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Abstract

Background: It is important but challenging to understand the interactions of multiple chronic conditions (MCC) and how they
develop over time in patients and populations. Clinical data on MCC can now be represented using graphical models to study
their interaction and identify the path toward the development of MCC. However, the current graphical models representing MCC
are often complex and difficult to analyze. Therefore, it is necessary to develop improved methods for generating these models.

Objective: This study aimed to summarize the complex graphical models of MCC interactions to improve comprehension and
aid analysis.

Methods: We examined the emergence of 5 chronic medical conditions (ie, traumatic brain injury [TBI], posttraumatic stress
disorder [PTSD], depression [Depr], substance abuse [SuAb], and back pain [BaPa]) over 5 years among 257,633 veteran patients.
We developed 3 algorithms that utilize the second eigenvalue of the graph Laplacian to summarize the complex graphical models
of MCC by removing less significant edges. The first algorithm learns a sparse probabilistic graphical model of MCC interactions
directly from the data. The second algorithm summarizes an existing probabilistic graphical model of MCC interactions when a
supporting data set is available. The third algorithm, which is a variation of the second algorithm, summarizes the existing graphical
model of MCC interactions with no supporting data. Finally, we examined the coappearance of the 100 most common terms in
the literature of MCC to validate the performance of the proposed model.

Results: The proposed summarization algorithms demonstrate considerable performance in extracting major connections among
MCC without reducing the predictive accuracy of the resulting graphical models. For the model learned directly from the data,
the area under the curve (AUC) performance for predicting TBI, PTSD, BaPa, SuAb, and Depr, respectively, during the next 4
years is as follows—year 2: 79.91%, 84.04%, 78.83%, 82.50%, and 81.47%; year 3: 76.23%, 80.61%, 73.51%, 79.84%, and
77.13%; year 4: 72.38%, 78.22%, 72.96%, 77.92%, and 72.65%; and year 5: 69.51%, 76.15%, 73.04%, 76.72%, and 69.99%,
respectively. This demonstrates an overall 12.07% increase in the cumulative sum of AUC in comparison with the classic multilevel
temporal Bayesian network.

Conclusions: Using graph summarization can improve the interpretability and the predictive power of the complex graphical
models of MCC.
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Introduction

Background
Clinical data on multiple chronic conditions (MCC) are often
complex [1-4] and large [5-8]. These challenging data sets can
be effectively represented in terms of graphical models [4,9].
A graphical model expresses the conditional dependencies
among variables (MCC) using graph structures, where the
dependencies are represented by directed or undirected edges
and the variables are represented by nodes [10,11]. Analyzing
these graph structures enables us to get an insight into the
interactions among different chronic conditions as well as the
path toward developing MCC [12]. Graphical models can also
be used for the (quantitative) prediction of the occurrence versus
nonoccurrence of new chronic conditions over time, based on
the existing conditions, sociodemographic factors, and so on
[4,13-15]. With the advancement of medical technology, the
amount of data collected from different electronic medical
records systems is increasing. Thus, such disease interaction
graphs are becoming larger and more complex. For example, a
graphical model to characterize the interaction among 30 MCC
over time requires more than 1 billion edges to investigate, or
a temporal graphical model to represent the relationship among
5 MCC over 5 years (time stages) requires over 400 edges to
explore. There are also numerous examples of complex networks
in gene expression and molecular analysis [8,16,17]. However,

a large graph may have less significant edges or noisy
connections, which will affect the accuracy of analysis and slow
down the learning and prediction process in big data settings.
Such an unsummarized graph is shown in Figure 1 (and Figure
2). Meanwhile, medical practitioners often need more concise
representation to interpret the results, such as understanding the
major evolution paths of MCC for planning proper intervention
[9,18].

Thus, instead of using a fully/densely connected network for
analysis, choosing a network with fewer but more informative
connections can improve the training and querying process.
However, the main questions are as follows: (1) What are the
least/most informative parts of the graphical models? (2) How
can such information be leveraged to summarize graphical
models without losing considerable predictive/inference
accuracy? and (3) How can an algorithm of this type be applied
to learn a compact graph directly from the data? Effective
summarization algorithms are the ones that preserve the most
important structures of the original graphical model, focus on
major patterns/aspects of the data, and maintain the original
graph distribution (the conditional probability distribution of
the original graph). They should also be capable of querying or
identifying substructures/patterns in a specific set of nodes/triads
(local queries) of the graph structures as well as the complete
graph (global queries) to study the global influence of
conditioned states.

