Kim J, Kim MK, Lee E, Yoo T, et al. Risk Factors Associated with Distant Metastasis and Survival Outcomes
in Breast Cancer Patients with Locoregional Recurrence. J Breast Cancer 2015 Jun;18(2):160-166 [FREE Full text] [doi:
10.4048/jbc.2015.18.2.160] [Medline: 26155292]

6. Marsaux CF, Celis-Morales C, Livingstone KM, Fallaize R, Kolossa S, Hallmann J, et al. Changes in Physical Activity
Following a Genetic-Based Internet-Delivered Personalized Intervention: Randomized Controlled Trial (Food4Me). J Med
Internet Res 2016 Feb 05;18(2):e30 [FREE Full text] [doi: 10.2196/jmir.5198] [Medline: 26851191]

7. Shin SJ, You SC, Park YR, Roh J, Kim J, Haam S, et al. Genomic Common Data Model for Seamless Interoperation of
Biomedical Data in Clinical Practice: Retrospective Study. J Med Internet Res 2019 Mar 26;21(3):e13249 [FREE Full text]
[doi: 10.2196/13249] [Medline: 30912749]

8. Yang C, Chuang L, Lin Y. Epistasis Analysis Using an Improved Fuzzy C-Means-Based Entropy Approach. IEEE Trans.
Fuzzy Syst 2020 Apr;28(4):718-730. [doi: 10.1109/tfuzz.2019.2914629]

9. Yang C, Moi S, Ou-Yang F, Chuang L, Hou M, Lin Y. Identifying Risk Stratification Associated With a Cancer for Overall
Survival by Deep Learning-Based CoxPH. IEEE Access 2019;7:67708-67717. [doi: 10.1109/access.2019.2916586]

10. Moi S, Lee Y, Chuang L, Yuan SF, Ou-Yang F, Hou M, et al. Cumulative receiver operating characteristics for analyzing
interaction between tissue visfatin and clinicopathologic factors in breast cancer progression. Cancer Cell Int 2018;18:19
[FREE Full text] [doi: 10.1186/s12935-018-0517-z] [Medline: 29449787]

11. Kotredes KP, Razmpour R, Lutton E, Alfonso-Prieto M, Ramirez SH, Gamero AM. Characterization of cancer-associated
IDH2 mutations that differ in tumorigenicity, chemosensitivity and 2-hydroxyglutarate production. Oncotarget 2019 Apr
12;10(28):2675-2692 [FREE Full text] [doi: 10.18632/oncotarget.26848] [Medline: 31105869]

12. Šolman M, Ligabue A, Blaževitš O, Jaiswal A, Zhou Y, Liang H, et al. Specific cancer-associated mutations in the switch
III region of Ras increase tumorigenicity by nanocluster augmentation. Elife 2015 Aug 14;4:e08905 [FREE Full text] [doi:
10.7554/eLife.08905] [Medline: 26274561]

13. Derouet M, Wu X, May L, Hoon Yoo B, Sasazuki T, Shirasawa S, et al. Acquisition of anoikis resistance promotes the
emergence of oncogenic K-ras mutations in colorectal cancer cells and stimulates their tumorigenicity in vivo. Neoplasia
2007 Jul;9(7):536-545 [FREE Full text] [doi: 10.1593/neo.07217] [Medline: 17710156]

14. Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J, et al. mtDNA mutations increase tumorigenicity in
prostate cancer. Proc Natl Acad Sci U S A 2005 Jan 18;102(3):719-724 [FREE Full text] [doi: 10.1073/pnas.0408894102]
[Medline: 15647368]

15. Weich N, Ferri C, Moiraghi B, Bengió R, Giere I, Pavlovsky C, et al. GSTM1 and GSTP1, but not GSTT1 genetic
polymorphisms are associated with chronic myeloid leukemia risk and treatment response. Cancer Epidemiol 2016
Oct;44:16-21. [doi: 10.1016/j.canep.2016.07.008] [Medline: 27454607]

16. Fu OY, Chang H, Lin Y, Chuang L, Hou M, Yang C. Breast cancer-associated high-order SNP-SNP interaction of
CXCL12/CXCR4-related genes by an improved multifactor dimensionality reduction (MDR-ER). Oncol Rep 2016
Sep;36(3):1739-1747. [doi: 10.3892/or.2016.4956] [Medline: 27461876]

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e16886 | p. 15https://medinform.jmir.org/2020/6/e16886
(page number not for citation purposes)

