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Abstract

Background: Drug development is still a costly and time-consuming process with a low rate of success. Drug repurposing (DR)
has attracted significant attention because of its significant advantages over traditional approaches in terms of development time,
cost, and safety. Entitymetrics, defined as bibliometric indicators based on biomedical entities (eg, diseases, drugs, and genes)
studied in the biomedical literature, make it possible for researchers to measure knowledge evolution and the transfer of drug
research.

Objective: The purpose of this study was to understand DR from the perspective of biomedical entities (diseases, drugs, and
genes) and their evolution.

Methods: In the work reported in this paper, we extended the bibliometric indicators of biomedical entities mentioned in PubMed
to detect potential patterns of biomedical entities in various phases of drug research and investigate the factors driving DR. We
used aspirin (acetylsalicylic acid) as the subject of the study since it can be repurposed for many applications. We propose 4 easy,
transparent measures based on entitymetrics to investigate DR for aspirin: Popularity Index (P1), Promising Index (P2), Prestige
Index (P3), and Collaboration Index (CI).

Results: We found that the maxima of P1, P3, and CI are closely associated with the different repurposing phases of aspirin.
These metrics enabled us to observe the way in which biomedical entities interacted with the drug during the various phases of
DR and to analyze the potential driving factors for DR at the entity level. P1 and CI were indicative of the dynamic trends of a
specific biomedical entity over a long time period, while P2 was more sensitive to immediate changes. P3 reflected the early signs
of the practical value of biomedical entities and could be valuable for tracking the research frontiers of a drug.

Conclusions: In-depth studies of side effects and mechanisms, fierce market competition, and advanced life science technologies
are driving factors for DR. This study showcases the way in which researchers can examine the evolution of DR using entitymetrics,
an approach that can be valuable for enhancing decision making in the field of drug discovery and development.

(JMIR Med Inform 2020;8(6):e16739) doi: 10.2196/16739
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Introduction

Background
Despite recent advances in life sciences and technology, drug
development is still a costly and time-consuming process with
a low rate of success [1]. Discovering a new drug usually takes
more than 10 years and costs around $2 billion on average [2].
The number of targetable human genes is approximately 3000,
and the identification of serious and even deadly drug side
effects is ongoing [3,4]. To overcome these difficulties, many
researchers have turned to drug repurposing, which is the
practice of identifying novel clinical indicators for existing
marketed drugs [5-7].

The past few decades have produced a few successful cases of
drug repurposing. For example, sildenafil, originally developed
to treat cardiovascular disease, was unexpectedly discovered to
be effective against erectile dysfunction [8]. Thalidomide, once
used for morning sickness, has been repurposed for the treatment
of multiple myeloma [9], and metformin, originally a treatment
for type 2 diabetes, has been studied for the treatment of
depression, aging, obesity, and even cancer [10,11]. Beta
blockers, initially indicated for hypertension, and topiramate,
originally used as an antiepileptic, are both repurposed for
migraineurs [12,13]. Because of its significant advantages over
traditional approaches, in terms of development time, cost, and
previous clinical studies, drug repurposing has attracted
significant attention from pharmaceutical firms, scientists, and
governments in recent years [7,14].

Methodologies for drug repurposing and their successful
applications have been widely discussed. Chen et al [15]
designed a system-based algorithm called the reverse gene
expression score based on several large-scale publicly accessible
datasets and demonstrated the potency and efficacy of vorinostat,
geldanamycin, and gemcitabine for the treatment of liver
cancers. Xu et al [16] found that emricasan had an inhibitory
effect on the Zika virus by screening more than 6000
compounds. With the rapid development of natural language
processing and deep learning techniques, robust solutions have
recently been proposed and have demonstrated potential.
Researchers have integrated more than 20 different datasets into
a knowledge graph to predict potential drug and target pairs
[17-19]. Hamilton et al [20] queried drug-gene-drug interactions
within a low-dimensional embedding of biomedical knowledge
graphs to predict missing or unobserved links for drug
repurposing. Chang et al [21] proposed a novel deep learning
model called “CDRscan” that can successfully predict the
feasibility of drug repurposing and recommend the most
effective anticancer agents for an individual patient. Öztürk et
al [22] represented drugs and protein sequences using
convolutional neural networks to predict the binding affinities
of drug-target interactions.

Academic publications are produced at high volume, with
around 3000 new articles currently published per day [23]. No
researcher nor clinician can read and comprehend all the relevant
articles in their domain [24]. The “known” knowledge has turned
into “unknown known” knowledge, with hidden information
and patterns waiting to be discovered. This growing body of

scholarly data opens a new era of exploiting literature and data
to enable data-driven discovery [24]. Literature-based discovery,
which connects disconnected entities in literature in PubMed,
has been successful in identifying several cases of drug
repurposing, such as fish oil for Raynaud’s syndrome,
magnesium for migraine headaches, and proton pump inhibitors
for atrial fibrillation [25-27]. Swanson [26] demonstrated that
bibliometrics can be a useful approach to knowledge discovery
and recommended that his method could be extended to other
disconnected sets of scientific literature to enable
cross-disciplinary innovation [28]. With entitymetrics —
bibliometric indicators based on entities studied in the medical
literature — researchers without domain knowledge can
understand the medical function of a drug [29], identify complex
undiscovered biological relationships between drugs and targets
[30], and detect implicit gene-gene relationships using literature
in PubMed [31]. This research demonstrates the potential of
applying bibliometrics to medicine to support data-driven
discovery. It represents the next generation of bibliometric
studies [32] and already shows great promise [33].

Objectives
In this research, we extended bibliometric indicators for
biomedical entities mentioned in the PubMed literature to
investigate drug repurposing. We used aspirin (salicylic acid)
as the target drug. Aspirin is one of the most well-recognized
and well-studied drugs with a history dating back to 1500 BC
[34]. It was originally used as an analgesic to treat mild to
moderate pain. It has been used clinically for the treatment of
at least 10 diseases, including coronary artery disease,
cerebrovascular disease, peripheral arterial disease,
preeclampsia, diabetes, colorectal cancer, Kawasaki disease,
Alzheimer’s disease, and arthritis [34,35]. New indications for
aspirin are still being reported [36-38]. Aspirin has a remarkably
wide range of effects and therefore provides an ideal case with
which to study drug repurposing. The work described in this
paper primarily aimed to identify patterns in the different
repurposing phases of aspirin by analyzing the diseases, drugs,
and genes related to aspirin. We propose 4 measures based on
entitymetrics to identify the characteristics and patterns of drug
repurposing for aspirin: Popularity Index (P1), Promising Index
(P2), Prestige Index (P3), and Collaboration Index (CI).