Figure 1. Learning sparse graphical models directly from emergence data on multiple chronic conditions using (a) the unsummarized graphical model
(λ=0) and (b) the summarized graphical model using the EAGL structure learning algorithm (λ=1000) in which each node is a binary (0,1) variable
representing the status (presence or absence) of a chronic condition in a particular year, that is, TBIY1 denotes the status of traumatic brain injury at
year-1 (base year) and BaPaY5 denotes the status of back pain in year-5. BaPa: back pain; TBI: traumatic brain injury; PTSD: posttraumatic stress
disorder; SuAb: substance abuse; MCC: multiple chronic conditions; EAGL: eigenvalue analysis of the graph Laplacian.
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Figure 2. (a) Unsummarized probabilistic graphical model of the emergence of MCCs. (b) The summarized probabilistic graphical model using the
EAGL summarization algorithm at a 20% summarization rate. Each node is a binary (0,1) variable representing the status (presence or absence) of a
chronic condition in a particular year, that is, TBIY1 denotes the status of TBI at year-1 (base year), and BaPaY5 denotes the status of BaPa in year-5.
BaPa, back pain. In the figure, BaPa: back pain; TBI: traumatic brain injury, PTSD: posttraumatic stress disorder and SuAb: substance abuse, MCC:
multiple chronic condition, EAGL: eigen analysis of graph Laplacian.

Graph summarization is also affected by factors such as data
volume and complexity (structure, heterogeneity, and
abstraction), dynamic/static nature of the graph, efficiency of
the inference procedure, and computational complexity of the
summarization approach [19]. Existing graph summarization
approaches can be divided into 5 major categories:

1. Clustering-based approaches, which aggregate nodes into
super-nodes and connect them using super-edges, including
spectral clustering [20-22], coclustering [23], cross
association [24], shingle ordering [25,26], GraSS [27], and
COARSENET [28].

2. Community-based approaches, which aggregate all the
nodes that belong to the same community and superimpose
edge weights by summing up the weights of the original
edges [29-32].

3. Simplification-based approaches, which remove less
important nodes/edges, including OntoVis [33], EgoCentric
[34], and MDL-based approaches [35-38].

4. Pattern set mining approaches, which create subgraphs
based on the extracted patterns, including VNM [39],
SUBDUE [40], VoG [35], Oddball [41], and Pegasus [42].

5. Node/edge immunization/deletion approaches, which select
the best flow of the information from the source to the
destination node, including MIOBI [43] and NetMelt [44].

Objective
In this work, we propose a graph summarization approach that
utilizes the second eigenvalue analysis of the graph Laplacian
(EAGL) to identify and prune less informative edges of the
complex graphical models of MCC interactions. The intuition
behind the proposed EAGL criterion is that the eigenvalue of
the graph Laplacian of a graphical model is an effective measure
of the connectivity and information flow [45,46]. The eigenvalue
of the graph Laplacian also captures graph robustness, clustering
coefficient, node importance, and several other properties
[47,48]. The proposed simplification method can be utilized to
(1) learn a sparse graphical model of MCC interactions directly
from the data by adding a regularization term to an existing
score-based structure learning algorithm to achieve a desired
level of sparsity or (2) summarize a given graph of MCC
interactions by removing less significant edges (with or without
supporting data set) to speed up the inference process without
sacrificing the predictive accuracy considerably (Figure 3). We
applied the proposed approach to study conditional relationships
(dependencies) among 5 multiple chronic medical conditions,
including posttraumatic stress disorder (PTSD), traumatic brain
injury (TBI), depression (Depr), back pain (BaPa), and substance
abuse (SuAb), as well as most commonly related (coappeared)
terms in the literature of MCC.
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Figure 3. Visual representation of the proposed EAGL Algorithm for summarizing a directed probabilistic graphical model based on an available
dataset.

Methods

Probabilistic Graphical Models
A probabilistic graphical model is specified as a tuple, B =
(G,P), where G denotes a graph that may be directed acyclic
(in Bayesian networks, BN) or undirected (in a Markov random
field), and P(X1,X2,… …,Xk) denotes the joint probability
distribution defined by conditional probabilities of the form P(X
= xk|Pa(X = xk–1)), where X (upper case) denotes the conditional
variables, x (lower case) denotes the associated values of the
conditional variables, and Pa(X = xk–1) denotes the parents of
a X [9-11,49-52]. G (V,E) consists of vertices (V), that is, MCC
conditions, and arcs/edges (E), that is, MCC
interactions/connections, corresponding to the random variables
of consideration. The network represents the joint distribution
over the random variables/nodes, which can be factored

according to the dependencies represented in the graph, resulting
in the decomposition property of the BN:

The decomposition property makes the Bayesian inference
process simple. This model is also known as the recursive
model. Here, we use binary variables (nodes) representing
having or not having a chronic condition (TBI, PTSD, BaPa,
Depr, and SuAb) for the probabilistic graphical models.

Graph Laplacian
The graph Laplacian is a matrix representation of a graph, which
can be used to study various properties of a graph. The first and
second smallest eigenvalue of the graph Laplacian can be used
to extract useful information such as graph communities (first
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smallest eigenvalue) and sparsest cut in a graph (second smallest
eigenvalue) [45,53]. For an undirected graph, G (V,E), the graph
Laplacian L(G) is defined as L = D–A, where A is the adjacency
matrix, D is the degree matrix, and the elements of L are defined
as follows [45,54]:

For a directed graph, we can consider both in- and out-degree
to form the degree matrix [55,56]. In this work, we used the
algorithm proposed by Fan et al [56] for deriving the graph
Laplacian of directed graphical models, which is one of the
most prominent methods in the literature and is straightforward
to implement.