Chuang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1007/s12282-018-00941-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30604398&dopt=Abstract
https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.15207
http://dx.doi.org/10.18632/oncotarget.15207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28199975&dopt=Abstract
https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-018-1033-8
http://dx.doi.org/10.1186/s13058-018-1033-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30227867&dopt=Abstract
http://dx.doi.org/10.1158/1078-0432.ccr-18-0201
https://ejbc.kr/DOIx.php?id=10.4048/jbc.2015.18.2.160
http://dx.doi.org/10.4048/jbc.2015.18.2.160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26155292&dopt=Abstract
https://www.jmir.org/2016/2/e30/
http://dx.doi.org/10.2196/jmir.5198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26851191&dopt=Abstract
https://www.jmir.org/2019/3/e13249/
http://dx.doi.org/10.2196/13249
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30912749&dopt=Abstract
http://dx.doi.org/10.1109/tfuzz.2019.2914629
http://dx.doi.org/10.1109/access.2019.2916586
https://cancerci.biomedcentral.com/articles/10.1186/s12935-018-0517-z
http://dx.doi.org/10.1186/s12935-018-0517-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29449787&dopt=Abstract
https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.26848
http://dx.doi.org/10.18632/oncotarget.26848
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31105869&dopt=Abstract
https://doi.org/10.7554/eLife.08905
http://dx.doi.org/10.7554/eLife.08905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26274561&dopt=Abstract
http://europepmc.org/abstract/MED/17710156
http://dx.doi.org/10.1593/neo.07217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17710156&dopt=Abstract
http://www.pnas.org/cgi/pmidlookup?view=long&pmid=15647368
http://dx.doi.org/10.1073/pnas.0408894102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15647368&dopt=Abstract
http://dx.doi.org/10.1016/j.canep.2016.07.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27454607&dopt=Abstract
http://dx.doi.org/10.3892/or.2016.4956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27461876&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


17. Tang J, Chuang L, Hsi E, Lin Y, Yang C, Chang H. Identifying the association rules between clinicopathologic factors and
higher survival performance in operation-centric oral cancer patients using the Apriori algorithm. Biomed Res Int
2013;2013:359634 [FREE Full text] [doi: 10.1155/2013/359634] [Medline: 23984353]

18. Yang C, Wu K, Dahms H, Chuang L, Chang H. Single nucleotide polymorphism barcoding of cytochrome c oxidase I
sequences for discriminating 17 species of Columbidae by decision tree algorithm. Ecol Evol 2017 Jul;7(13):4717-4725
[FREE Full text] [doi: 10.1002/ece3.3045] [Medline: 28690801]

19. Yang C, Lin Y, Chuang L. Class Balanced Multifactor Dimensionality Reduction to Detect Gene–Gene Interactions.
IEEE/ACM Trans. Comput. Biol. and Bioinf 2020 Jan 1;17(1):71-81. [doi: 10.1109/tcbb.2018.2858776]

20. Ou-Yang F, Lin Y, Chuang L, Chang H, Yang C, Hou M. The Combinational Polymorphisms of ORAI1 Gene Are Associated
with Preventive Models of Breast Cancer in the Taiwanese. Biomed Res Int 2015;2015:281263 [FREE Full text] [doi:
10.1155/2015/281263] [Medline: 26380267]

21. Yang P, Ho JW, Yang YH, Zhou BB. Gene-gene interaction filtering with ensemble of filters. BMC Bioinformatics 2011
Feb 15;12(S1). [doi: 10.1186/1471-2105-12-s1-s10]

22. Chuang L, Lane H, Lin Y, Lin M, Yang C, Chang H. Identification of SNP barcode biomarkers for genes associated with
facial emotion perception using particle swarm optimization algorithm. Ann Gen Psychiatry 2014;13(1):15. [doi:
10.1186/1744-859x-13-15]

23. Yan R, Cao J, Song C, Chen Y, Wu Z, Wang K, et al. Polymorphisms in lncRNA HOTAIR and susceptibility to breast
cancer in a Chinese population. Cancer Epidemiol 2015 Dec;39(6):978-985. [doi: 10.1016/j.canep.2015.10.025] [Medline:
26547792]

24. Chang W, Fang Y, Chang H, Chuang L, Lin Y, Hou M, et al. Identifying association model for single-nucleotide
polymorphisms of ORAI1 gene for breast cancer. Cancer Cell Int 2014 Mar 31;14(1):29 [FREE Full text] [doi:
10.1186/1475-2867-14-29] [Medline: 24685237]

25. Chen J, Chuang L, Lin Y, Liou C, Lin T, Lee W, et al. Genetic algorithm-generated SNP barcodes of the mitochondrial
D-loop for chronic dialysis susceptibility. Mitochondrial DNA 2014 Jun;25(3):231-237. [doi: 10.3109/19401736.2013.796513]
[Medline: 23777414]

26. Yang C, Moi S, Lin Y, Chuang L. Genetic Algorithm Combined with a Local Search Method for Identifying Susceptibility
Genes. Journal of Artificial Intelligence and Soft Computing Research 2016;6(3):203-212. [doi: 10.1515/jaiscr-2016-0015]

27. Holland J. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence. Cambridge, Massachusetts: MIT Press; 1992.

28. Bendell A, Disney J, Pridmore W. Taguchi Methods: Applications in World Industry. Berlin, Germany: Springer Verlag;
1989.