Related Work

Drug Repurposing
Drug repurposing has become a dynamic emerging field of drug
discovery and development. According to Baker et al [39], in
2018 nearly two-thirds of 35,000 drugs or compounds described
in MEDLINE were investigated as potential treatments for
diseases other than those for which they were originally
indicated. Nearly 200 drugs have been investigated for
repurposing for more than 300 diseases. Many successfully
repurposed drugs were discovered accidentally, such as the
application of thalidomide for multiple myeloma [9] and
sildenafil for erectile dysfunction [8].

Approaches have been proposed for the generation of hypotheses
about novel drug-target interactions and have been used to
develop promising directions for subsequent validation of drug
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repurposing. In polypharmacology, researchers have proposed
2 types of hypotheses: (1) two drugs could be indicated for the
same condition when they produce a similar gene expression
profile, and (2) a disease could be one of the indications for a
given drug when it has an opposite gene expression profile to
that produced by the drug. The Connectivity Map (CMap; Broad
Institute, Cambridge, MA), a database for more than 7000
gene-expression profiles of 1309 compounds, has been widely
used in this context in previous work. Using a systematic
analysis tool, L1000FWD [40], and CMap, Liu et al [41] found
that the anticancer drugs KM-00927 and BRD-K75081836 can
be used to inhibit histone deacetylase. Kidnapillai et al [42]
used gene expression signature data and CMap to identify 10
drugs, including camptothecin, nimesulide, and rescinnamine,
that could be effective against bipolar disorder.

In the field of genetics, association analysis has been extensively
applied to the interactions between drug targets and diseases to
increase the efficiency of drug repurposing. One of the most
successful cases in the field of drug repurposing was based on
a genome-wide association study (GWAS) [43]. Using
GWAS-driven methods, Sanseau et al [44] concluded that 15.6%
of genes are the targets of marketed drugs. They found that
GWAS traits can be matched with the indications of drugs and
genes involved in pathogenesis have a high probability of being
targets for drug repurposing. Based on a strong association
between the gene TNFSF11 and Crohn’s disease, the authors
inferred, and subsequently confirmed, that dishubzumab,
originally developed for the treatment of osteoporosis, can be
used against Crohn’s disease [44]. Ferrero and Agarwal [45]
combined a CMap-based approach with perturbation of
transcriptional profiles and disease data from GWAS for target
prioritization and drug repurposing. These researchers pointed
out that genetic evidence is important in maximizing the success
rate of drug repurposing.

These methods in polypharmacology and genetics usually rely
on the high-throughput screening of massive amounts of data
related to compounds and targets. As knowledge about drug
targets accumulates and computational chemistry rapidly
develops, simulations of the interactions between drugs and
proteins have shown the potential to replace traditional
high-throughput screening. Dakshanamurthy et al [46] proposed
a proteochemometric method called “train, match, fit,
streamline” to conduct molecular docking of over 3000
FDA-approved compounds across the crystal structures of more
than 2000 human targets. They found that mebendazole could
be used for the inhibition of VEGFR2 kinase and that celecoxib
was a promising therapy for malignancies because it binds an
adhesion molecule, cadherin-11. Li et al [47] designed a
standalone approach to dock over 30 crystal structures of
MAPK14 and BIM-8 with all drugs from DrugBank and found
that nilotinib, as a potential inhibitor of MAPK14, could be a
cure for inflammatory diseases.

Another significant source of drug repurposing is drug side
effects. Typical instances of side effect–based drug repurposing
include the use of sildenafil for erectile dysfunction [8] and the
application of exenatide acetate for obesity [48], both of which
were “happy accidents.” Recently, Yang and Agarwal [49]

generated human phenotypic profiles for drugs based on over
3000 side-effect relationships extracted from PharmGKB and
employed naïve Bayes methods to identify new indications for
drugs according to their side effects. This study also suggested
that the use of side effects is a type of clinical phenotypic assay
and side effects should be rationally investigated to predict
repurposing opportunities for drugs. Ye et al [50] contend that
drugs with similar side effects could share the same indications
because they may have the same or similar mechanisms of
action. Using a side effect similarity–based drug-drug network,
they transformed drug repurposing into an information retrieval
issue and successfully obtained the top 5 indications of 1234
drugs approved by the FDA.

With the rise of machine learning and deep learning in computer
science and bioinformatics, the problem of drug repurposing
has been addressed using approaches such as classification
[51,52], link prediction [53,54], entity prediction [53], and path
prediction [18,55]. Liang et al [53] represented biomedical
entities and their relationships in a heterogeneous network using
graph2vec and knowledge2vec [56] and employed a cascade
learning model to find potential interactions between drugs,
genes, diseases, and treatments. They found that vitamin D
could be a treatment for prostate cancer. Fu et al [55] treated
drug repurposing as a binary classification problem and
combined the metapath-based topological features of biomedical
entities in Chem2Bio2RDF and a supervised machine learning
model to predict links between drugs and targets. They found
that the intrinsic feature selection Random Forest algorithm can
be valuable for selecting significant topological features for the
prediction of links between drugs and genes.