Summarizing While Learning the Structure of the
Probabilistic Graphical Models Directly From Data
Figure 4 presents the major steps of the proposed EAGL
algorithm for learning the sparse probabilistic graphical model
structure directly from the data. The algorithm utilizes an

iterative score-based method (K2, min-max hill-climbing, etc)
to learn the edges (relationship) between nodes [49,57] while
incorporating an active learning regularization term based on
the second eigenvalue of the Laplacian of the adjacency matrix
(graph Laplacian) of the graph from its previous iteration to
penalize for the inclusion of less informative edges. The size
of the regularization term is controlled by changing the tuning
parameter λ to achieve the desired level of sparsity. In this paper,
we considered the maximum weight spanning tree (MWST) +
K2 algorithm as the base learning algorithm along with the
second eigenvalue of the graph Laplacian to learn a sparse
structure for the probabilistic graphical model from the data.
For a given data set, the MWST algorithm [50] is used to learn
the initial node ordering [58]. Utilizing the ordered nodes, a
greedy search method such as K2 algorithm incrementally learns
the directed acyclic graph (DAG) structure from the data [52].
The regularization term is added to the K2 score function to
learn the sparse representation of the DAG structure. The
analysis of the computation complexity of the EAGL algorithm
is provided in the Computational Complexity subsection.

Figure 4. Algorithm for summarizing while learning the structure of the probabilistic graphical models directly from data.

Summarizing an Existing Probabilistic Graphical
Model With Supporting Data
Figure 5 presents the major steps of the proposed EAGL
algorithm for summarizing probabilistic graphical models when
a supporting data set is available. The algorithm starts with a
given probabilistic graphical model and drops edges one at a
time while monitoring the changes in the second eigenvalue of
the graph Laplacian. Then, it prunes the edge/s with minimum
changes (removal) in the second eigenvalue of the graph
Laplacian. There are 2 possible strategies for pruning the edges:

(1) single edge removal—where at each stage it prunes the edge
with the minimum change in the second eigenvalue—and (2)
multiple edge removal—where at each stage it prunes all the
edges whose change in second eigenvalue is less than a preset
value (eg, 0.05). The algorithm then stops when further pruning
the remaining edges change will result in a significant change
in the second eigenvalue (ie, >0.05). Once all the noninformative
edges have been pruned, the conditional dependencies are
updated based on the supporting data. The analysis of the
computation complexity of the algorithm is provided in the
Computational Complexity subsection.
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Figure 5. Algorithm for summarizing an existing probabilistic graphical model with supporting data.

Summarizing an Existing Graphical Model Without
Supporting Data
Excluding the step/s to update the remaining conditional
dependencies in Figure 5 (after dropping each edge) will result
in the summarization algorithm with no supporting data (see
the subsection Summarizing a Graphical Model of Multiple
Chronic Conditions Terms With No Supporting Data for results).

Structural Constraints
To avoid creating isolated nodes or islands (cluster of isolated
nodes) that affect the accuracy of inference and prediction
(especially in temporal graphical models), we use graph traversal
methods, specifically depth-first search (DFS) [59] to preserve
a path between the root and leaf nodes (for information passing
between nodes). The path attained from the graph traversal is
considered as a constraint in the EAGL algorithm.

Dynamic Graph
Considering the consecutive time instances of the dynamic
graph, that is, t and t + 1, as a static graph, and applying
appropriate structural constraints as discussed above, that is,
DFS, the EAGL algorithm can be used to summarize dynamic
graphical models as well.

Results

Study Population
The relationship among the emergence of MCC can be expressed
effectively using probabilistic graphical models, where nodes
represent the emergence of chronic conditions, that is, BaPa,
Depr, and so on, and edges show the statistical relationship
(conditional dependency) between them (BaPa and Depr). Here,
we are interested in sparse learning of the structure and
parameters of the probabilistic graphical model using the EAGL
algorithm based on an available data set of the emergence of
MCC. Our deidentified data were collected from a large national
cohort of US military veteran patients (N=608,503), who were
deployed in support of the wars in Afghanistan and Iraq and
began receiving care in the Veterans Health Administration
(VA) between 2002 and 2011. For the purpose of this analysis,
we have only considered patients who received care each year
for the first 5 years after entering VA care (N=257,633). Dropout
may result from not requiring care, dropping out of VA care,
or death. This study received institutional review board approval
from the University of Texas Health Science Center at San
Antonio and the Bedford VA Hospital, with a waiver of
informed consent. A summary of the study population is shown
in Table 1.
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Table 1. Demographics of the patients included in the study.