29. Miller B, Goldberg D. Genetic algorithms, tournament selection, and the effects of noise. Complex Systems
1995;9(3):193-212.

30. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the Sixth International
Symposium on Micro Machine and Human Science. 1995 Presented at: Sixth International Symposium on Micro Machine
and Human Science; October 4-6, 1995; Nagoya, Japan p. 39-43. [doi: 10.1109/mhs.1995.494215]

31. Chuang L, Chang H, Lin M, Yang C. Chaotic particle swarm optimization for detecting SNP–SNP interactions for
CXCL12-related genes in breast cancer prevention. European Journal of Cancer Prevention 2012;21(4):336-342. [doi:
10.1097/cej.0b013e32834e31f6]

32. Mechanic LE, Luke BT, Goodman JE, Chanock SJ, Harris CC. Polymorphism Interaction Analysis (PIA): a method for
investigating complex gene-gene interactions. BMC Bioinformatics 2008 Mar 06;9:146 [FREE Full text] [doi:
10.1186/1471-2105-9-146] [Medline: 18325117]

33. Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA, SEARCH Investigators. Association between common variation
in 120 candidate genes and breast cancer risk. PLoS Genet 2007 Mar 16;3(3):e42 [FREE Full text] [doi:
10.1371/journal.pgen.0030042] [Medline: 17367212]

34. Wu S, Chuang L, Lin Y, Ho W, Chiang F, Yang C, et al. Particle swarm optimization algorithm for analyzing SNP-SNP
interaction of renin-angiotensin system genes against hypertension. Mol Biol Rep 2013 Jul;40(7):4227-4233. [doi:
10.1007/s11033-013-2504-8] [Medline: 23695493]

35. Chuang L, Chang H, Lin M, Yang C. Chaotic particle swarm optimization for detecting SNP–SNP interactions for
CXCL12-related genes in breast cancer prevention. European Journal of Cancer Prevention 2012;21(4):336-342. [doi:
10.1097/cej.0b013e32834e31f6]

36. Chen L, Li W, Zhang L, Wang H, He W, Tai J, et al. Disease gene interaction pathways: a potential framework for how
disease genes associate by disease-risk modules. PLoS One 2011;6(9):e24495 [FREE Full text] [doi:
10.1371/journal.pone.0024495] [Medline: 21915342]

37. Yin J, Lu K, Lin J, Wu L, Hildebrandt MA, Chang DW, et al. Genetic variants in TGF-β pathway are associated with
ovarian cancer risk. PLoS One 2011;6(9):e25559 [FREE Full text] [doi: 10.1371/journal.pone.0025559] [Medline: 21984931]

38. Ricceri F, Guarrera S, Sacerdote C, Polidoro S, Allione A, Fontana D, et al. ERCC1 haplotypes modify bladder cancer risk:
a case-control study. DNA Repair (Amst) 2010 Feb 04;9(2):191-200. [doi: 10.1016/j.dnarep.2009.12.002] [Medline:
20061190]

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e16886 | p. 16https://medinform.jmir.org/2020/6/e16886
(page number not for citation purposes)

Chuang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://doi.org/10.1155/2013/359634
http://dx.doi.org/10.1155/2013/359634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23984353&dopt=Abstract
https://doi.org/10.1002/ece3.3045
http://dx.doi.org/10.1002/ece3.3045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28690801&dopt=Abstract
http://dx.doi.org/10.1109/tcbb.2018.2858776
https://doi.org/10.1155/2015/281263
http://dx.doi.org/10.1155/2015/281263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26380267&dopt=Abstract
http://dx.doi.org/10.1186/1471-2105-12-s1-s10
http://dx.doi.org/10.1186/1744-859x-13-15
http://dx.doi.org/10.1016/j.canep.2015.10.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26547792&dopt=Abstract
https://cancerci.biomedcentral.com/articles/10.1186/1475-2867-14-29
http://dx.doi.org/10.1186/1475-2867-14-29
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24685237&dopt=Abstract
http://dx.doi.org/10.3109/19401736.2013.796513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23777414&dopt=Abstract
http://dx.doi.org/10.1515/jaiscr-2016-0015
http://dx.doi.org/10.1109/mhs.1995.494215
http://dx.doi.org/10.1097/cej.0b013e32834e31f6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-146
http://dx.doi.org/10.1186/1471-2105-9-146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18325117&dopt=Abstract
http://dx.plos.org/10.1371/journal.pgen.0030042
http://dx.doi.org/10.1371/journal.pgen.0030042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17367212&dopt=Abstract
http://dx.doi.org/10.1007/s11033-013-2504-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23695493&dopt=Abstract
http://dx.doi.org/10.1097/cej.0b013e32834e31f6
http://dx.plos.org/10.1371/journal.pone.0024495
http://dx.doi.org/10.1371/journal.pone.0024495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21915342&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0025559
http://dx.doi.org/10.1371/journal.pone.0025559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21984931&dopt=Abstract
http://dx.doi.org/10.1016/j.dnarep.2009.12.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20061190&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