Big Scholarly Data for Medical Knowledge Discovery
Traditionally, knowledge discovery in medical domains has
relied on first-hand observation such as epidemiological
statistics, follow-ups, and laboratory-generated experimental
data [24]. A large number of research papers are published daily,
posing significant challenges for scientists wishing to have a
comprehensive understanding of their domain [24]. The
“known” knowledge has turned into “undiscovered public
knowledge,” with patterns and information waiting to be
uncovered. This large body of literature and data also provides
rich opportunities for researchers to undertake data-driven
knowledge discovery. The usefulness of literature-based
discovery has been demonstrated in many previous research
projects. For instance, the “ABC” model proposed by Swanson
in 1986 [25] was used to discover relationships between
biomedical entities, such as Raynaud’s syndrome and fish oil
[25], migraine headaches and magnesium [26], and atrial
fibrillation and proton pump inhibitors [27]. The “ABC” model
is co-occurrence–based and is based upon the premise that
seemingly unrelated concepts A and C could be related when
there is a concept B related to both A and C [27]. Since
Swanson’s research, various modifications of the “ABC” model
have been proposed to discover hidden relationships among
biomedical concepts in PubMed, such as ontology-based entity
mapping [57], network-based entity extraction [58], and
semantic path–based storytelling [59]. The “ABC” model and
its variants indicate that bibliometrics can be a valuable method
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for medical knowledge discovery in the era of big scholarly
data.

Knowledge graphs of big scholarly data can contain nodes
representing biomedical entities such as diseases, drugs, genes,
pathways, and cell lines and non-biomedical entities such as
authors, institutions, articles, journals, conferences, and
keywords. Edges in the graph can represent the relationships
between the biomedical entities in the literature. Lv et al [60]
established a therapeutic knowledge graph for autism using
drug entities and MeSH terms extracted from about 20,000
articles relating to autism published between 1946 and 2015.
They proposed a novel topology-driven method incorporating
various graph-analytical techniques for drug discovery and
concluded that tocilizumab, sulfisoxazole, tacrolimus, and
prednisone were promising for the treatment of autism. Ding
et al [29] constructed an entity-entity citation graph to highlight
the significance of biomedical entities embedded in literature
for future knowledge discovery. Researchers have also
integrated big scholarly data with other publicly accessible
biomedical datasets, such as DrugBank [61], Gene Ontology
[62], and SIDER [63], to form a comprehensive knowledge
graph for medical knowledge discovery. A typical example is
the Chem2Bio2RDF database, created by integrating more than
20 chemogenomic datasets with PubMed. Wang et al [30]
proposed a novel algorithm called Bio-LDA to automatically
extract latent topics in life sciences and identified relationships
and patterns among compounds, genes, and diseases from
Chem2Bio2RDF. He et al [64] designed a graph-mining
algorithm to predict potential relationships between different
biomedical entities. The case they studied demonstrated that
the antidiabetic drug rosiglitazone has cardiovascular-related
side effects.

Entitymetrics, an entity-driven bibliometric method, and the
next generation of citation analysis [29,32] make it possible for
researchers without domain knowledge to measure the impact,
usage, and transfer of knowledge entities embedded in the
academic literature for further knowledge discovery [32]. Ding
et al [29] built an entity-entity citation graph based on articles
related to metformin and detected most of the known interactions
of metformin with biomedical entities. Williams et al [65]
recognized and quantified relationships between academic
discoveries and major advances in the domain of two new drugs,
ipilimumab and ivacaftor, to enhance government support and
public understanding. Zhu et al [66] established paper-entity,
entity-entity co-occurrence, and entity-specific networks based

on the scientific literature to investigate the evolution of hepatic
carcinoma at a granular level. Lv et al [60] discovered new
indications for drugs using topology-driven trend analysis of
drug-drug and drug-indication networks. These studies
demonstrate the potential of the application of bibliometric
methods to data-driven discovery in medical domains.

Drug repurposing, as one of the most significant issues in the
field of medical knowledge discovery, has been extensively
investigated [17,23,24,27,28,55-57,64]. In this research, we
extended the bibliometric indicators for biomedical entities
described in the PubMed literature to understand the process of
drug repurposing.

Methods

Data Collection
Papers on aspirin-related research published between 1951 and
2018 were collected from PubMed. Since aspirin is known by
many names, the search terms were chosen from DrugBank,
RxNorm, and MeSH terms [33,61]. The final search query is
shown in Textbox 1. Non-journal articles, non-English articles,
letters, and editorial commentaries were excluded. In total,
63,387 publications from PubMed were downloaded in XML
format.

To better understand the drug repurposing process of aspirin,
the relevant research was divided into 4 phases based on
previous studies [34,35] and expert suggestions: (1) 1951-1960,
the original use; (2) 1961-1990, in-depth studies of
pharmacological mechanisms and side effects; (3) 1991-2000,
repurposing for cardiovascular diseases; and (4) 2001-2018,
repurposing for other diseases, such as colorectal cancer and
breast cancer. These phases can also be observed from the
evolution and trends of the publications, as shown in Figure 1
and Table 1.

Before extracting biomedical entities, all articles were parsed
to obtain PMIDs, publication years, titles, abstracts, authors,
journals, and institutions using a dom4j XML parser written in
Java. Then, we used spaCy for preprocessing (such as removing
the punctuation and stop words) of titles and abstracts in the
natural language processing pipeline. In addition, a novel and
reliable method of author name disambiguation proposed by
Lerchenmueller and Sorenson [67] was used to count distinct
authors.

Textbox 1. Search query used for retrieving aspirin-related publications.

(((aspirin) OR ( acetylsalicylic acid) OR (acid, acetylsalicylic) OR (“2-(acetyloxy)benzoic aci”) OR (acylpyrin) OR (aloxiprimum) OR (colfarit) OR
(dispril) OR (easprin) OR (ecotrin) OR (endosprin) OR (magnecyl) OR (micristin) OR (polopiri) OR (polopiryna) OR (solprin) OR (solupsan) OR
(zorprin) OR (acetysal) OR (2-acetoxybenzenecarboxylic acid) OR (2-acetoxybenzoic acid) OR (acetylsalicylate) OR (acetylsalicylsäure) OR (“acide
2-(acétyloxy)benzoïqu”) OR (acide acétylsalicylique) OR (ácido acetilsalicílico) OR (acidum acetylsalicylicum) OR (aspirina) OR (azetylsalizylsäure)
OR (o-acetoxybenzoic acid) OR (o-acetylsalicylic acid) OR (o-carboxyphenyl acetate) OR (salicylic acid acetate) ) AND (“1951”[PDAT] :
“2018”[PDAT]))
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Figure 1. Number of aspirin-related studies in PubMed over time. The background colors indicate the 4 phases of aspirin research.