Serial numberDemographics

654321

UnknownNativeAsianHispanicBlackWhiteRace

Gender, n (%)

2135 (0.83)3081 (1.20)5639 (2.19)25,373 (9.85)35,758 (13.88)148,355 (57.58)Male

361 (0.14)707 (0.27)981 (0.38)4232 (1.64)11,828 (4.59)19,183 (7.45)Female

Marital status, n (%)

1346 (0.52)1747 (0.68)3067 (1.19)14,523 (5.64)23,308 (9.05)74,487 (28.91)Married

1150 (0.45)2041 (0.79)3553 (1.38)15,082 (5.85)24,278 (9.42)93,051 (36.12)Unmarried

Age group (years), n (%)

1062 (0.41)2115 (0.82)3235 (1.26)17,016 (6.60)20,047 (7.78)96,799 (37.57)18-30

625 (0.24)925 (0.36)1361 (0.53)6606 (2.56)12,468 (4.84)36,003 (13.97)31-40

673 (0.26)564 (0.22)1564 (0.61)4758 (1.85)12,710 (4.93)26,167 (10.16)41-50

136 (0.05)184 (0.07)460 (0.18)1225 (0.48)2361 (0.92)8569 (3.33)≥51

Education, n (%)

51 (0.02)60 (0.02)131 (0.05)386 (0.15)658 (0.26)2334 (0.91)Unknown

22 (0.01)60 (0.02)60 (0.02)360 (0.14)504 (0.20)2037 (0.79)Less than high school

1808 (0.70)3004 (1.17)4732 (1.84)23,592 (9.16)37,506 (14.56)129,921 (50.43)High school graduate

287 (0.11)376 (0.15)598 (0.23)2933 (1.14)4819 (1.87)16,743 (6.50)Some college

223 (0.09)217 (0.08)879 (0.34)1893 (0.73)3160 (1.23)12,024 (4.67)College graduate

105 (0.04)71 (0.03)220 (0.09)441 (0.17)939 (0.36)4479 (1.74)Post college education

Learning Sparse Probabilistic Graphical Models
Directly From Data
The EAGL algorithm begins with a DAG structure provided
by a score-based algorithm [9,49], that is, MWST + K2. It then
calculates the second eigenvalue of the graph Laplacian for the
obtained DAG. Next, it multiplies the second eigenvalue with
a tuning parameter. It adds it as a penalty term to the main
scoring function to determine which edges to remove for the
next iteration. The last 2 steps are repeated until a stopping
criterion is met.

Figure 1 illustrates 2 graphical models, which have been
estimated with different choices of the tuning parameter (λ) to
control the sparsity in the EAGL algorithm: (1) the
unsummarized graphical model without a penalty (λ=0) and (2)
a summarized graphical model with a large tuning parameter
(λ=1000). The tuning parameter was set at λ=0 (Figure 4), which
results in an unsummarized graphical model [9] that provides
a year 2 predictive accuracy of TBI=75.69%, PTSD=78.97%,
BaPa=63.16%, SuAb=72.93%, and Depr=68.24%, compared
with 72.34% reduction in the number of edges, and year 2
predictive accuracy of TBI=79.91%, PTSD=84.04%,
BaPa=78.83%, SuAb=82.50%, and Depr=81.47% for the
summarized graphical model (λ=1000; Figure 1, summarized
graph; Table 2).

To evaluate the model, the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve [60] was
considered. ROC curves are tools used to illustrate the diagnostic
ability of a binary classifier at different threshold values. The
curves are created by plotting the true positive rate (probability
of detection) against the false positive rate (false detection ratio)
at the threshold settings. This plot can be summarized into a
single metric by calculating the area under the ROC curve. The
AUC identifies how much a model is capable of distinguishing
between different classes. AUC values range between 0 and 1,
with higher values representing better classification accuracy.
Table 2 illustrates the predictive accuracy of the learned
graphical model under different choices of tuning parameters

λ=0,10–2,10–1,...,105 (λ=0 represents the classical/unsummarized
graphical model) using the AUC metrics based on 10-fold
cross-validation. It also shows the predictive performance of
the learned graphical model using the popular Akaike
information criterion (AIC). The superior predictive accuracy
of the sparse graphical model by the EAGL algorithm can be
attributed to the removal of spurious (less significant edges)
edges in the graph, which improves the information propagation
through high-confidence paths on the graph. Table 2 also
compares the performance of the EAGL with another popular
approach, AIC, which achieves 66.67% edge removal and year
2 predictive accuracy of TBI=59.49%, PTSD=63.45%,
BaPa=78.51%, SuAb=61.32%, and Depr=59.05%.
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Table 2. The area under the curve performance of the sparse probabilistic graphical model learned by the eigenvalue analysis of the graph Laplacian

algorithm directly from the data with different choices of tuning parameters (λ=0,10–2,10–1,...,105) for predicting future comorbidities (year 2 to year
5), given the comorbidity information of the past year (year 1), along with the area under the curve performance of a comparing algorithm, namely,
Akaike information criterion (AIC) as well as the associated summarization ratios.