39. Cauchi S, Meyre D, Durand E, Proença C, Marre M, Hadjadj S, et al. Post genome-wide association studies of novel genes
associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One 2008 May 07;3(5):e2031
[FREE Full text] [doi: 10.1371/journal.pone.0002031] [Medline: 18461161]

40. Lin G, Tseng H, Chang C, Chuang L, Liu C, Yang C, et al. SNP combinations in chromosome-wide genes are associated
with bone mineral density in Taiwanese women. Chin J Physiol 2008 Feb 29;51(1):32-41. [Medline: 18551993]

41. Yang C, Lin Y, Yen C, Chuang L, Chang H. A systematic gene-gene and gene-environment interaction analysis of DNA
repair genes XRCC1, XRCC2, XRCC3, XRCC4, and oral cancer risk. OMICS 2015 Apr;19(4):238-247. [doi:
10.1089/omi.2014.0121] [Medline: 25831063]

42. Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G, et al. Cumulative Association of Five Genetic Variants with Prostate
Cancer. N Engl J Med 2008 Feb 28;358(9):910-919. [doi: 10.1056/nejmoa075819]

43. Conde J, Silva SN, Azevedo AP, Teixeira V, Pina JE, Rueff J, et al. Association of common variants in mismatch repair
genes and breast cancer susceptibility: a multigene study. BMC Cancer 2009 Sep 25;9:344 [FREE Full text] [doi:
10.1186/1471-2407-9-344] [Medline: 19781088]

44. Han W, Kim K, Yang S, Noh D, Kang D, Kwack K. SNP-SNP interactions between DNA repair genes were associated
with breast cancer risk in a Korean population. Cancer 2012 Feb 01;118(3):594-602 [FREE Full text] [doi:
10.1002/cncr.26220] [Medline: 21751184]

45. Yu J, Hsiung C, Hsu H, Bao B, Chen S, Hsu G, et al. Genetic variation in the genome-wide predicted estrogen response
element-related sequences is associated with breast cancer development. Breast Cancer Res 2011 Jan 31;13(1):R13 [FREE
Full text] [doi: 10.1186/bcr2821] [Medline: 21281495]

Abbreviations
CPSO: chaotic particle swarm optimization
GA: genetic algorithm
HTGA: hybrid Taguchi-genetic algorithm
OA: orthogonal array
PSO: particle swarm optimization
SNP: single-nucleotide polymorphism
SNR: signal-to-noise ratio

Edited by C Lovis; submitted 04.11.19; peer-reviewed by BTL Brian T Luke, HW Chang; comments to author 15.12.19; revised version
received 09.02.20; accepted 08.04.20; published 17.06.20

Please cite as:
Chuang LY, Yang CS, Yang HS, Yang CH
Identification of High-Order Single-Nucleotide Polymorphism Barcodes in Breast Cancer Using a Hybrid Taguchi-Genetic Algorithm:
Case-Control Study
JMIR Med Inform 2020;8(6):e16886
URL: https://medinform.jmir.org/2020/6/e16886
doi: 10.2196/16886
PMID: 32554381

©Li-Yeh Chuang, Cheng-San Yang, Huai-Shuo Yang, Cheng-Hong Yang. Originally published in JMIR Medical Informatics
(http://medinform.jmir.org), 17.06.2020. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e16886 | p. 17https://medinform.jmir.org/2020/6/e16886
(page number not for citation purposes)

Chuang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.plos.org/10.1371/journal.pone.0002031
http://dx.doi.org/10.1371/journal.pone.0002031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18461161&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18551993&dopt=Abstract
http://dx.doi.org/10.1089/omi.2014.0121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25831063&dopt=Abstract
http://dx.doi.org/10.1056/nejmoa075819
https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-9-344
http://dx.doi.org/10.1186/1471-2407-9-344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19781088&dopt=Abstract
https://doi.org/10.1002/cncr.26220
http://dx.doi.org/10.1002/cncr.26220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21751184&dopt=Abstract
https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr2821
https://breast-cancer-research.biomedcentral.com/articles/10.1186/bcr2821
http://dx.doi.org/10.1186/bcr2821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21281495&dopt=Abstract
https://medinform.jmir.org/2020/6/e16886
http://dx.doi.org/10.2196/16886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32554381&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