Table 1. Descriptive statistics of the 4 phases of aspirin research.

Number of journalsAverage number of authorsNumber of authorsNumber of publicationsPhases, Time span

1. Original use

1171.763182081951-1955

1591.884982991956-1960

2181.837945071951-1960

2. In-depth studies of pharmacological mechanisms and side effects

3012.0113107481961-1965

4182.12216712681966-1970

6962.40488027661971-1975

8952.71741937971976-1980

10333.1610,01143951981-1985

11013.5011,60044701986-1990

21532.9031,78717,4441961-1990

3. Repurposing for cardiovascular diseases

12563.6914,04451641991-1995

13144.1017,69463531996-2000

17983.9128,81811,5171991-2000

4. Repurposing for other diseases

17194.2227,78480992001-2005

19744.9435,31393662006-2010

24105.7844,60310,4362011-2015

18816.7330,79660182016-2018

38655.33118,85733,9192001-2018

54434.39171,55963,387Total
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Biomedical Entity Extraction
The biomedical entity extraction module provided by the
biomedical entity search tool (BEST) [68], a dictionary-based
biomedical information extraction tool based on sophisticated
information retrieval approaches, was deployed to extract
entities such as diseases, drugs, and genes. The BEST dictionary

is built from 12 different public sources, including NCBI Entrez
Gene, DrugBank, T3DB, Animal TFDB, Therapeutic Target
DataBase, PubChem, and MeSH [68]. We obtained 1472 unique
disease names, 1640 unique drug names, and 3184 unique gene
names from the titles and abstracts. Table 2 shows the top 10
biomedical entities of 3 different types and their frequency of
appearance in PubMed articles.

Table 2. Top 10 biomedical entities in aspirin-related publications during 1951-2018.

Frequency of genesGenesFrequency of drugsDrugsFrequency of diseasesDiseasesRank

3957COX-26223Clopidogrel2707Coronary disease1

1495CD1435433Ticlopidine2277Asthma2

1179COX-14391Heparin1840Diabetes3

1131Plasminogen3462Indomethacin1342Hypersensitivities, drug4

1081LDLCQ33457Warfarin1146Ulcer, gastric5

1047LPLA22760Vitamin F1135Cerebral ischemia6

1017GPIIb2232Dipyridamole1133Intracranial vascular disorder7

855P2Y122188Adenosine1090Ischemic heart disease8

748tPA2099Acetaminophen1085Carcinomas, colorectal9

629TNF-α1498Prostacyclin832Rheumatoid arthritis10

Entitymetric Indicators for Biomedical Entities (P3C)
In order to quantify and visualize the academic importance of
individual biomedical entities, 4 transparent and easy
entitymetric indexes (P3C) were developed: Popularity Index
(P1), Promising Index (P2), Prestige Index (P3), and
Collaboration Index (CI). These indicators can be considered
as the extensions of the indicators proposed by Kissin and Edwin
[33] and Kissin [69] for measuring the academic interest of a
drug or technique at the article level. In this study, we adapted
the indicators from the perspective of biomedical entities with
the goal of understanding drug repurposing. Different from
Kissin’s indicators, our indicators not only focus on the articles
on a given drug but also consider the changes in indicators of
biomedical entities (eg, diseases, drugs, and genes) and
non-biomedical entities (eg, authors) that are related to the given
drug. Detailed explanations of these measures are provided in
the following sections.

Popularity Index (P1)

The P1 of a certain biomedical entity reflects the percentage of
publications discussing that biomedical entity among all
publications in a research field during a specific period, usually
5 years. The popularity of a biomedical entity i, P1 (i), is given
by:

P1 (i) = (Ni / NT) * 100% (1)

where Ni is the number of publications relating to an entity i in
a period, and NT represents the total number of publications in
the research field during the same period. An increase in P1

indicates growing academic interest in i in the field.

Promising Index (P2)

The P2 of a biomedical entity is the change in the popularity of
an entity i in a research field between two continuous periods.
The promising index of a specific biomedical entity i, P2 (i), is
expressed as:

P2 (i) = (Ni / NT) – (Npi / NpT) (2)

where (Npi / NpT) refers to the popularity of the entity i in the
research field during a previous period of the same length as
Ni. P2 reflects the change in the academic interest in a
biomedical entity in a research field in two time periods. When
P2 (i) > 0, it means the academic interest in i has increased and
vice versa.

Prestige Index (P3)

P3 is defined as the ratio of the number of publications about a
specific biomedical entity published in the top journals
compared to the number of publications about the same entity
in all journals that were indexed by PubMed during the same
time period. The prestige of a biomedical entity i, P3 (i), is
calculated as:

P3 (i) = (NH20 / Ni) * 100% (3)

where NH20 represents the number of publications on i in the
top 20 journals during the same period as Ni. In this study, the
top 20 journals were selected based on the journal impact factor
and specialty areas. These journals can be divided into two
categories: multidisciplinary journals and specialty journals.
Fourteen multidisciplinary journals, including JAMA, The
Lancet, BMJ, and similar publications, are common for all
diseases, drugs, and genes that were studied in this paper. The
other 6 journals, such as Circulation, Blood, and The European
Heart Journal, are highly associated with aspirin-related
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specialty areas. The full list of the top 20 journals is shown in
Multimedia Appendix 1. P3 reflects the potential significance
of a specific biomedical entity. Continuing high prestige scores
could be an early signal of the success of entity-related drug
discovery or repurposing [69]. We employed a threshold of 5%
to indicate that P3 was of interest [69].

Collaboration Index (CI)
The CI of a biomedical entity reflects the percentage of the
number of distinct authors of articles discussing this entity out
of all the distinct authors in the research domain over a period
of time. The CI of a biomedical entity i, CI (i), is calculated by:

CI (i) = (NAI / NAT) * 100% (4)

where NAI is the number of distinct authors of the publications
relating to i in a period, and NAT represents the total number of
distinct authors in the field in the same period. The CI reflects
the research strength of entity i in a research field, and a
threshold of 5% indicates a level of interest [69].