LambdaPrediction year

AIC100000.0010000.001000.00100.0010.001.000.100.010.00

Year 2 (%)

59.4979.8879.8879.9179.5776.6975.8875.6975.6975.69TBIa

63.4583.7083.7084.0483.1181.3179.5379.0878.9778.97PTSDb

78.5178.8278.8278.8378.2948.5763.6363.1663.1663.16BaPac

61.3285.0085.0082.5074.5875.2273.3373.0472.9372.93SuAbd

59.0581.6181.6181.4774.2671.0268.4568.2768.2468.24Depre

Year 3 (%)

62.2876.1176.1176.2376.2874.8272.6372.1972.2272.22TBI

61.9580.3580.3580.6180.1178.7176.8476.0276.0176.01PTSD

73.2773.8473.8473.5173.1570.0761.8260.9860.9260.92BaPa

61.8381.1381.1379.8468.5173.6271.0270.8270.8070.80SuAb

56.0977.1077.1077.1370.4869.0165.9365.1865.1665.16Depr

Year 4 (%)

60.7172.3972.3972.3873.2072.9671.1170.8170.8670.86TBI

61.9777.8477.8478.2278.0075.9774.1173.3573.2173.21PTSD

72.8472.6172.6172.9672.9869.9662.5061.8261.8161.81BaPa

60.7279.6479.6477.9274.9670.8868.3468.8268.9768.97SuAb

56.2373.5473.5472.6568.0067.2965.0964.7964.7364.73Depr

Year 5 (%)

59.7069.3869.3869.5173.4772.5071.7870.9270.8870.88TBI

60.5974.8674.8676.1576.5075.2173.4372.8872.7272.72PTSD

72.3068.5268.5273.0472.6469.6354.0953.4153.4653.46BaPa

61.4677.2677.2676.7273.6563.4661.3463.7463.7363.73SuAb

56.0771.3771.3769.9967.8966.5864.8764.1164.0164.01Depr

Edge details

4724243973107128139140141Edges, n

66.6782.9882.9872.3448.2324.119.221.420.710.00Edge removal
(%)

aTBI: traumatic brain injury.
bPTSD: posttraumatic stress disorder.
cBaPa: back pain.
dSuAb: substance abuse.
eDepr: depression.

Figure 6 studies the relationship between the changes in the
tuning parameters and the second eigenvalue of the graph
Laplacian, which shows no change (in the second eigenvalue)
over very small/large choices of the tuning parameters and
logarithmic growth over other (midrange) choices of the tuning
parameter. From Figure 7, we observed a similar pattern between
changes in the tuning parameters and model sparsity and

predictive accuracy, where very small (<0.01) or very large

(>104) changes in the tuning parameter did not improve the edge
removal rate and/or predictive accuracy. Meanwhile, other
choices of tuning parameters generally improve both sparsity
and predictive accuracy. Therefore, the change in the second
eigenvalue of the graph Laplacian can be used as a stopping
criterion for EAGL algorithm; specifically, when increasing the
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tuning parameter does not change the second eigenvalue of the
graph Laplacian, the algorithm shall stop (the analysis of first

eigenvalue is provided in Multimedia Appendix 1).

Figure 6. The relationship between the change in the tuning parameter (λ) and the second eigenvalue.

Figure 7. The relationship between the change in the tuning parameters (λ) and the area under the curve: (a) year-2; (b) year-3; (c) year-4; (d) year-5
of the study. BaPa: back pain; TBI: traumatic brain injury, PTSD: posttraumatic stress disorder and SuAb: substance abuse, MCC: multiple chronic
conditions, EAGL: eigen analysis of graph Laplacian.

Summarizing an Existing Probabilistic Graphical
Model With Supporting Data
In many real-life situations, we are given a graphical model that
could potentially be simplified. The EAGL algorithm, which is
based on the second eigenvalue of the graph Laplacian, can be
used to identify and prune insignificant edges of the graph to
achieve the desired level of summarization. The EAGL
algorithm begins by calculating the second eigenvalue of the
graph Laplacian of the given graphical model. It then extracts
the DFS tree to determine the edges to avoid isolated nodes.
Next, from the set of edges that is not lying on the DFS tree,
the algorithm (temporarily) removes edges one at a time and
calculates the percentage of the change in the second eigenvalue
of the remaining graph Laplacian. Subsequently, it

(permanently) removes the edge, resulting in a minimum change
in the second eigenvalue of the graph Laplacian. The last 2 steps
are repeated until a stopping criterion is met. Once the
summarized network structure is attained, the weight S of the
edges (conditional probabilities) are estimated using a standard
parameter estimation algorithm [10,50]. Figure 3 provides a
visual representation of the proposed algorithm. An example
of this step-by-step process is provided in Multimedia Appendix
2.

Here, we are interested in summarizing an existing probabilistic
graphical model of MCC relationships attained using a
score-based method [9] based on the MCC data set discussed
above (Figure 2, original graph). The summarized graph in
Figure 2 illustrates the structure of the summarized graphical
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model based on removing less significant edges/paths of the
original graphical model using the EAGL algorithm at a 20%
summarization rate (removing 20% of existing edges).

Table 3 presents the AUC performance of the summarized
graphical models at different summarization ratios of 0%, 1%,
5%, 10%, and 20% (0% represents the classical/unsummarized
graphical model) for predicting future comorbidities (year 2 to
year 5), given the year 1 comorbidity using 10-fold
cross-validation. It also shows the predictive performance of
the learned graphical model using the MIOBI [43] algorithm
and the CHEETAH [61] algorithm at different summarization
ratios. As shown in the table, the proposed EAGL algorithm
generally provides the most competitive predictive accuracy

among the comparing methods across different summarization
ratios. This is while the EAGL algorithm also prevents the
creations of island nodes, which helps with the interpretation
of the results.

Although increasing the summarization ratio generally results
in a sparser graphical model, for mild summarization ratios
(<10%), using EAGL can also improve the predictive
performance of the graphical model by preserving more
informative edges/paths as it should. However, a large choice
of summarization ratios (>10%) can decrease the predictive
performance, depending on the topological location of the node
(chronic conditions) and the associated edges that have been
pruned (Table 3).
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Table 3. The area under the curve performance of the original and summarized probabilistic graphical models at different summarization ratios (1%,
5%, 10%, and 20%) for predicting future comorbidities (year 2 to year 5), given the comorbidity information of the past year (year 1).

CHEETAH [62]MIOBI [33]EAGLaPrediction
year

20.0010.005.001.00Original20.0010.005.001.00Original20.0010.005.001.00Original

Year 2 (%)

61.8063.9565.2575.7075.6956.0863.9975.6375.7875.6963.3475.0975.5375.6375.69TBIb

71.1580.1979.5479.1278.9771.0470.8680.5779.3278.9781.5180.8780.2078.9478.97PTSDc

64.8064.1663.4363.2063.1663.2562.4463.1462.9963.1665.5361.3761.0563.1863.16BaPad

74.2973.9673.7873.1072.9369.9973.5472.8872.9372.9368.2670.5975.7472.9572.93SuAbe

70.2268.7468.5168.3668.2455.5066.2068.0368.2468.2459.2762.8870.4868.2368.24Deprf

Year 3 (%)

61.3363.5464.6272.2272.2259.8270.2072.3672.2472.2271.7872.1372.1572.2572.22TBI

69.3676.7876.9076.1576.0176.6075.3477.8976.4076.0178.5777.8177.3775.9776.01PTSD

61.8061.4961.2961.0460.9258.4461.3461.1260.9660.9261.8859.4959.3260.9860.92BaPa

71.9771.7371.5370.8370.8071.0870.7070.7270.7370.8067.5870.5472.4970.8170.80SuAb

66.8565.9965.8465.3765.1664.2464.4565.1665.1365.1658.2868.2966.9565.2065.16Depr

Year 4 (%)

61.9464.0864.8570.2770.8668.2069.4170.8270.8270.8670.4870.7671.1070.7870.86TBI

67.6474.1173.8873.3473.2174.5172.9274.9973.5273.2176.0274.9574.2973.1873.21PTSD

63.0362.4362.1461.9361.8159.2962.6262.0161.7661.8163.0160.3860.2461.8161.81BaPa

70.2469.7869.5369.1468.9770.9969.2868.7368.9768.9768.2469.1370.2869.0068.97SuAb

65.6865.2565.0964.8864.7364.0363.9764.6364.7364.7361.5565.5365.4864.7164.73Depr

Year 5 (%)

63.3565.2566.0270.5270.8869.1470.5370.9170.8270.8870.7471.6371.5570.9170.88TBI

67.3073.3973.1972.8572.7173.6172.2473.9172.9572.7174.3473.7573.5572.7072.72PTSD

53.0153.7353.5053.5153.4649.2653.0353.1153.2153.4650.6750.5851.2053.4953.46BaPa

64.1263.8763.9963.9063.7361.4763.0763.4663.6163.7359.7062.5964.3563.7663.73SuAb

65.1964.7064.5064.1964.0163.3263.3863.7463.9664.0161.2364.5064.7863.9964.01Depr

aEAGL: Eigenvalue analysis of the graph Laplacian.
bTBI: traumatic brain injury.
cPTSD: posttraumatic stress disorder.
dBaPa: back pain.
eSuAb: substance abuse.
fDepr: depression.

Figure 8 presents the relationship between the various choices
of compression ratio and the changes in the second eigenvalue
of the graph Laplacian. As shown in the figure, for compression
ratio values of >10%, the rate of change in the second eigenvalue
increases. Moreover, Figure 9 provides the predictive accuracy
of the summarized graph for the 5 chronic conditions in the

study at different years (year 2 to year 5), which shows a
reduction in the AUC for larger choices of summarization ratios
(>10%). Therefore, a sharp increase in the changes in the second
EAGL can be used as a stopping criterion for EAGL. (The
analysis of the first eigenvalue is provided in Multimedia
Appendix 1.)
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Figure 8. Decrease in the second eigenvalue with reduction in the number of edges.