Results

Overview of Aspirin-Related Studies
Figure 1 shows an overview of aspirin-related research in
PubMed from 1951 to 2018. The red and blue lines represent
the percentage and absolute numbers, respectively, of articles
in PubMed per year. The details of the publications, authors,
and journals are shown in Table 1. During the evolution of
aspirin, Phase 1 (1951-1960) produced 507 articles, most of
which were published in journals covering pharmacy-related
or general medicine–related topics (Table 1 and Multimedia
Appendix 2). Research in Phase I focused on the
anti-inflammatory and antipyretic uses of aspirin, and this phase
marks the original use of aspirin.

In Phase 2 (1961-1990), a turning point can be identified in
1967, after which the number of relevant papers per year grew
dramatically until 1986. Several significant pharmacological
discoveries related to aspirin occurred during this period,
including the antiplatelet effect [70], mechanism of inhibition
of prostaglandin synthesis [71], and acetylation of the
cyclo-oxygenase enzyme [72]. The percentage of aspirin-related
articles in PubMed reached its peak in 1981, at about 0.32%,
and then decreased. Kune et al [73] reported that aspirin could
effectively reduce the incidence of colorectal cancer, after which
the percentage began to rise again. After 1975, articles began
to occur frequently in journals covering specialty areas, such
as Circulation and Thrombosis Research. We identify this phase
as the in-depth investigation of the pharmacological mechanisms
and side effects of aspirin.

In Phase 3 (1991-2000), there was a steady and stable growth
in the number and percentage of aspirin-related articles per year
in PubMed (Figure 1). Compared to the first 10 years
(1951-1960), there was a >22-fold increase in the number of
articles as well as a >36-fold increase in the number of distinct
authors. As shown in Multimedia Appendix 2, in both
1991-1995 and 1996-2000, 4 of the top 5 journals were
cardiovascular-related journals. We thus identify this phase as
repurposing for cardiovascular diseases.

In Phase 4 (2001-2018), the number of articles per year grew
continuously and reached its peak (2164) in 2015, but the
percentage significantly reduced (Figure 1). From the
information presented in Table 1, we note that the numbers of
articles, distinct authors, and journals in Phase 4 were all higher
than those in the previous 3 periods. The average number of
authors in this period had exceeded the total average (4.39).
Journals covering other topics, for example Cancer Management
and Research, Drugs & Aging, and World Neurosurgery, were
increasingly represented (Multimedia Appendix 2),
demonstrating that aspirin had been experimentally applied to
many other diseases. We thus mark this phase as repurposing
for other diseases.

To analyze drug repurposing through all 4 phases from the
biomedical entity perspective, we first computed the P3C
indicators of the top 10 diseases, drugs, and genes in the cohort
of aspirin articles during the period 1951-2018. The results show
that there are distinct patterns of these indicators in different
repurposing phases. To describe these patterns in detail, we
reorganized the 30 biomedical entities (the top 10 diseases, top
10 drugs, and top 10 genes) into the 4 phases of aspirin research,
according to when each achieved its maximum P1, which
indicates the focus of research in the field of aspirin. In each
phase, we further analyzed the change patterns of the P3C
indicators for the most popular biomedical entities, to investigate
the features of different phases of drug repurposing, association
between entities and P3C indicators, and possible factors driving
drug repurposing at the biomedical entity level.

Before Repurposing
Only “rheumatoid arthritis” (RA) reached its maximum P1 in
Phase 1, at 9.36%, as shown in Figure 2A and then exhibited a
downhill trend for the rest of the 3 phases, reaching a low of
0.63% in 2016-2018. As shown in Figure 2B, for the P2 of RA,
there is only one significant increase of more than 0 in all 4
phases: 0.06 in 1951-1955 (Phase 1). This observation indicates
that the popularity of RA in 1951-1955 increased by 6%
compared to that in 1945-1950. It can also be observed from
Figure 2C that the P3 of RA was more than 5% during
1951-1980 and reached its maximum in Phase 1 (25%,
1960-1965), indicating that one quarter of the papers studying
RA were published in the top 20 journals in the aspirin domain
in Phase 1. In the next 3 phases, the P3 peaked twice, in Phase
2 (1971-1975) and Phase 3 (2001-2005), possibly relating to
the discovery of the mechanism of anti-inflammatory and
RA-induced cardiovascular diseases. Similar to P1, as shown
in Figure 2D, the CI of RA peaked in 1956-1960 (40.44%), then
declined to 1.02% in 2016-2018, indicating that around 40% of
authors in Phase 1 were studying RA, but only about 1.02%
authors still worked on the same disease in Phase 4.

In summary, in Phase 1, the P1, P2, P3, and CI of RA reached
their maxima, or showed a significant increase, indicating that
RA was the disease upon which most research was focused in
the aspirin domain at this time. However, the value of these
indicators showed profound declines in the next 3 phases, which
means that aspirin was studied in relation to other diseases and
is thus an ideal example of drug repurposing.
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Figure 2. The 4 entitymetric indexes of the biomedical entity “Rheumatoid Arthritis” over time. The background colors indicate the 4 phases of aspirin
research.

Scientific Basis for Repurposing
As shown in Figure 3, there are 9 top biomedical entities in the
aspirin domain that reached their maximum P1 in Phase 2,
including 3 diseases (“asthma”; “hypersensitivities, drug”; and
“ulcer, gastric”) and 6 drugs (indomethacin, acetaminophen,
dipyridamole, vitamin F, adenosine, and prostacyclin). The 3
diseases can all be side effects of aspirin, while the 6 drugs can
be divided into 3 categories: (1) competitors of aspirin, that is,
indomethacin and acetaminophen, which are analgesic and

antipyretic drugs, respectively, with fewer side effects; (2) the
antiplatelet drug dipyridamole; and (3) precursor substances in
the pathway of the mechanism of action of aspirin (vitamin F,
adenosine, and prostacyclin). In contrast with RA, the P1 of
these biomedical entities increased from Phase 1, peaked in
Phase 2, and then decreased, indicating that the side effects and
mechanisms of aspirin were studied in detail in Phase 2. The
P1 of indomethacin in 1976-1980 (16.75%) was the highest
among these 9 entities in Phase 2, and vitamin F in 1981-1985
(11.19%) ranked second.
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Figure 3. The Popularity Index (P1) of the biomedical entities on the pharmacological mechanisms and side effects of aspirin over time. The background
colors show the 4 phases of aspirin research.