Figure 9. The relationship between the changes in the tuning parameters (λ) and the area under the curve in the second eigenvalue (λ) over (a) year-2,
(b) year-3, (c) year-4, and (d) year-5 of the study. BaPa: back pain; TBI: traumatic brain injury; PTSD: posttraumatic stress disorder; SuAb: substance
abuse; MCC: multiple chronic conditions; EAGL: eigenvalue analysis of the graph Laplacian.

Summarizing a Graphical Model of Multiple Chronic
Conditions Terms With No Supporting Data
A lexicon graph contains a list of stems and affixes, together
with basic information about them in the form of a graphical
model. This is generally used to represent interconnected word
pairs and their frequencies in natural language processing. Here,
we are interested in exploring the opportunity to summarize a
graphical model of MCC-related terms (Lexicon graph) with
no supporting data using the EAGL algorithm. The graphical
model was developed based on a lexicon graph from a collection
of medical journals. The journals were extracted using the
following keywords: Veterans, Traumatic Brain Injury, Back

Pain, Post-Traumatic Stress Disorder, Depression, Substance
Abuse, Chronic Diseases, Comorbidity, Multimorbidity, chronic
conditions, chronic illness, and chronic pain. A total of 20
peer-reviewed journal papers were collected based on Google
Scholar ranking (without expert opinion). Multimedia Appendix
3 lists the journal papers used for the creation of the lexicon
graph. From the collected papers, the term and their frequencies
are extracted and turned into a data set [41,62-81]. The 200
most frequent word pairs are then selected to build the lexicon
graph, where the strength of the edges (connections) represents
the co-occurrence of the word pairs in the same sentence
(original lexicon graph in Figure 10).
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Figure 10. (a) Lexicon graph of the top 200 most frequent word pairs attained from text mining of 20 medical journal papers; (b) lexicon graph after
summarization algorithm (70% summarization) was performed in the graph. OEF: operation enduring freedom; OIF: operation Iraqi freedom.

Summarized lexicon graph in Figure 10 illustrates the
summarized graphical model using the EAGL algorithm at a
70% summarization rate (edge removal) without utilizing any
supporting data set. The summarized graph presents a cluster
of strong relationships among chronic conditions such as <Depr,
anxiety, TBI, symptoms, and treatment>. It also shows
meaningful connections among <study, design, observe,
population, control, and trial> and <healthcare, ill manage,

service, and medicare>. There are also other interesting groups
of highly connected terms such as <veteran care, military,
suicide, and Operation Iraqi Freedom (OIF)> or <sleep, stress,
and increased risk>. Multimedia Appendix 3 shows an enlarged
version of the lexicon graph and its compressed form using the
EAGL algorithm. It is worth noting that the algorithm here does
not estimate/update the weight of (remaining) edges at each
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iteration (removal of edges); therefore, it is very efficient in
summarizing large lexical graphs.

Computational Complexity
In this section, we derive the time complexity of algorithms
shown in Figures 4 and 5, which is presented earlier. Let n
denote the number of node/variables/vertices (chronic
conditions), e denote the number of edges (relationship between
pair of chronic conditions), m denote the number of
observations/cases (patient observations), and r denote the
number of possible values/instances for each variable (in our
study r=2, which represents having/not having a condition).
Figure 4 consists of 5 components with the following (known)
computational complexities: (1) MWST for node ordering: 0

(n2); (2) topological sorting: 0 (n + e); (3) graph Laplacian: 0

(n); (4) eigenvalue calculation: 0 (n2); and (5) K2 structure

learning with regularization: 0 (mn4r). Integrating the
complexities of the 5 components with some algebraic
simplification, the overall complexity of Figure 4 can be derived

as 0 (mn4r).

Figure 5 also consists of 3 components with the following
(known) computational complexities: (1) depth-first tree
extraction: 0 (n + e); (2) graph Laplacian: 0 (n); and (3)

eigenvalue calculation: 0 (n2). Let p denote the number of edges
to be removed (the desired amount of edge removal). After some
algebraic operations (to account for the loops), the overall

complexity of Figure 5 can be derived as 0 (en2p)

Discussion

Principal Findings
Graphical models are increasingly being used for descriptive,
predictive, and prescriptive analytics in various applications,
including social media, computer networks, genetics, and disease
prognosis [7,8,82-84]. The effectiveness of a graphical model
depends on the quality of the information propagating through
nodes, which is affected by the topology of the network. Graph
topology also affects other properties of a graphical model,
including complexity, robustness, and scalability [85]. A fully
connected network can be considered the most robust in terms
of information dissemination but may cause overfitting, slow
training, and memory allocation issues. Graph summarization
can be performed to identify the important structures, major
patterns, and dissemination of information in complex graphical
models of MCC interaction.

In this study, we have addressed the problem of summarizing
complex graphical models and identifying their important
patterns by modifying the edges of the graph. These types of
graphical frameworks are useful for analyzing plausible
interactions between disease states [4]. The eigenvalue of the
graph Laplacian reveals the characteristics of a graph. For a
large graph, the second eigenvalue of the graph Laplacian
determines the amount of information that is being distributed
by the graph. Thus, by analyzing the second eigenvalue of the
graph Laplacian, we attain a measure (EAGL) of sparse cutoff.
The proposed EAGL algorithm can be used as an active learning
unsupervised method to directly learn a sparse probabilistic

graphical model from an available data set or summarize an
existing graphical model with or without a supporting data set.

The first approach (using direct learning) results in a refined
model where network analysis can be performed by an end user
with specific needs and expertise. Our direct learning model
(Figure 4) demonstrates very good performance when data are
available, and the algorithm is able to learn de novo. This results
in a graph (Figure 1) with predictive abilities that can be
interpreted by clinicians and medical researchers with an
understanding of the medical conditions of interest.

The second approach (Figure 5) summarizes an existing
graphical model with or without a supporting data set. The
EAGL algorithm, which is based on a simplification-based rule
edge removal strategy, can also be used to reveal important
patterns within a given graphical model by removing the edges
with a marginal contribution to the leading eigenvalue of the
graph Laplacian.

Our findings revealed that the proposed summarization
algorithm can indeed improve the predictive accuracy of the
summarized graphical model while reducing its size and
increasing the inference efficiency. We used 2 data sets of (1)
257,633 veteran patients who have been monitored for the
emergence of 5 multiple conditions (TBI, PTSD, BaPa, Dep,
and SuAb) over 5 years and (2) the coappearance of the 200
most frequent word pairs in the literature of MCC to validate
the performance of the proposed EAGL approach.

Although the statistical details of the proposed model might be
complex for some practitioners to understand, the resulting
algorithm can be seen as a step toward creating more
interpretable analytical models for understanding the evolution
of MCC, by removing less informative edges in complex
networks of MCC (resulting in a sparser network), without
losing predictive accuracy. In fact, practitioners do not need to
know the details of the proposed algorithm to utilize it. They
can use a simple tuning parameter (λ) to control the level of
resulting network sparsity (number of remaining edges), that
is, setting a high value for the tuning parameter results in a very
sparse network (with few edges), which is easy to understand
(Figures 1 and 2). Such a (sparse) graphical representation
provides a straightforward visualization of how the presence of
one condition can affect the emergence of another condition
without complex statistics. It also helps interpret the probabilistic
results from statistical analysis.

Finally, the proposed EAGL approach can help medical
practitioners and health care analysts not only in terms of
developing a predictive tool to analyze the probability of a new
chronic condition development, given the existing conditions
(Figures 6-9), but also by using a tuning parameter (λ) to identify
major interaction patterns among MCC. The model can also be
used as a visualizing tool to inspect the interaction among MCC
(Figures 1 and 2).

Limitations
Although the proposed EAGL algorithm successfully extracts
important connections and controls the level of sparsity, it has
a few limitations and potential problems. Algorithm presented
in Figure 4 needs to be built on top of a structure learning model.
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In this study, we utilized the MWST + K2 method [9]. This is
a heuristic-based structure learning model, where the initial
node order has to be known or learned using the MWST method.
Algorithm presented in Figure 5 requires an appropriate tree
extraction method to ensure that there will be no island node
(or set of nodes), which can limit the level of summarization.
In addition, for a high summarization ratio, the summarization
algorithm can decrease the prediction accuracy. Finally, both
algorithms (Figures 4 and 5) primarily target acyclic graphs,
but their usefulness to depict complex webs of causation in
chronic conditions, which can involve loops (particularly of
reinforcing types), is limited.

Conclusions
In this work, we propose a graph summarization approach that
utilizes the second eigenvalue of the graph Laplacian to identify
and prune less informative edges of the complex graphical
models of MCC interaction. We developed 3 algorithms based
on the proposed approach to deal with different scenarios with
respect to the availability of data and/or a graphical model. The
first algorithm learns a sparse graphical model of MCC

interactions directly from the data by regularizing an existing
score-based structure learning algorithm to achieve a desired
level of sparsity. The second algorithm summarizes an existing
graph of MCC interactions by removing less informative
connections with respect to a supporting data set. The third
algorithm simplifies a given MCC graph by removing the less
important edges without a supporting data set. We validated the
performance of the first 2 algorithms based on a large data set
of veteran patients who have been monitored for over 5 years
and 5 multiple chronic medical conditions, including PTSD,
TBI, Depr, BaPa, and SuAb. We also validated the third
algorithm based on a data set of coappearances of the 200 most
frequent word pairs in the literature of MCC. The results showed
that the proposed EAGLE algorithm effectively extracts
important connections and dependency patterns from the
complex graphical model of the interactions of MCC. It can
also control the level of sparsity in the resulting graph based on
the practitioners’needs using a simple tuning parameter. Finally,
it improves the predictive accuracy of the resulting summarized
graphical model.
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