Figure 4 shows the P2 of these 9 biomedical entities in the
aspirin domain over time. The P2 of the 3 side effects had a
significant increase of more than zero in Phase 2, indicating
that interest in the side effects of aspirin increased sharply:
1961-1965 and 1976-1980, for “asthma”; 1961-1965 for
“hypersensitivities, drug”; and 1961-1965 for “ulcer, gastric.”
The time periods in which the P2 of the 6 drugs showed
significant increases are generally later than those for the side
effects, such as 1971-1975 for indomethacin and 1981-1985 for
prostacyclin. This observation indicates that the discovery and
in-depth study of side effects may have positive effects on the
discovery of the mechanism of action of aspirin as well as the
development of alternatives with fewer side effects.

Figure 5 shows the P3 of these 9 biomedical entities in the
aspirin domain, demonstrating a feature common to all 9 entities:

a gradual decline with a fluctuation in P3 after reaching a
maximum in Phase 1 or Phase 2. The highest initial P3 values
of “hypersensitivities, drug” and “ulcer, gastric” occurred in
Phase 1, revealing that both side effects had been taken seriously
by researchers in Phase 1. The P3 of “hypersensitivities, drug”
in 1956-1960 (33.33%) was higher than that of RA in 1956-1960
(25.00%). In 2011-2015, the P3 of only 2 entities are over the
5% threshold: 5.82% for adenosine and 10.00% for prostacyclin.
In the aspirin domain, papers studying these 2 entities published
in the top 20 journals comprised more than 5% of papers
published in all of the journals indexed by the PubMed in
2011-2015. This observation indicates that the 2 entities were
still important foci of research in the aspirin domain.

It can be observed from Figure 3, Figure 5, and Table 3 that P3,
on average, achieved its maxima 10.7 years earlier than P1. In
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particular, for “hypersensitivities, drug” and “ulcer, gastric,”
the intervals can be as long as 20 years. This observation
indicates that P3 can reflect an early sign of academic interest

into biomedical entities, a phenomenon that could be potentially
valuable for tracking the research frontiers of a drug.

Figure 4. The Promising Index (P2) of the biomedical entities on the pharmacological mechanisms and side effects of aspirin over time. The background
colors show the 4 phases of aspirin research.
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Figure 5. The Prestige Index (P3) of the biomedical entities on the pharmacological mechanisms and side effects of aspirin over time. The background
colors show the 4 phases of aspirin research.

Table 3. Intervals between the time periods of the maxima of P1 and P3.

T1-T2 (years)Time period of the maximum of P3 (T2)Time period of the maximum of P1 (T1)Biomedical entity

201966-19701986-1990Asthma

101956-19601966-1970Hypersensitivities, drug

201956-19601976-1980Ulcer, gastric

151961-19651976-1980Indomethacin

101971-19751981-1985Acetaminophen

151966-19701981-1985Dipyridamole

101971-19751981-1985Vitamin F

51966-19701971-1975Adenosine

51976-19801981-1985Prostacyclin

The results of the CI of these 9 biomedical entities in the aspirin
domain are presented in Figure 6, which shows that the CIs for
these biomedical entities have similar trends to those of P1 over

time. Among all 9 biomedical entities during 1951-2018,
indomethacin achieved the highest maximum CI in 1976-1980
(19.79%), indicating that it became a strong competitor to aspirin
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as an analgesic agent in Phase 2. This result also demonstrates
that during the last 5-year period (2011-2015), the CIs of only
2 of the 9 entities were >5%, indicating that the 2 entities were
still the subject of research by a considerable number of
scientists (>2230) in the aspirin research community in
2011-2015. The 2 biomedical entities include “asthma” (6.21%)
and adenosine (5.50%).

Based on the observation of P3C in Phase 2 and previous studies
on aspirin [34,35], we can conclude that, on one hand, the
in-depth investigation of the side effects and mechanism of
action of aspirin provided the knowledge basis and research
direction for drug repurposing. On the other hand, due to the
market competition from other drugs, as well as the serious side
effects, pharmaceutical companies attempted to discover new
indicators for aspirin, in order to maintain the sales volume of
aspirin.

Figure 6. Collaboration Index (CI) of the biomedical entities on the pharmacological mechanisms and side effects of aspirin over time. The background
colors show the 4 phases of aspirin research.

Repurposing Aspirin for Cardiovascular-Related
Diseases
In Phase 3, 5 top biomedical entities comprising 4 diseases and
1 drug reached their maximum P1, as shown in Figure 7A. The
4 diseases were all cardiovascular-related, including “coronary
disease” (P1 of 18.88% in 1996-2000), “cerebral ischemia” (P1

of 2.57% in 1996-2000), “intracranial vascular disorder” (P1 of
5.73% in 1991-1995), and “ischemic heart disease” (P1 of 3.01%

in 1996-2000). Compared with Figures 2 and 3, the P1 of the
previous 10 biomedical entities that peaked in the Phase 1 or
Phase 2 were considerably lower than that of coronary disease,
indicating that cardiovascular-related disease was the focus of
the aspirin domain in that time. Coronary disease is often
referred as ischemic heart disease and is the most common
cardiovascular-related disease worldwide; similarly, cerebral
ischemia and intracranial vascular disorder represent the same
condition, commonly known as stroke. These conditions were
reportedly the first and second most common causes of death
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worldwide in the early 21st century [74]. The demand for the
prevention and treatment of such fatal diseases could be one of
the factors driving the repurposing of aspirin for
cardiovascular-related diseases.

The only drug that reached its maximum P1 in Phase 3 is heparin
(11.92% in 1996-2000). As one of the most common
anticoagulant drugs, heparin has always been the reference drug
for repurposing aspirin to treat cardiovascular-related diseases,
which could be the reason for the increase in the academic
interest in heparin in the aspirin domain. There was another
peak of heparin in Phase 2 (5.03%, 1971-1975), which could
be related to an increase in research into the mechanisms of the
antiplatelet effect of aspirin in Phase 2.

Figure 7B shows the changes in P2 of these 5 biomedical entities
over time. All 5 biomedical entities demonstrated a significant
increase in Phase 3. “Coronary disease” and “cerebral ischemia”
increased in 1991-1995, and “intracranial vascular disorder”,
“ischemic heart disease,” and heparin increased in 1991-1995.
The P2 of the 2 entities also showed significant increases in
Phase 2, consistent with the fact that aspirin was clinically used
for coronary disease before the discovery of its antiplatelet
effect: 0.02 in 1976-1980 for “coronary disease” and 0.10 in
1971-1975 for heparin.

The pattern of P3 for these 5 entities over time is displayed in
Figure 7C. All 5 biomedical entities reached their maxima in
Phase 2, earlier than the maximum of P1. “Coronary disease”
reached a maximum in 1971-1975, and heparin reached a
maximum in 1961-1965. The difference from the previous
phases is that the P3 of these 5 biomedical entities peaked again
in Phase 3. For instance, “coronary disease” peaked in
1991-1995, and heparin peaked in 1991-1995, indicating that
these biomedical entities were important topics of research in
both Phase 1 and Phase 3.

Figure 7D shows the CI of the 5 biomedical entities during
1951-2018, in which the CI demonstrated a dynamic trajectory
very similar to that of P1. The maximum of “coronary disease”
in Phase 3 is highest at 22.91% in 1996-2000, indicating that
“coronary disease” attracted the greatest share of the authors in
the aspirin domain. “Coronary disease” and “cerebral ischemia”
in Phase 4 and heparin in Phases 2 and 4 surpassed the threshold
value of 5%. The CI of “cerebral ischemia” steadily grew after
Phase 3, showing a different trend from the other 4 biomedical
entities, which increased in Phase 1 and Phase 2, peaked in
Phase 3, and then dramatically decreased. This observation may
illustrate that “cerebral ischemia,” unlike the other biomedical
entities, is still increasing in popularity and collaboration, so
additional increases are still expected.

Figure 7. The 4 entitymetric indexes of the biomedical entities on cardiovascular diseases in the aspirin domain over time. The background colors
show the 4 phases of aspirin research.
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Repurposing Aspirin for Other Diseases
In Figure 8, there are 15 biomedical entities that reached their
maximum P1 in Phase 4. Unlike the previous phases, most of
the biomedical entities were genes and can be divided into 3
categories according to the diseases to which they are related:
(1) inflammatory-related genes (eg, COX-2, LPLA2, and
TNF-α), (2) cardiovascular-related genes (eg, COX-1, CD143,
plasminogen, LDLCQ3, GPIIb, P2Y12, and tPA), and (3)
cancer-related genes (eg, TNFa, COX-2, COX-1, and LPLA2).
These observations indicate that aspirin was actively studied
for these 3 aspects of diseases from the perspective of genes in
Phase 4. In particular, the maximum P1 of COX-2 was the
highest among these 15 biomedical entities at 21.97% in
2001-2005, revealing that COX-2 was considered to be very
important in the aspirin domain at that time.

Figure 8 also shows that the P1 of 2 diseases peaked in Phase
4. One is “diabetes,” whose P1 in 2006-2010 was 6.83%. In
fact, as early as 1875, Ebstein and Müller [75] discovered that

aspirin had the effect of lowering blood glucose levels. Inspired
by this observation, scientists have since been trying to use
aspirin for the treatment of diabetes [75]. There are several
peaks in the P1 of “diabetes” in previous phases. In the 21st
century, it has been recommended that patients with diabetes
who have an increased risk of cardiovascular disease take aspirin
as a primary preventative [5,76]; this could be the reason why
the academic interest in “diabetes” in the aspirin domain
increased again. The other disease is “carcinomas, colorectal.”
Its P1 peaked in 2001-2005 and then increased significantly
after a small decline in 2006-2010, a pattern which is very
different from other diseases in the aspirin domain. Repurposing
aspirin for the treatment of colorectal carcinomas appears to be
a focus of research in the aspirin domain today. The P1 of 3
drugs also peaked in Phase 4, including the antiplatelet drugs
clopidogrel and ticlopidine, which are competitors of aspirin as
antiplatelet drugs [35], and warfarin, which is an anticoagulation
drug that is similar to heparin and has been found to be superior
to aspirin for secondary prevention of ischemic stroke with
nonvalvular atrial fibrillation [77,78].

Figure 8. The Popularity Index (P1) of the biomedical entities on repurposing aspirin for other diseases over time. The background colors show the 4
phases of aspirin research.

Figure 9 presents the changes in P2 of these 15 biomedical
entities over time. All of the genes demonstrate an increase of
more than 0 in Phase 4. Unlike these genes, the diseases and
drugs showed several significant increases of more than 0 in
different phases, which reflects a longer history of research in
the aspirin domain. For example, the increases occurred in
1956-1960, 1996-2000, and 2001-2005 for “diabetes”;
1996-2000, 2001-2005, and 2006-2010 for clopidogrel; and
1971-1975 and 1991-1995 for warfarin.

The changes in P3 of these 15 biomedical entities over time are
shown in Figure 10, from which we can make two observations.
First, the P3 of these biomedical entities demonstrated that the
time period of the maximum of P3 was much earlier than that
of the maximum of P1. Second, unlike the biomedical entities
noted in previous sections, the diseases and drugs had ≥2
significant peaks in different phases. For instance, “diabetes”
had peaks of 42.86% in 1956-1960, 25.00% in 1971-1975, and
14.22% in 1996-2000, and “carcinomas, colorectal” had peaks
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of 33.33% in 1981-1985, 15.91% in 1991-1995, and 14.15% in
2006-2010. These numbers indicate that these entities attracted
considerable interest in the field of aspirin research and
high-impact papers on these conditions were published.
However, the genes usually had only one peak in P3 in Phase 3
or 4, illustrating that these genes are relatively new topics in
the aspirin domain.

The CI data for these 15 biomedical entities are presented in
Figure 11, which shows that the maximum CI for COX-2 is the

highest, at 34.37%, in 2001-2015, denoting that COX-2 was
the focus of aspirin research in Phase 4; the research and
development of Vioxx, a selective COX-2 inhibitor with fewer
side effects, may be one of the reasons [79]. The CI of 2 drugs,
clopidogrel (25.54% in 2001-2015) and ticlopidine (20.74% in
2006-2010), reveals fierce competition between aspirin and
these alternative antiplatelet drugs. This competition could have
driven the repurposing of aspirin for other diseases, especially
cancers, that have an urgent demand for effective treatment.

Figure 9. The Promising Index (P2) of the biomedical entities on repurposing aspirin for other diseases over time. The background colors show the 4
phases of aspirin research.
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Figure 10. The Prestige Index (P3) of the biomedical entities on repurposing aspirin for other diseases over time. The background colors show the 4
phases of aspirin research.

Figure 11. The Collaboration Index (CI) of the biomedical entities on repurposing aspirin for other diseases over time. The background colors show
the 4 phases of aspirin research.
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Discussion

Principal Findings
This study examines drug repurposing from the perspective of
the evolution of biomedical entities, using aspirin as the study
subject. It is of paramount importance for drug discovery to
identify the factors that drive repurposing as well as potential
patterns among biomedical entities in various phases of the drug
research timeline. The main contribution of this paper is twofold.
First, we proposed 4 entitymetric indices (P3C) to quantify
changes in academic interest in biomedical entities and to reveal
the granular process of drug repurposing. Second, we divided
aspirin research into 4 phases, including original use
(1951-1960), in-depth studies of pharmacological mechanisms
and side effects (1961-1990), repurposing for
cardiovascular-related diseases (1991-2000), and repurposing
for other diseases (2001-2018), taking into consideration 3
granular perspectives—disease, drug, and gene—that contribute
to a comprehensive understanding of the features of the
repurposing process.

Our entitymetric results indicate that aspirin is representative
of the process of drug repurposing. The research findings can
be summarized as follows. In Phase 1, aspirin was routinely
used to ease pain, fever, and inflammation and was often used
in the treatment of RA [34], with a P3C that peaked in
1951-1960. Despite the widespread use of aspirin, at this stage,
its mechanism of action was not well understood [34]. In Phase
2, the side effects and mechanisms of actions of aspirin were
studied extensively, as shown by the maxima of P1 and CI, as
well as a significant increase in P2 for the relevant biomedical
entities in 1961-1990. The anti-platelet effect [70], inhibition
of prostaglandin synthesis [71], and acetylation effect on the
enzyme cyclo-oxygenase [72] were uncovered. These
discoveries provided a solid knowledge foundation for the
successful repurposing of aspirin. The highest P1 in 1961-1990
was for indomethacin (16.75%), denoting fierce competition
with aspirin for its original use. This could be one of the factors
contributing to the repurposing of aspirin.

In Phase 3, aspirin was successfully used for several
cardiovascular-related diseases because of its antiplatelet effects
[80]. The related diseases and drugs achieved their highest
values of P1 and CI as well as significant increases in P2 in
1991-2000. As these diseases are the most common diseases
worldwide, according to data from the World Health
Organization [74], the demand for the prevention and treatment
of fatal diseases is also another potential factor driving drug
repurposing. In the last phase, there was a large number of
studies suggesting the use of aspirin for other diseases,
especially colorectal cancer [36]. The greatest difference from
previous phases is that aspirin was studied at the genetic level.
Ten genes reached their maxima of P1 and CI as well as an
apparent increase in P2 in 2001-2018. This observation could
indicate that the development of modern science and technology,

such as gene sequencing, molecular simulation, and deep
learning, accelerates the process of drug repurposing of aspirin.
Meanwhile, 2 fatal diseases — diabetes and colorectal carcinoma
— as well as 3 competitive drugs of aspirin as an antiplatelet
agent — clopidogrel, ticlopidine, and warfarin (an anticoagulant
and competitor with aspirin for stroke prevention) — also had
peak P1 and CI values and a great increase in P2.

Methodologically, in this study, we developed 4 entitymetrics
and demonstrated how to use them to investigate the process
of drug repurposing. The results demonstrate that the maxima
of P1, P3, and CI are closely associated with the different phases
of research of aspirin repurposing. The P1 and CI metrics can
indicate dynamic trends in academic interest in a given
biomedical entity over a long time period. For instance,
long-lasting increases in P1 and CI signal interest in repurposing,
while P2 is more sensitive to immediate changes in academic
interest in a specific biomedical entity, since it takes into
consideration data from the two most recent periods. Moreover,
P3 can reflect a research focus far earlier than the other 3 indices,
which means that a continuously high P3 may be valuable as an
early signal of the emergence and transfer of research topics in
drug research. If P3 does indeed have predictive power, it could
be due to the involvement of top domain experts in the peer
review of manuscripts in top journals with high impact factors
[81,82]. Additionally, due to their easy implementation and
interpretability, these indices can be applied in multiple domains,
such as drug assessment, drug discovery, and
pharmacovigilance.

Limitations and Future Directions
There are several limitations in the current paper. First, the data
included in our analysis are limited to articles indexed in
PubMed. Some real-world data, such as electronic health
records, clinical trials, and social media, in which aspirin and
its related biomedical entities were mentioned, should be
included. In our future work, we will use different types of data
sources for studying drug repurposing and take into account
other entities related to drugs, including other biomedical
entities, such as pathways, proteins, and cells, and
non-biomedical entities, such as authors, institutions, and
countries. The landscape of collaborations between academic
institutions and pharmaceutical companies could affect the drug
repurposing process. Second, there are several ways of
measuring the impact of a journal, such as the impact factor and
relative citation ratio. Third, this study mainly focused on
investigating the repurposing journey of aspirin, but we did not
test whether it can be used to predict future drug repurposing.
In future studies, we will evaluate the different impact measures
of a journal and choose a proper measure better fitted to the
chosen drug. Furthermore, we will also aim to test the proposed
metrics on other drugs to understand their repurposing journeys
(eg, metformin) to see whether generalized patterns exist in
different repurposing processes.
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P1: Popularity Index
P2: Promising Index
P3: Prestige Index
P3C: the 4 entitymetric indicators for biomedical entities
RA: rheumatoid arthritis
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